India. Survey óf India dept. Triépnométrion bransh.
account of the operations of

## THE GREAT TRIGONOMETRICAL SURVEY OF INDIA

## VOLUMME XIV.

## GENERAL DESCRIPTION

of the

## PRINCIPAL TRIANGULATION

OF

# THE SOUTH-WEST QUADRILATERAL <br> includina <br> THE SIMULTANEOUS REDUCTION <br> and 

THE DETAILS OF ITS COMPONENT SERIES.

PREPARED UNDER THE DIRECTIONS OF
W. H. COLE, Esq., M.A., OFFICIATING DEPUTY SURVEYOR GENERAL, TRIGONOMETRICAL BRANCH.

PUBLISHED UNDER THE ORDERS OF
COLONEL H. R. THUILLIEI, R.E., SURVEYOR GENERAL OF INDIA.


PRINTED AT THE OFFICE OF THE TRIGONOMETRICAL BRANCH, SURVEY OF INDIA.
B. V. HUGHES.
1890.
$\overline{\text { Price Ten Rupees Eiyht Annas. }}$

## -

## 

- 


## CONTENTS.



Chapter II-(Continued).

|  |  |  |  |  |  | Page |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4. | Calculation of the Sides of the Triangles | ... | ... | ... | ... | 18 |
| 5. | Geodetic Elements of Stations and Sides | ... | ... | - | ... | $i b$. |
| 6 | Reduction of the Vertical Angles for the Determination of Differences of Height and |  |  |  |  |  |
| 7. | The Final Values of Height above Mean | Level | ... | $\cdots$ | ... | 22 |
| 8. | The Determinations of Asimuths by Astro | mical | ions | ... | ... | 28 |
| 9. | The Final Reduction of the Triangulation. | Prelimi | ketch | ... | ... | 29 |
| 10. | The Final Reduction of the Triangulation. | Format | the |  | ... | 31 |
|  | I. Linear Equations ... | ... | ... | ... |  | ib. |
|  | II. Geodetic Equations |  |  | ... | ... | 32 |
|  | III. Calculation of the Absolute Terms of | the Ge | Equa | ... | ... | 37 |

11. The Final Reduction of the Triangulation. Solution of the Equations between the
Indeterminate Factors
... ... $\quad$... $\quad$...

Chapter III. The Details of the Simultaneous Reduction.

1. Preliminary Remarks ... ... ... ... ... ... 89

2. General Outline of the Formation of the Linear and Geodetic Equations of Con-
dition, and a

| Statement of the | Entire | Number of | Equations presented by the |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Triangulation
5. Formation of the Co-efficients of the Unknown Quantities ... ... ... 45
6. Synoptical Exhibition of the several Equations of Condition ... ... 48
7. The Numerical Values of the Fixed Data on which the Simultaneous Reduction of
the South-West Quadrilateral is based $\begin{aligned} & \text {... }\end{aligned}$
8. The Sides and Angles of the Circuit Triangles ... ... ... ... 52
9. Preliminary Latitudes, Longitudes and Arimuths of the Stations on the Right-hand
Flanks of the Circuit Triangles ... $\quad \ldots \quad$...
10. Numerical Values of the Absolute Terms in the Primary Equations of Condition ... 62
11. Numerical Values of the $\mu \mathrm{s}$ and $\phi \mathrm{s}$... ... ... ... 66
12. Numerical Values of the Co-efficients $\boldsymbol{y}^{\mathrm{h}}$ and f of the Unknown Quantities $\boldsymbol{y}$ and $\boldsymbol{z}$... 70

Chapter III-(Continued).

| 13. | The Weights of the Angles <br> Data for the Calculation of $\rho^{\prime}$ |  | ... |  | ... | ... | Pagr 79 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | ... | 81 |
|  | Synopsis of the Values of $\rho^{\prime \prime}$, | d th | nce | Det | tion |  | 84 |
|  | The Weights employed in the Simultaneous Reduction of the South-West Quadri- |  |  |  |  |  |  |
|  | lateral |  |  |  |  |  | 85 |
|  | The Absolute Reciprocal Weights of the Figurally Corrected Angles with the data |  |  |  |  |  |  |
|  | for their determination | ... | ... | ... | ... | ... | 86 |
| 14. | The Co-efficients of the Indeterminate Factors in the Values of the Unknown |  |  |  |  |  | 88 |
| 15. | The Equations between the Indet | mina | rs, | So | ... | ... | 98 |
| 16. | The Angular Errors $x, y$ and $z$ | ... | ... | ... | ... | ... | 106 |
| 17. | The Final Results of the Simulta | ous |  |  |  |  | 113 |

Chapter IV. The Non-Circuit Triangles.
The final Figural Adjustments of the Non-Circuit Triangles ... ... ... 115

Note on the Simultaneous Reduction of the South-West Quadrilateral ... ... 143

PART II.
THE DETAITS OF THR OBSERVATIONS AND THE FINAL RESULTS OF THE TRIANGULATION RMBRACED BY THE SOUTH-WRST QUADRILATERAL.

## KHÃNPISURA MERIDIONAL SERIES.

| Introduction ... | ... | $\ldots$ | ... | ... | -•• | $\cdots$ | III-G. $_{\text {G }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Alphabetical List of Stations | ... | ... | ... | - | ... | ... | 1 -G. |
| Numerical do. do. | ... | ... | ... | - 0 | -•• | ... | $2-G$. |
| Description of Stations | ... | ... | ... | -•• | ... | ... | 3-6. |
| Observed Angles ... | ... | ... | ... | ... | . $*$ | ... | 9-a. |
| Sums of Squares of Apparent | Errors \&c. | ... | ... | ** | ... | ... | 37-6. |
| Errors of Mean Squares | $\cdots$ | - | ... | - | ... | ... | 41-G. |
| Reduction of Figures | ... | ... | ... | -•• | - | ... | 43-6. |
| Sides and Angles of Triangles |  | $\cdots$ | $\cdots$ | $\cdots$ | - | -. | 55-6. |


| KHÃNPISURA MERIDIONAL SERIES-(Continued). |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Latitudes, Longitudes and Azimuths of Stations |  | ... | ... | ... | ... | 60 |
| Heights above Mean Sea Level ... | ... | ... | ... | ... | ... | 63 |
| Description of Spirit-levelled Points | ... | ... | ... | ... | ... | 71-a |
| Azimuthal Observations and their R |  | ... | ... | ... | ... | 72 |

Plates 1 and 2.

SINGI MERIDIONAL SERIES.

| Introduction ... | ... | ... | ... | ... | ... | ... | III- ${ }_{\text {H. }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Alphabetical List of Stations | ... | ... | -•• | $\cdots$ | $\cdots$ | - | 1 - \% |
| Numerical do. do. | ... | - | -•• | - | -•• | -•• | 2-H. |
| Description of Stations | ... | -. | ... | ... | ... | - | 3-H. |
| Observed Angles ... | ... | -•• | -• | - | *- | - | 9-H. |
| Sums of Squares of Apparent | Errors \&c. | ... | ... | ... | -•• | ... | 39- |
| Errors of Mean Squares | ... | ... | ... | ... | ... | - | 44-H. |
| Reduction of Figures | ... | -•• | ... | - ${ }^{\text {a }}$ | $\cdots$ | - | 45-H. |
| Sides and Angles of Triangles |  | $\cdots$ | ... | - | $\cdots$ | *.. | 53- \%. |
| Latitudes, Longitudes and Azimuths of Stations |  |  | ... | ... | -•• | - | 59-H. |
| Heights above Mean Sea Leve |  | ... | ... | ... | $\because$ | ... | 62-H. |
| Description of Spirit-levelled | Points | - | - | ... | $\cdots$ | ... | 68-H. |
| Azimuthal Observations and their Reduction |  |  | -.. | ... | ... | ... | 69- | Plate 1.

ABU MERIDIONAL SERIES.

| Introduction ... | ... | ... | ... | ... | ... | ... | $\mathrm{III}_{\text {- }}$. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Alphabetical List of Stations | ... | ... | ... | ... | ... | ... | 1 |
| Numerical do. do. | ... | ... | ... | ... | ... | ... |  |
| Description of Stations | ... | ... | ... | ... | ... | ... |  |
| Observed Angles ... | $\cdots$ | $\cdots$ | ... | ... | ... | ... |  |
| Sums of Squares of Apparent | Errors \&c. | ... | ... | ... | ... | ... | 20-r. |

## ABU MERIDIONAL SERIES-(Continued).



Plate 1.
KATTYWAR MERIDIONAL SERIES.


Plates 1 and 2.

GUZERAT LONGITUDINAL SERIES.

| Introduction | ... | ... | ... | ... | ... | ... | - K $^{\text {. }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Alphabetical List of Stations | ... | ... | ... | ... | $\cdots$. | ** |  |
| Numerical do. do. | ... | ... | ... | ... | ... | ... | - |
| Description of Stations | ... | ... | ... | ... | ... | ... |  |
| Observed Angles ... | ... | ... | ... | ... | ... | ... | $9{ }_{\text {- }}$ |


| GUZERAT LONGITUDINAL SERTEXS-(Continued). |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Sums of Squares of Apparent Errors \&c. ... | ... | ... | ... | \% 6 | $\begin{gathered} \mathrm{PaGE}^{89}-\mathrm{K} \end{gathered}$ |
| Errors of Mean Squares ... | $\cdots$ | ... | ... | $\cdots$ | 44 |
| Reduction of Figures | ... | ... | \% | $\cdots$ | 45 |
| Sides and Angles of Triangles ... | ... | $\cdots$ | $\ldots$ | ... | 49 |
| Latitudes, Longitudes and Azimuths of Stations | ... | ... | " | $\cdots$ | 54 |
| Heights above Mean Sea Level ... | ... | ... | ... | ... | 57 |
| Description of Spirit-levelled Points . A | * $<$ | ... | ... | -.a | 63 |
| Azimuthal Observations and their Reduction | ... | ... | ... | ... | 65 |

Plate 1.

## CUTCH COAST SERIES.

| Intröduction | ... | -. | ... | ... | ... | * | 111-2. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Alphabetical List of Stations | ... | ... | ... | ... | ... | ... | 1-L. |
| Numerical do. do. | ... | ... | $\cdots$ | ** | $\cdots$ | $\cdots$ | 2 - |
| Description of Stations | ... | $\cdots$ | ... | ... | ... | ... | 8 - |
| Observed Angles | ... | ... | ... | ... | ... | .0. | $10-1$. |
| Sums of Squares of Apparent Errors \&c. |  | $\cdots$ | ... | ... | $\cdots$ | ... | 48-L. |
| Errors of Mean Squares | ... | ... | ... | ... | $\cdots$ | " ${ }^{\prime}$ | 54 |
| Reduction of Figures | ... | - | ... | ... | ** | $\cdots$ | $L$ |
| Sides and Angles of Triangles |  | ... | ... | $\ldots$ | -• | .. | $L$. |
| Latitudes, Longitudes and Azimuths of Stations |  |  | ... | *- | ** | -•• | 77-L. |
| Heights above Mean Sea Level ... |  | ... | ... | $\cdots$ | ... | -• | 81-L. |
| Description of Spirit-levelled Points |  | -•• | ... | $\cdots$ | ... | $\cdots$ | 8-L. |
| Azimuthal Observations and their Reduction |  |  | .. | .. | -•• | $\cdots$ | 90 |

Plates 1 and 2.

The Reduction Chart of the South-West Quadrilateral.

The present volume forms one of that series of publications，known as the＂Account of the Operations of the Great Trigonometrical Survey of India＂，of which the design is，as has already been stated in the second volume of the series，＂to give full reports－historical and descriptive－of the nature and the general ＂procedure of the operations；to describe the instruments which were employed in executing the several ＂linear and angular measurements；to furnish complete details of the actual facts of observation and the ＂methods of reduction by which these facts have been combined together and duly harmonized；and，lastly ＂to give the results which have been arrived at after the final reduction of the operations．＂

The first volume of the series accordingly gives the details of the measurements of the several base－ lines on which the triangulation of India rests，together with a discussion of the instruments with which the measurements were made，and the theoretical probable errors of the results．Volume II describes the principal triangulation，the theodolites with which it was executed，the procedure adopted in observing the angles，and all necessary details of the operations carried on in the field；it further describes the processes by which prelimi－ nary results were obtained from the observations，to satisfy immediate requirements，pending the completion of the several chains of triangles；also the method of final reduction which was adopted after the chains were completed，and by which the errors at the junctions of the chains with each other and with the base－lines are eliminated，with the closest possible approach to mathematical rigour．It states briefly at page 28，and ex－ plains more fully at pages 162 to 170 ，the reasons why the method of final reduction could only be applied to limited portions of the triangulation at a time，thus necessitating the division of the triangulation into five great sections，to be reduced in succession，as indicated at page 32．It shows how the whole of the triangula－ tion with the exception of two chains，viz．，the Jodhpore and Eastern Sind Meridional Series，which were afterwards executed，contained in the first of these sections－known as the North－West Quadrilateral－was reduced simultaneously；and，together with Volumes III and IV，it gives all the facts of angular observation appertaining to that Quadrilateral，full details of the preliminary and the final reductions of the angles and the several trigonometrical figures，and finally，the resulting values of the lengths and azimuths of the sides of the triangles and the latitudes and longitudes of the stations．The details of the reduction of the two chains afterwards added to this Quadrilateral are published in a supplementary Volume numbered IV A．

Volume V deals with a subject of its own，the Indian Pendulum Operations，which being quite uncon－ nected with the triangulation need not be here noticed．

Volume VI treats entirely of the triangulation appertaining to the South－East Quadrilateral，the second of the five great sections into which the principal triangulation of India has been divided for final reduction．It commences with a brief recapitulation of the formulx employed in the calculations，in order to obviate the necessity for frequent reference to Vol．II，and then gives first，a complete exposition of the simultaneous reduction of the six chains or series of triangles forming the South－East Quadrilateral；
and afterwards, for each series, an introductory account of the operations, a descriptive list of the stations, an abstract of the observations of each angle, full details of the preliminary reductions of the angles-made to satisfy the geometrical conditions of the trigonometrical figures-the final values of the angles after having been corrected to satisfy the conditions of the Quadrilateral, and lastly, the resulting values of the lengths and azimuths of the sides, and of the latitudes and longitudes of the stations of the triangulation.

In like manner Volumes VII and VIII treat of the triangulation appertaining to the North-East Quadrilateral, the third of the five great sections before alluded to, and contain full details of the observations, reductions and final results of the sixteen chains or series of triangles embraced within its limits.

Volumes IX and $X$ are devoted to the Electro-Telegraphic Longitude Operations which have been carried out by the Survey of India Department; but as these operations are not yet complete, the time has not arrived for solving the equations of condition, presented by the several arcs of longitudes already measured, and no combination of the results with those of the triangulation is at present possible; and therefore the subjects of Vols. IX and $\mathbf{X}$, like that of Vol. V, may be considered as distinct from that of the other volumes.

Volume XI, is also a subject by itself, viz., the Astronomical Observations for Latitude which have been carried out by the Great Trigonometrical Survey at intervals from the commencement of the present century.

Volumes XII and XIII are devoted to the Southern Trigon, the fourth of the five great sections into which the principal triangulation has been divided for reduction, and contain details similar to those in Vols III, IV, VI, VII and VIII.

The present volume, No. XIV, is devoted to the South-West Quadrilateral, the last of the five great sections above alluded to. With this the reduction of the whole of the triangulation of India proper is complete.

In order that the reader may obtain a clear conception of the triangulation of India as a whole, and the position of the Section now under consideration relatively to the other Sections, a Skeleton Chart of the Principal Triangulation of India is given facing this page. In this chart each line represents a chain of triangles. The chain which approximates to the meridian of $78^{\circ}$ and extends from the extreme south of India to latitude $30^{\circ}$, where it terminates on the Dehra Dún Base-line at the foot of the Himayala Mountains, forms the back-boue of the triangulation, and is well known as the Great Meridional Arc of India, which was commenced by Colonel Lambton in Southern India, and carried northwards to the Himalayas by Colonel Everest; Colonel Lambton's portion has been revised of late years, with all the refinement which the latest and best instruments and the most approved procedure rendered possible. Of the remaining chains, some were accomplished in the earlier days of the Survey, when the instrumental equipment was generally very inferior to what it became subsequently, and when the procedure, as regards portions of the operations-more particularly the construction of towers for the principal stations in the plains-was still imperfect; other chains were executed in more modern times, with the best instruments and with the utmost possible refinement in every particular. The chains last executed are generally on a par with the Great Arc itself, while some are superior to it in accuracy. It so happened that lines of demarcation could be drawn broadly between the several chains of triangles, in such a manner as to divide them into separate groups, each group containing a large number of interdependent chains; this circumstance was therefore availed of in designing the great sections into which the triangulation had to be divided for final reduction. The bounding chains of these sections are represented in the Skeleton Chart by thick black lines, while the intermediate and all other chains are shown by thin lines. It will be seen that there are five sections in all, of which four are quadrilateral figures, while the fifth-which lies to the south of the others-is a trigon. The four Quadrilaterals meet at the point Kalianpur, (approximately in latitude $24^{\circ}$ by longitude $78^{\circ}$ ) which was employed

by Colonel Everest as the central or reference station of the triangulation; they are therefore distinguished by the corresponding cardinal points-North-East, South-East, South-West, and North-West-with reference to the central station.

It has already been shown, in Section 7 of Chapter I, Vol. II, that the most accurate of all the chains of triangles are those which enter the North-West and the South-East Quadrilaterals; the least accurate enter the North-East and the South-West Quadrilaterals. When therefore the method for the general treatment of the principal triangulation had been elaborated and was ready to be put in practice: the Simultaneous Reductions were taken in hand in the following order, first the North-West Quadriateral, secondly the South-East and thirdly the North-East Quadrilateral ; after which the two additional series of the North-West Quadrilateral were reduced, fourthly the Southern Trigon and fifthly the South-West Quadrilateral. Volume XIV contains full details of the observations, reductions and final results of the whole of the triangulation which is contained within the limits of the South-West Quadrilateral.

Any description of the triangulation of this Survey and the operations connected therewith, from the observations of the angles to the deduction of the most probable and therefore final results, is naturally subdivisible under six heads; first, the general principles in accordance with which the operations have been conducted; second, the practical execution of the measurement of the angles; third, the general principles followed in the combination and adjustment of the individual angular measures, with a view to satisfying all the geometrical conditions involved. as well as the primary linear elements which are fixed by the baselines; fourth, the preliminary geometrical reduction of the individual triangles, polygons and net-works of which the chains are composed; fifth, the Simultaneous Reduction of each of the groups of chains, or sections, into which the triangulation has been divided for convenience; and sixth, the presentation of the most probable values of the magnitudes of the angles, of the lengths and azimuths of the sides of the triangles, and of the latitudes and longitudes of the stations of the triangulation, which are the final resulte of the several reductions. The first and third of these branches of the subject are of general application and they form the principal matter of Volume II, which is introductory to all subsequent volumes relating, to the triangulation. The second, fourth and sixth branches have special reference to individual series or chains of triangles. The fifth has reference to each of the sections or aggregations of chains grouped together for simultaneous reduction. In the present volume it has not been necessary to touch otherwise than lightly on the first and third divisions of the subject; but the remaining divisions, including the Simultaneous Reduction, are dwelt on at length, and full numerical details are given of all the chains of triangles.

The chains are :-
G. The Khánpisura Meridional Series.
I. The Abu Meridional Series.
K. The Guzerat Longitudinal Series.
H. The Singi Meridional Series.
J. The Kattywar Meridional Series.
L. The Cutch Coast Series.

For their linear and geodetic elements the whole of the above chains of triangles are dependent on the final elements of the Karáchi Longitudinal and Bombay Longitudinal Series, as derived from the North-West Quadrilateral and the Southern Trigon.

The present volume is divided into two parts. Part I is devoted to the Simultaneons Reduction of the Quadrilateral. Part II is devoted to the details of the six chains of triangles comprising the Quadrilateral.

Part I.
Chapter I gives a general account of the several chains of triangles, indicates the dependency of the Quadrilateral on the North-West Quadrilateral and Southern Trigon for its fixed data, and describes the structure of the principal stations.

Chapter II describes the procedure followed in the measurement of the horizontal angles, and the methods adopted in determining the weights of the angles which were respectively measured with the primary and the modern theodolites; it quotes the mathematical formulæ employed in the reduction of the triangulation from Volume II where they are demonstrated; it indicates the final adjustment of the trigonometrical determinations of height by connection with the main lines of spirit levels; and finally it indicates the general principles of the Simultaneous Reduction of the Quadrilateral.

## Chapter III gives full details of the Simultaneous Reduction as follows :-

First. Some preliminary remarks on the character of the triangulation.
Second. A synopsis of the independent partial reductions antecedent to the Simultaneous Reduction.
Third. A description of the Reduction Chart which is given at the end of the volume, and a careful study of which is essential to a clear understanding of the several processes of calculation.

Fourth. A general out-line of the formation of the several Linear and Geodetic Equations of condition, 24 in number, which had to be satisfied, in order to produce the requisite consistency in the triangulation per se, and between it and the fixed elements on which it depended.

Fifth. The method of constructing the coefficients of the Unknown Quantities in the equations of condition, showing the general notation which was adopted for expressing the values of these coefficients, and specifying every exception to the general form.

Sixth. A synoptical exhibition of the several Equations of Condition, showing at a glance the triangles of which the angular errors enter as unknown quantities into each of the 24 equations of condition.

Seventh. The numerical values of the Fixed Data on which the Quadrilateral is based.
Eighth. The values of the Sides and Angles of the Circuit Triangles, as they stood before the Simultaneous Reduction.

Ninth. The Latitudes, Longitudes and Azimuths of the stations on the right-hand flanks of the Circuit Triangles, as they stood before the Simultaneous Reduction.

Tenth. The numerical values of the Absolute Terms in the several linear and geodetic equations of condition.

Eleventh. The numerical values of the $\mu \mathrm{s}$ and $\phi \mathrm{s}$, the geodetic summations-exhibited in the table at page 36 -which are required in forming the coefficients of the unknown quantities (the angular errors) in the geodetic equations of condition.

Twelfth. The numerical values of the coefficients, $b$ and $¢$, of the unknown quantities in the several linear and geodetic equations of condition.

Thirteenth. The Weights of the Angles: the method of determining the value of the modulus which had to be applied in each instance, in order to convert the preliminary weights of angles measured with different instruments and under different circumstances into absolute weights, and thus to reduce them all to a common standard of accuracy before commencing the Simultaneous Reduction; the data for the calculation of the several moduli, with remarks on the results; and finally, the values of the weights which were employed in the Simultaneous Reduction.

Fourteenth. The coefficients, $\boldsymbol{3} \boldsymbol{B}$ and $\mathbb{C}$, of the Indeterminate Factors, in the equations in which the values of the Angular Errors are expressed in terms of those factors.

Frfteenth. The equations between the Indeterminate Factors, showing every significant coefficient and absolute term as it stood, first on the formation of the equations, secondly with the application of certain equalizing factors and thirdly after the successive eliminations of individual factors in the process of solution; finally, the numerical values of the Factors are given.

Sixteenth. The values of the Errors, $x, y$ and $z$, of the angles of each circuit triangle, resulting from the Simultaneons Reduction and the subsequent apportionments of residual error.
.Seventeenth. The final results of the Simultaneous Reduction.
Chapter IV gives the Reduction of Non-Circuit Triangles-viz., the triangles excluded from the Simultaneons Reduction-which was needed for the final adjustment of their angles to satisfy the geometrical conditions of the polygonal figures to which they appertain. This is followed by a Note on some of the details of the Simultaneous Reduction.

## Part II.

This portion of the present volume gives full details of the six chains or series of triangles of which the Quadrilateral is composed. In arranging these details for publication it has been found convenient to give the whole for each series-from the observations of the principal angles to the determination of the final results, angular, linear and geodetic-in groups by themselves. This has been done, First, because the printing of that part of this volume which is allotted to these details has extended over several years, proceeding pari passt with the progress of the calculations and the acquisition of data for publication ; thus it was commenced with the Names and Descriptions of the Stations and the Details of the Observations of the Angles, and then continued with the results of calculation. Secondly, because by taking up each Series by itself, much of the matter which was set up in type for this volume could be made available for the Synoptical Volumes-as they are called-which are prepared to supply the data needed for the requirements of topographical surveyors operating in the districts passed over by the triangulation. The Synoptical Volumes contain full details of the several Secondary and Tertiary Triangulations which have been executed pari passd with the Principal Triangulation, for geographical and topographical purposes. The larger volumes-or the Accounts of the Operations, \&c.,-are exclusively devoted to the details of the Principal Triangulation, excepting in so far that what has been done in the way of secondary and minor triangulation in each series is described in the introduction to the series. It was obviously desirable that all matter which was required for both the Synoptical and the Principal Volumes should be set up in type and printed off, once for all, and therefore the arrangement of separate grouping was adopted. Thus in Part II of this volume, the numberiug of the pages commences afresh for each series, following the order of succession, which has already been indicated at page xi ; it is particularised for each series by the addition, as a subscript to the number of the page, of the letter-G to $L$-which has been adopted as a symbol to indicate the series.

It is now desirable to give first, a summary, and afterwards a general explanation, of the information and numerical data for each series, the first Series in order-the Khánpisura Meridional-may be taken as typical.

1. Introduction . ... ... ... ... ... ... ... page III—a.
2. Alphabetically arranged List of Stations ... ... ... ... , $\mathbf{l}_{\text {- }}$.
3. Numerically arranged List of Stations ... ... ... ... \# 2-a.
4. Description of Stations ... ... ... ... ... ... „ 3—G.
5. The Observations of the Angles, with the Weights of the Concluded Results ... ") 9—a.
6. Data for the Computation of the Theoretical Errors of the Observed Angles ... ") ${ }^{37} \boldsymbol{- G}_{\boldsymbol{G}}$.
7. The mean Theoretical Errors of certain groups of the Observed Angles ... „ 41 -a.


Plate. Diagrams of the several Polygonal Figures contained in the Series.

1. The Introduction gives a historical sketch of the progress of the whole of the operations in the field-both principal and secondary-from year to year, mentions the Officers by whom they were conducted, and the theodolites with which the principal angles were measured, aud indicates the work done by each of the Assistants.

2 and 3. It has been found convenient to indicate the Principal Stations by a system of numerals, as well as by their names. Consequently at the commencement of the details of each series two lists are given, in the first of which the stations are arranged alphabetically with the numbers opposite the names, in the second numerically with the names opposite the numbers. Roman numerals have been adopted throughout for the nomenclature of the stations which is progressive in order from north to south in meridional chains, and from east to west in longitudinal and coast chains, the first number of each Series being unity.
4. The Descriptions of Stations are based generally on those made originally by the observers and entered on the spot into the angle books, subject to such modifications as are occasioually required to take cognizance of any alterations which have been subsequently effected. They give the names of the districts and the sub-divisions in which the stations are situated from the latest Annual Reports furnished by the District Officers to whose charge the stations were committed. For information as to the general form and structure of the stations, reference should be made to Section 4 of Chapter I.
5. In the pages which are allotted to the observations of the angle, the name of the observer, the distinguishing number and the name of the maker of the theodolite, and the month and year in which the observations were taken, are specified at the head of the observations at each station.

In the details of the measures of the angles-called the Abstracts of the Angles-it is customary to give the reference number of the station-commonly called the "zero station"-on which the telescope was set at the commencement of each round of measures, and the reading to which the azimuthal circle was set, after each 'change of zero'; thus the graduations of the circle to which the readings were taken, at every measure of any angle, may be readily ascertained for an investigation of the law of the graduation error, such as will be found for 'Troughton and Simms' 18 -inch Theodolite No. 1 in Appendix No. 4 of Volume II.

The Abstracts of Angles give the value of every measure of each angle, for each circle setting, the values being arranged in vertical columns at the foot of which the mean is given for the zero.

For an explanation of the principles by which the changes of zero have been governed, reference should be made to Section 1 of Chapter II.

The right-hand column of the Abstract of Angles contains the following additional information ; $-M$, the mean of the several groups of measures on each setting, $w$ and $\frac{1}{w}$, the weight and its reciprocal, of the angle as deduced from differences between individual measures and between individual groups, and $C$, the

- concluded value of the angle as derived from the observations only. For fuller explanations reference must - be made to Section 4 of Chapter VII of Volume II, to the example at page 342 of the same volume, and to Section 2 of Chapter II of the present. volume.

6 and 7. The Abstracts of Angles are followed by lists of the Sums of Squares of Apparent Errors of Single Observations and Single Zeros, which furnish data for the investigation of the average e.m.s (theoretical error of mean square) of observation in a single measure of an angle, and the average e.m.s. of graduation plus observation in the mean of the measures on a single zero. The determinations are made in the first instance for groups of angles measured by the same observer, with the same instrument, and under similar conditions, and then for various combinations of these groups. With data thus obtained, from several series of triangles, for seven of the large theodolites which have been chiefly employed in the measurement of the principal angles, the investigation of the influences of Mixed Errors of Observation and Graduation was made which forms the subject of Section 3, Chapter VII, Volume II.
8. The Reductions of the several Polygonal Figures which are contained in any Series, show how the angles of which each figure is composed were made consistent and harmonious inter se, so as to satisfy all geometrical conditions, with due regard to the respective weights of the angles. Full explanation of the principles and the procedure of these reductions, will be found in Chapter VIII of Volume II, and the formulæ are given in Section 3 of Chapter II of the present volume. The figures are numbered consecutively throughout the triangulation of the Quadrilateral, running generally through the several Series in the order of their alphabetical arrangement. Diagrams of the figures are given in the plates appertaining to the Series. The small numerals within each of the observed angles correspond to the subscripts to the general symbol, $x$, which is employed to indicate the error of any angle, the numerical subscript denoting the angle. Thus on referring to the diagram of Figure No. 4, and to the reduction of that figure on page 48-a of Part II of this Volume, $x_{3}$ is the error of angle 3 at Station XIII between Stations XII and XIV. The tabular statements of the reductions give, first the observed angles and reciprocals.of their weights; secondly the equations by the solution of which the geometrical conditions of the figure are satisfied,-see equations page 17 of Part I of this Volume; thirdly the equations between the 'indeterminate factors',-fourthly the values of the indeterminate factors; fifthly the values of the angular errors,-and sixthly the summation of the product of the square of each error by its weight-the value of which summation is made a minimum, in order that the values to be obtained for the several angular errors may be the most probable of each of the many values by which the geometrical conditions of the figure may be satisfied. In the group of equations between the indeterminate factors, the coefficient of the $p$ th factor in the $q$ th line is the same as that of the $q$ th factor in the $p$ th line; thus if a diagonal line be drawn from the coefficient of the first term in the first line to that of the last term in the last line, the coefficients which are symmetrically disposed on opposite sides of this line will be identical with each other. Consequently only the coefficients on and above the diagonal have been given; the absence of those below is indicated by asterisks.
9. Tabular statement of the Triangles. The two first colnmns of this table give the number adopted for each triangle to designate its place in the Quadrilateral; this number is entered in the first column, if the triangle appertains to the chains of single triangles forming the several circuits whose closing errors are eliminated by the Simultaneous Reduction; it is entered in the second column for the non-circuit triangles exterior to the said chains. The triangles which enter the circuits are shown in the Reduction Chart at the end of this volume in firm lines, with distinguishing numbers written in the centre; those which do not enter the circuits are shown in dotted lines, and their numbers are indicated by numerals of a smaller size than the former, commencing with 173, 172 being the number of the last of the circuit triangles. $\boldsymbol{n}$ The columns in the table which contain the corrections to the observed angles give, first the correction for the error of the angle,
with reference merely to the triangle or polygonal figure to which it belongs, as obtained from the primary. reductions; and secondly the further correction which has to be applied either for the apportionment of circuit error, should the angle appertain to one of the circuits, or for the restoration of consistency in the polygonal figure after the application of the circuit errors, should it appertain to a non-circuit triangle. Finally, the corrected plane angles and the lengths of the sides are given, as computed by the rules of Plane Trigonometry, in accordance with Legendre's Theorem ; see Section 4 of Chapter II.
10. The Table of the Latitudes and Longitudes of the Stations and the Azimuths and Lengths of the Sides. The principles on which the calculations of the Geodetic Co-ordinates and Azimuths have been made, and the method of computation, are fully explained in Sections 2 and 4 of Chapter IX of Volume II, and the formulæ are quoted in Section 5 of Chapter II of the present volume. All azimuths are referred to the south point and are measured right round the horizon, by the west.
11. The Determinations of the Differences of Height of the several stations have been deduced from the measurements of the vertical angles, as explained in Section 6 of Chapter II. It has not been considered necessary to give the individual measures of these angles, as has been done for the horizontal angles, because this portion of the operations is less exact and important. But the mean of the whole of the measures of each vertical angle, the calculated mean value of the amount of refraction in each angle and of the coefficient of refraction, the hour of observation, the heights of the signal and of the observer's telescope above the summits of the stations, the differences of height of the said summits and the absolute heights above mean-sea level, are given. Several of the absolute determinations have been derived from the Spirit-levelling Operations of this Survey. The errors generated trigonometrically between any two obligatory stations fixed by the spirit-levelling, have been duly dispersed by simple proportion over the intermediate trigonometrical values.

It may be here stated that all trigonometrically determined heights invariably refer to the upper surfaces of the central masonry pillars at the principal stations. Spirit-levelled values sometimes refer to the upper surface and sometimes to the basement of the pillar, whichever the levelling-staff was set upon; a description of the exact point referred to is given in each instance.
12. Finally come the details and reductions of the Astronomical Observations which have been taken, at certain stations in each Series, for the determination of the Azimuth of one of the surrounding stations, or of a referring mark, the angle between which and a contiguous station has been measured. The observations and the method of reducing them are fully described in Chapter XII of Volume II. For reasons which are explained in the first section of that chapter, the results have not been used in the general reduction. At the end of the details of the determination of each azimuth, the difference between the observed value and the value obtained by calculation through the triangulation from the fundamental azinuth is given. These differences may be of much value in future investigations of the figure of the earth and of the influence of local attraction.

Full details regarding the Unit of the Linear Measures, the Base-lines, the initial Elements of Latitude Longitude and Azimuth, and the Elements of the Figure of the Earth which have been adopted in the calculations, will be met with in Volumes I and II. In this place it is only necessary to state that,-
(1). The Unit of Length is the Indian Standard 10-foot Bar A, the relations between which and the principal European Standards of Length are given at page 28 of Volume I.
(2). The adopted Elements of the Figure of the Earth-assumed to be spheroidal-are given at page 20 of this volume.
(3). The Longitudes depend on an astronomically determined value of the Longitude of the Madras Observatory, East of the Royal Observatory at Greenwich, which was deduced about the year 1815. The Iongitude of the Madras Observatory has however been recently re-determined, by the Electro-Telegraphic method, by observations which were made at Greenwich, Mokattam (in Egypt), Suez, Aden, Bombay ond certain stations of the triangulation in India, and with the following preliminary results :-


This value of the Longitude of the Madras Observatory is equivalent to $80^{\circ} 14^{\prime} 51^{\prime \prime \prime}$; and as the originally adopted value, on which the longitudes of the whole of the stations of this Survey are based, is $80^{\circ} 17^{\prime} 21^{\prime \prime}$ see page 135 of Volume II—the following precept may be accepted with considerable confidence :-

All the Longitudes require a constant correction, probably of - 2' 30".

The Orthography of proper names and of Indian words is based on the official lists for Bombay, the Nizam's dominions and the Central India Agency, published under the orders of the Government of India. It may here be mentioned that as two lists were published, viz., in 1875 and 1879, of names in the Bombay Presidency and Sind, and the printing of the volume was begun prior to the year 1879, that the major portion of the orthography is based on the earlier of these two lists. As a general rule the pronunciations of the vowels are as follows:-a has a sound as in woman, rural; $a$ as in tartan; $i$ as in bit ; $\mathfrak{i}$ as in ravine; $u$ as in bull; $u^{\prime}$ as in rural; $o$ as in note; $e$ as $a$ in say; $a u$ as ou in cloud; ai as $i$ in ride. Final vowels and those in well-known terminals are unaccented. When the popular spelling of a name has been accepted by Government, its correct orthography is given in parenthesis where the name occurs for the first time.

The Simultaneous Reduction of the South-West Quadrilateral was carried out in the same manner as previous reductions. The Introductions to the several series are due to Captain S. G. Burrard, r.e. The members of the office who took a share in the work are Mr. Wood and Mr. Peychers-the latter officer, besides compiling all the descriptions of stations, and performing other duties, had the general supervision of the proofs of the tabular and other professional matter of this volume as it passed through the press, it being due to his care and accuracy that there are so few errata-while the actual calculations were made by Babus Cally Mohun Ghose, Senior Computer, Kally Coomar Chatterji, Amba Prasad, Shoshee Bhooshan Shome, Shiv Nath Saha, Mizaji Lal, Tarapodo Mukerji, Umbica Churn Shome, Madho Narain and others. The binding was done in Caloutta and is the only part of the volume which was not executed in the office at Dehra.


W. H. COLE, M.A.,<br>Offg. Deputy Surveyor General, In charge Trigonometrical Surveys.

xviii

## ERRATA ET ADDENDA.

| Page |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 116 line 4 from bottom |  | 3rd place | read | 2nd place |
| .13-H. ${ }_{\text {col }} 3$ of 1st angle at VII |  | C $64^{\circ} 5^{\prime} 37^{\prime \prime} .44$ | " | $C 64^{\circ} 5^{\prime}$ |
| 42_H. line 8 from bottom | " | XXVIII | " | XXXVIII |
| 55_ ${ }_{\text {H. }}$ col. 10 of 3 rd triangle from top, | " | 7,4 and 6 | " | 8, 5 and 7 |
| 55- H. $^{\text {col. } 8 \text { of 3rd triangle from bottom }}$ |  | $-5^{2}$ |  |  |
| $\mathrm{VI}_{\text {_ }}$. . last line | for |  | " | 722 |
| $\text { viI_r. lines } 30 \text { to } 32 \text { from top }$ |  | in April, how |  | the Abu |
| VIII_ $_{\text {I }}$ in last col. of table | for |  | read | $-2 \cdot 3$ |
| 10_r. line 2 from top | \% | 1852 | " | 1851 |
| 15_I. in some copies, in foot note 1 | " | to reduce positio | " | to reduce |
| xix_J. line 2 from top |  | $r$ compound | inse | $t$ figure |
|  | $\boldsymbol{a d}$ | There is a rej | na | me on a hill |
| 5line 3 from bottom |  | indicated | read | is indicate |
| 9 [L. line 7 from top |  | 10 feet | \# | 10-13 feet |

## VOCABULARY OF CERTAIN NATIVE WORDS MADE USE OF IN THIS VOLUME.

| Obthography miploysid. |  | $\begin{gathered} \text { Corrmat } \\ \text { Orthograpi } \end{gathered}$ |  | Mbarimg. |
| :---: | :---: | :---: | :---: | :---: |
| Bandar | ... | Bandar | ... | A harbour. |
| Bheel |  |  |  |  |
| Bhil $\}$ | ... | Bhil | ... | A tribe of aborigines inhabiting parts of Central India. |
|  |  |  |  |  |
| Bhír ... | . | Bhír ... | ... | Pasture land. |
| Brahmin ... | ... | Brahman... | ... | The highest of the four castes of Hindus. |
| Chauki | ... | Chankí | ... | A small police station. |
| Chota | ... | Chhota | ... | Small. |
| Dak Chauki | ... | Dák Chaukí | ... | A posting stage. |
| Dakshin ... | ... | Dakshin ... | ... | South, southern country. |
| Dargah ... | ... | Dargah ... | ... | A Muhammadan shrine. |
| Dharmshála | ... | Dharmshala | ... | A rest-house. |
| Fakir | ... | Fakír | ... | A Muhammadan saint or holy person. |
| Gaikwar <br> Gaekwor | ... | Gaikwar | ... | A title specially applied to the ruler of Baroda. |
| Ghat ... | ... | Ghat ... | ... | A hill pass. |
| Mahádev | ... | Mahádev | ... | One of the three principal Hindu deities, same as Shiva. |
| Máta | ... | Mátá | - | A Hindu goddess, meaning mother. |
| Nizam | ... | Nizam | - | A title specially applied to the ruler of Hyderabad, Deccan. |
| Pareshram | ... | Pareshram | ... | A Hindu god. |
| Pargana ... | ... | Pargana | ... | A sub-division of a district. |
| Patel | ... | Patel | ... | Headman of a village. |
| Raj | ... | Raj | ... | Kingdom. |
| Raja | ... | Raja | - | A king or ruler. |
| Ran | ... | Ran | ... | A salt marsh. |
| Rana | ... | Rana | ... | A title specially applied to the chief of Oodeypore. |
| $\left.\begin{array}{l}\text { Rao } \\ \text { Rao }\end{array}\right\}$... | - | Ráo | ... | A chief. |
| R欠za | ... | Rauzah | ... | A mausoleum. |
| Siva | ... | Shiva | - | One of the three principal Hindu deities, same as Mahadev. |
| Tahsil | ... | Tahsil ... | - | Portion of a district subject to a revenue collector. |
| Taluk Taluka |  | Taälluk $\}$ |  | A sub-division of a district. |
| $\left.\begin{array}{l} \text { Tainka } \\ \text { Taluka } \end{array}\right\} .$ | ... | Taälluka | ... | A sub-division of a district. |
| Tappa | ... | Tappa | ... | A posting stage. |
| Thána | ... | Thañá | ... | A small police sub-division. |
| Tindal | ... | Tindal | ... | An overseer. |
| Vádi | ... | Vadi | ... | A garden. |
| Wiloda ... | ... | Viloda | ... | A Hindu deity. |
| Zilla |  | Zilla |  | A district. |

## PARTI.

INTRODUCTORY ACCOUNT
of

# THE TRLANGULATION EMBRACED 

BY
THE SOUTH-WEST QUADRILATERAL
WITH THE DETAILS OF ITS
SIMULTANEOUS REDUCTION.

## CHAPTER I.

ACCOUNT OF THE TRIANGULATION OF THE SOUTH-WEST QUADRILATERAL.

## 1.

The Several Chains of Triangles which are contained in the South-West Quadrilateral.
The South-West Quadrilateral is the fifth and last in order of the great sections into which the Principal Triangulation of India was divided for final reduction, consecutively, for reasons which are set forth in Section 7 of Chapter I of Volume II of the Account of the Operations of the Great Trigonometrical Survey of India. It falls between the North-West Quadrilateral and Southern Trigon-of these full details, from the measurement of the angles to the determination of the final results, will be found, the former in Volumes II, III and IV and IVA and the latter in Volumes XII and XIII-it depends on these for the whole of its fixed data. It embraces the triangulation between the parallels of $18^{\circ}$ and $25^{\circ}$ and between the meridian of $78^{\circ}$ and the Arabian Sea, and comprises the following Series :-

| The Khánpisura Meridional, | hereafter symbolized by |  | G, |
| :--- | :---: | :---: | :---: |
| The Singi Meridional, | $"$ | $"$ | H, |
| The Abu Meridional, | $"$ | $"$ | I, |
| The Kattywar Meridional, | $"$ | $"$ | J, |
| The Guzerat Longitudinal, | $"$ | $"$ | K, |
| The Cutch Coast | $"$ | $"$ | X. |

The triangulations contained in the above Series had to be brought into harmony with each other, with the Karáchi Longitudinal Series of the North-West Quadrilateral and the Bombay Longitudinal Series of the Southern Trigon.

It is necessary to repeat in this place, what has already been set forth in Vol. II, that the general character of the triangulation has governed the order in which the several sections have been finally reduced; thus the execution of the North-West and South-East Quadrilaterals was so much superior to that of both the North-East and South-West sections, that there was no alternative but to commence the final reductions with the two former, in order to make the earlier and least accurate triangulations rest on the modern which were more highly finished and exact. For similar reasons, it was decided that the reduction of the Southern Trigon, of which the triangulation had been completed by the time the third section had been finally reduced, should be undertaken before that of the South-West Quadrilateral.

## 2.

The Observers and Instruments employed on the several Series of Triangles contained in the South-West Quadrilateral.

The principal triangulation of the South-West Quadrilateral was executed entirely by three Officers, Lieut. H. Rivers, Lieut. D. J. Nasmyth and Lieut. C. T. Haig, all of the Bombay Engineers, who took it up in succession. It was commenced by Lieut. Rivers, in 1842, with the execution of the large compound figure at the southern end of the Singi Series. He next, in 1845, took up the triangulation of the Khanpisura Series, from the south and carried it to the north of the parallel of $24^{\circ}$, the northern extension being afterwards absorbed into the Karáchi Longitudinal Series and the Gurhágarh Meridional Series. The instrument that he had employed up to this time was Dollond's 15 -inch theodolite*; but it gave such unsatisfactory results that it became necessary to provide him with another, and Troughton and Simms' 18-inch Theodolite No. 2 was sent to him. With this, in 1850, he commenced the Abu Meridional Series from the Karachi Longitudinal Series and carried it down to the parallel of $23^{\circ}$ and then triangulated westwards along that parallel to the meridian of $71^{\circ}$, down which meridian he carried, with Nasmyth's assistance, a chain to the south coast of Kattywar.

In 1853 Rivers retired from the Survey and Nasmyth, who succeeded to the charge of the party, having completed the southern section of the Kattywar Meridional Series in 1855, first commenced the Cutch Coast Series on which he was employed till December, he then extended the Kattywar Meridional Series northward towards the Karáchi Longitudinal Series.

In 1858-59 he extended the Guzerat Longitudinal Series for a distance of 54 miles eastwards from the sides Palri-Wastral and Wastral-Mirzápur. Here it was taken up by Haig in 1860 who carried it to the Singi Meridian, then worked south on the Singi Meridional Series till he connected with the side Tarbhán-Dopári of Rivers' work: the next season he

[^0]closed the Guzerat Longitudinal Series on the Khanpisura Meridional Series and also finished the northernmost section of the Singi Series. Troughton and Simms' 18-inch Theodolite No. 2 continued to be used throughout the triangulation.

The series are here arranged in the chronological order of their commencement. The lengths recorded are of the chains as they now stand.

## The Singi Meridional Series.

This chain of triangles extending along the meridian of $73 \frac{1}{2}^{\circ}$ unites the Bombay Longitudinal and the Karáchi Longitudinal Series. It was commenced under the name of the North Konkan Coast Series by Lieut. H. Rivers, of the Bombay Engineers, in the field season of 1842-43, on the side Karanja-Singi of the Bombay Longitudinal Series, and carried north as a chain of single triangles as far as Pánera. Attempts were made during the next field season to extend the approximate work, but they were frustrated, first by the extreme unhealthiness of the country and afterwards by the density of the atmosphere from smoke and dust. In 1844-45 Rivers made another attempt to extend the series but was driven back by sickness. After completing his observations at Parnera commenced the season before and remeasuring some of his former angles he proceeded to widen the chain by executing a series of triangles along the eastern flank commencing from the side Singi-Párner of the Bombay Longitudinal Series. He carried this chain as far as Pilwa-Sáler by the end of the season and also observed at Tarbhán but did not complete the angles. During 1846, while engaged on the Khánpisura Series, he managed to visit Dopári and thus completed the large compound figure, 150 miles in length, which lies between the Bombay Longitudinal Series and the side Tarbhán-Dopári. In the final reduction of the triangulation the ray KaranjaKámandrug was thrown out, and the Singi Series therefore originates, as it now stands, from the side Singi-Párner. The instrument employed by Lieut. Rivers was Dollond's 15 -inch Theodolite.

The work on the series was now dropped for several years owing to the extreme anhealthiness of the tract of country to the north. In 1860-61 Lieut. C. T. Haig of the Bombay Engineers, when engaged on the Guzerat Longitudinal Series, carried it westwards to the meridian of Singi and then completed the meridional chain southwards as far as the side where Rivers' triangulation had terminated. The remaining portion of the series was executed by Haig during the next season, and it closed on the side Lakarwás-Tána of the Karáchi Longitudinal Series. The chain is 390 miles long and has four azimuths of verification. The instrument used by Haig was Troughton and Simms' 18 -inch Theodolite No. 2.

## The Khanpisura Meridional Series.

The Khánpisura Meridional Series, also connecting the Bombay Longitudinal and Karáchi Longitudinal Series, was commenced by Lieut. H. Rivers in season 1845-46, and was advanced during that season as far as the side Sátmála-Sirsala and during the next season to Harnása-Indráwan. During the next two seasons he carried the chain beyond the parallel
of $24^{\circ}$, the Karáchi Longitudinal Series not having then been executed. In 1850 the latter series was brought up from the east to the Khánpisura meridian and a junction effected by Captain A. Strange of the Madras Cavalry. The chain now consists of a series of quadrilaterals and polygons except at one part where there are only two single triangles. In 1862-63 Captain C. T. Haig strengthened this weak link by adding the station of Áhirmal and the two triangles connecting it with the sories. The series is $\mathbf{3 6 0}$ miles long and has two azimuths of verification. The instrument employed by Rivers was Dollond's 15 -inch Theodolite and by Haig Barrow's 24 -inch Theodolite No. 2.

## The Abu Meridional Series.

The Abu Meridional Series was commenced by Lieut. H. Rivers from the side JerajMárd of the Karáchi Longitudinal Series during the field season of 1850-51, and was carried down the meridian of $72 \frac{3^{\circ}}{}{ }^{\circ}$, during that and the following season, to the parallel of $23^{\circ}$ where it closes on the side Sanoda-Mirzápur of the Guzerat Longitudinal Series. The chain consists of three hexagons and a single triangle, and extends a direct distance of 95 miles. It was executed with Troughton and Simms' 18-inch Theodolite No. 2. No azimuths of verification were observed on the series itself.

## The Guzerat Longitudinal Series.

This series was commenced at the southern extremity of the Abu Meridional Series by Lieut. H. Rivers during field season 1851-52, and was carried westwards by him during the next season along the parallel of $23^{\circ}$ up to the meridian of $71^{\circ}$, where it unites with the Kattywar Meridional Series, a direct distance of nearly 100 miles. This portion of the chain consisted of single triangles. In 1858-59, Captain D. J. Nasmyth of the Bombay Engineers took up the triangulation on the sides Pálri-Wastrál and Wastrál-Mirzápur and having first, by the addition of the station Jhinjhar, constructed a pentagon round Wastral ; he then carried the series eastwards a distance of about 54 miles. In $1860-61$ Captain C. T. Haig of the Bombay Engineers extended the chain further eastward to the Singi Series. The next season Haig completed the Guzerat Longitudinal Series, closing it on the Khánpisura Meridional Series at the side Indrawan-Karsod. The total length of the series is about 260 miles. The instrument employed throughout was Troughton and Simms' 18 -inch Theodolite No. 2. Two. azimuths of verification were observed.

## The Kattywar Meridional Series.

This series was originated by Lieut. H. Rivers from the western extremity of the Guzerat Longitudinal Series during the field season of 1852-53, and carried southwards by him, assisted by Lieut. Nasmyth, along the meridian of $71^{\circ}$ to the extreme south of the Kattywar peninsula, terminating at the Island of Diu. The series was afterwards extended northwards by Lieut. Nasmyth to the Karachi Longitudinal Series principally during the seasons 1855-57. The length of the series is about 275 miles and it has two azimuths of verification. The instrument employed was Troughton and Simms' 18 -inch Theodolite No. 2.

## The Cutch Coast Series.

The Cutch Coast Series emanates from the Kattywar Meridional Series and trends first in a south-westerly and afterwards in a north-westerly direction till it meets the Karáchi Longitudinal Series. It was commenced by Lieut. Nasmyth in season 1855-56, and the portion of the chain which lies between the meridians of $69^{\circ}$ and $70^{\circ}$ was executed by him. He then had to return to the Kattywar Meridional Series which was in course of triangulation. In 1856-57 he connected his former triangulation with the Kattywar Meridional Series and extended the chain westward to about longitude $68^{\circ} 30^{\prime}$. The next season he commenced work from the Karachi Longitudinal Series and worked south-westwards until he completed the connection with his former season's work. The length of the chain is about 235 miles and it has one azimuth of verification. The instrument employed was Troughton and Simms' 18-inch Theodolite No. 2.

## 3.

## The Dependency of the South-West Quadrilateral on the North-West Quadrilateral and Southern Trigon for the Fixed Data.

The South-West Quadrilateral lies between two chains of triangles which, having entered previous reductions, had been finally adjusted, vir., the Karáchi Longitudinal Series, or Series B, of the North-West Quadrilateral and the Bombay Longitudinal Series, or Series B of the Southern Trigon. These chains form the northern and the southern boundaries of the South-West Quadrilateral, and furnish the whole of the fixed data on which this Quadrilateral rests. From the Karáchi Longitudinal Series depend four meridional chains and one coast series; two of the former unite with the Bombay Longitudinal Series and all are tied together by the Cutch Coast Series and a longitudinal chain called the Guzerat Longitudinal Series. The southern portion of the Kattywar Meridional Series forms a pendant which does not enter the simultaneous reduction, because no circuit being complete no equations could be formed.

It will be seen that the South-West Quadrilateral owing to its situation between two other large sections of the triangulation of India which had already been reduced, and with which it has to be brought into accord, is very much constrained by them. There might have been reason to regret this had the triangulation been of a superior character; but the whole of the Khánpisura and part of the Singi Series were executed with Dollond's 15 -inch Theodolite, an instrument very inferior to those employed on the North-West Quadrilateral and on almost the whole of the Southern Trigon. And the remainder of the triangulation was executed with Troughton and Simms' 18-inch Theodolite No. 2, an instrument very much superior to Dollond's 15 -inch, but also much inferior to the 24 -inch and 36 -inch theodolites elsewhere employed.

## 4.

The Construction of the Principal Stations.
The earliest constructions were on the southern portion of the Singi and on the Khánpisura Meridional Series. They were built under the direction of Lieut. H. Rivers before he had had the opportunity of learning anything about the forms of stations found most suitable in the Great Trigonometrical Survey. Lieut. Rivers' stations were situated on hills and high ground and in general consisted of solid masonry pillars, containing one or more marks sunk in the ground with their upper surfaces flush with the ground level. Above these pillars, solid structures of loose stone masonry were erected from 1 to 14 feet in height with a mark laid loosely in the surface. On the completion of the Khánpisura Series Lieut. Rivers was in the neighbourhood of the party under Captain Renny employed on the Karachi Longitudinal Series, and by order of the Surveyor General the two parties were united for a time in order that Lieut. Rivers might learn the procedure of the G. T. Survey. When Lieut. Rivers commenced the Abu Meridional Series he adopted new forms of stations; those on hills consisted of solid, circular, isolated pillars of masonry, from 3 to 10 feet in height, having marks at the ground level and one or more other marks in the normal of the former. Around the pillars and level with their surfaces, platforms of loose stone masonry or sundried bricks were constructed for the observatory tent. Stations in the plains were solid structures either circular or square of sundried bricks and mud and faced with kiln burnt bricks, 18 to 32 feet high, having central solid pillars of masonry with marks at top and bottom and intermediately. The stations of the Guzerat Longitudinal Series between the Abu and Kattywar Meridional Series were of similar construction, as also those of the Kattywar Meridional Series itself and a portion of the Cutch Coast Series. Afterwards perforated pillars were employed both for hill and plain stations, with apertures through the surrounding construction to admit of access to the lower mark.

## CHAPTER II.

## THE MEASUREMENT OF THE ANGLES AND THE GENERAL PRINCIPLES FOLLOWED IN THE REDUCTION OF THE TRIANGULATION OF THE SOUTH-WEST QUADRILATERAL.

## 1.

The Measurement of the Horizontal Angles and their Record.
In Chapter IV of Vol. II full particulars have been given of the methods, which have been in practice since the year 1823, of observing both the horizontal and the vertical angles. It will not be necessary here therefore to do more than briefly indicate what was done, in order that the reader may be enabled to understand the details of the observations.

The method of observing horizontal angles was that introduced by Colonel Everest, and had for its object the giving of readings at equal intervals round the azimuthal circle, with a view to the cancellation of periodic errors of graduation. When the instrument was set up for use, and had been properly centered over the station mark, either one of the surrounding stations, or a referring mark specially set up for the purpose, was adopted as what is called the zero-station, or the station for which the readings of the instrument are obligatory. With the telescope directed to this station the index was made to read $0^{\circ} 0^{\prime}$, and the instrument having been re-examined for centering and levelled, the remaining stations were observed to in succession, two or more rounds of observations being taken. When these were completed the telescope was turned over in altitude and brought round in azimuth to point to the zero-station: the index would then read $180^{\circ} 0^{\prime}$. With this zero-reading another set of observations, similar to the last, was taken. A single measure on each of the two zero-settings constitute a pair of collimated observations, the face of the vertical circle being to the left of the observer at one setting and to his right at the other. The instrument was next shifted in, azimuth, so as to bring the index to another arbitrary reading while the telescope pointed to the zero-station, and observations were again taken on F. L., face left, and F. R., face right; and so on. These arbitrary shifts were usually through arcs
of $9^{\circ}$ or $10^{\circ}$ for theodolites with 3 microscopes and $7^{\circ} 12^{\prime}$ for 5 microscope theodolites. In 1860, in order to secure a greater change of position of the axis in its socket, and so avoid the occurrence of certain constant errors which might be prejudicial in a long chain of triangles, Colonel Waugh, the Surveyor General, decided that half the arc between the microscopes should be added to each shift.

With the exception of the southern portion of the Singi Meridional Series and the whole of the Khánpisura Meridional Series, which were executed with Dollond's 15 -inch Theodolite, all the triangulation of the South-West Quadrilateral was carried out with Troughton and Simms' 18 -inch Theodolite No. 2. Both instruments possessed only 3 microscopes.

The system of zeros adopted on the southern portion of the Singi Meridional Series was

$$
\frac{0^{\circ}}{180^{\circ}}, \frac{20^{\circ}}{200^{\circ}} \text { and } \frac{40^{\circ}}{220^{\circ}}
$$

or some modification of this system ; by which it is meant that the zero settings were not always the same, but the shifts were invariably through $20^{\circ}$.* Five angles were, however, observed on six pairs of zeros with shifts of $10^{\circ}$.

On the Khánpisura Meridional Series the system was principally

$$
\frac{0^{\circ}}{180^{\circ}}, \frac{10^{\circ}}{190^{\circ}}, \frac{20^{\circ}}{200^{\circ}}, \frac{30^{\circ}}{210^{\circ}}, \frac{40^{\circ}}{220^{\circ}} \text { and } \frac{50^{\circ}}{230^{\circ}},
$$

or some modification of this as before. At 1 station, however, three pairs of zeros were employed as on the southern portion of the Singi Series and at 9 stations four pairs with shifts of $15^{\circ}$.

On the Abu Meridional, Kattywar Meridional, Cutch Coast, on the western and central sections of the Guzerat Longitudinal Series and on a portion of the northern section of the Singi Series the following method of changing zero, which had been devised by Lieutenant Rivers, was employed:-

$$
\frac{0^{\circ} 1^{\prime}}{180^{\circ} 1^{\prime}}, \frac{10^{\circ} 12^{\prime}}{190^{\circ} 12^{\prime}}, \frac{20^{\circ} 20^{\prime}}{200^{\circ} 20^{\prime}}, \frac{30^{\circ} 29^{\prime}}{210^{\circ} 29^{\prime}}, \frac{40^{\circ} 38^{\prime}}{220^{\circ} 38^{\prime}} \text { and } \frac{50^{\circ} 50^{\prime}}{230^{\circ} 50^{\prime}} \text {. }
$$

Rivers claimed the advantage for his system that "it brought the zero of the micro" meter over every 10 minutes of the degree and so shifted the reading as to cancel error of "run." Each change of zero was in fact made to fulfil the following conditions. (1). In the degrees each zero was 10 degrees in excess of the preceding one. (2). At each zero a different

[^1]10 minute division in the degree was intersected. (3). At each zero, in order to bring a different part of the micrometer thread into play, a different number of odd minutes was read, the zero of the microscope being in two cases to the right and two to the left of the intersected division, so that error of run might be cancelled.

In conformity with Colonel Waugh's rule of 1860 that half the distance between the microscopes should be added to each change of zero, the following modification of Rivers's system was adopted on the eastern section of the Guzerat Longitudinal and on the northern portion of the Singi Meridional Series,

$$
\frac{0^{\circ} 1^{\prime}}{180^{\circ} 1^{\prime}}, \frac{70^{\circ} 11^{\prime}}{250^{\circ} 11^{\prime}}, \frac{140^{\circ} 22^{\prime}}{320^{\circ} 22^{\prime}}, \frac{210^{\circ} 28^{\prime}}{30^{\circ} 28^{\prime}}, \frac{280^{\circ} 29^{\prime}}{100^{\circ} 29^{\prime}} \text { and } \frac{350^{\circ} 50^{\prime}}{170^{\circ} 50^{\prime}} .
$$

The minimum number of rounds of observation on each zero was two. When larger differences shewed themselves in successive measures of an angle than it was considered the instrument ought to give, more observations were taken. For full particulars of each instrument and any modifications it may have undergone, see Appendix No. 2 of Volume II.

The several measures of each angle, with the name of the observer and instrument employed and the date of the observations, are given for each series included in the Quadrilateral. Against each single measure is a letter in italics shewing whether the signal observed to was $l$, a lamp, or $h$, a heliotrope; sometimes a direct measurement of an angle was not obtained owing to the temporary invisibility of one of the signals, but the value of the angle was deduced from the measure of the double angle given by the omission of the signal in the round, and from a direct measure of the other angle; in this case the measure is preceded by the letter $d$.

Below the individual measures are their means from which $M$, the general mean, is obtained. The several measures and zero means are then treated as described in the following Section and give $C$, the Concluded Angle, together with $w$, its weight relative to other angles measured under similar circumstances, and $\frac{1}{w}$, the reciprocal of the weight.

The Abstracts of the Observed Angles of each series in the Quadrilateral will be found
 Part II of this volume.

## 2.

The Deduction of an Angle from its several Measures, and its Weight.
It has been stated that the number of measures of an angle on the same zero is not always constant, but is occasionally increased when considered necessary as already stated.

Of old the custom was to take the arithmetical mean of all the zero-means as the most probable value of the angle resulting from the several measures; but, for reasons which are explained in Chapter VII of Vol. II, this practice has been departed from, and the following procedure has been followed in deducing the value and the weight of each angle in the present volume.

Let $d^{\prime}, d^{\prime \prime}, d^{\prime \prime \prime}, \& c$. , be the differences between the successive single measures and the mean of the measures on the zero to which they respectively belong, $n_{1}, n_{2}, n_{3}$, \&c., the number of measures on each zero, the sum of all which is $N$, and $D_{1}, D_{2}, D_{3}$, \&c., the algebraical excess of the successive zero means, $Z$ in number, over the arithmetical mean, $M$, of all the zeros.

Now put

$$
\begin{aligned}
& o^{2}=\frac{d^{\prime 2}+d^{\prime 2}+d^{\prime \prime \prime} 2}{N-1} \\
& g^{2}=\frac{D_{1}^{2}+D_{2}^{2}+D_{3}^{2}+\ldots}{Z-1}
\end{aligned}
$$

and let

$$
w_{1}=\frac{1}{g^{2}+\frac{o^{2}}{n_{1}}}, \quad w_{2}=\frac{1}{g^{2}+\frac{o^{2}}{n_{2}}}, \quad w_{3}=\frac{1}{g^{2}+\frac{o^{2}}{n_{3}}}, \quad \& c . ;
$$

then the resulting angle $C$, usually called the 'Concluded Angle',

$$
=M+\frac{w_{1} D_{1}+w_{2} D_{2}+w_{3} D_{3}+\ldots}{w_{1}+w_{2}+w_{3}+\ldots}
$$

Here $o$ and $g$ are taken as preliminary approximations* to the theoretical error of mean square of observation and graduation, $o$ being the e.m.s. of observation and $g$ that of graduation in a single measure of an angle; these quantities being known, the weights, $w_{1}, v_{2}, \ldots$, of the successive zero-means are ascertained, whereby these means are readily, combined to give the value of the Concluded Angle, as in the last equation.

Let $w$ be the weight of the angle thus deduced ; then we may put,

$$
w=w_{1}+w_{2}+w_{3}+\ldots ;
$$

and if the preliminary values of $o$ and $g$, as obtained from the observations, are absolutely true, then $w$ will be the reciprocal of the square of the e.m.8. of the Concluded Angle.

But it has already been shown in Vol. II that there is reason to doubt whether the values

[^2]of the e.m.s. thus obtained immediately from the observations are true for angles measured with different instruments, or even for angles with the same instrument but under different circumstances. These values are therefore regarded as preliminary, applicable only in any combination of angles measured with the same instrument and under similar circumstances, but requiring to be multiplied by factors of the nature of moduli, before they can be employed in a combination of angles measured with different instruments or under different circumstances. The value of the modulus for each group of angles measured under common conditions is determined subsequently, from investigations of the average value of the e.m.s. for the group, on the evidence which is furnished by the magnitudes either of the geometrical errors of single triangles, or of the most probable values of the errors of the angles of polygonal figures, which appertain to the group, or may be legitimately combined together for the purpose in question. This is done in the following manner :-

Let $e_{1}, e_{2}$ and $e_{3}$ be the average e.m.s. of a group of angles-observed with the same instrument and under the same circumstances-deduced as follows, $e_{1}$ from the preliminary weights, $e_{2}$ from the triangular errors and $e_{3}$ from the most probable errors of the angles of polygonal figures ; then we have

First, for the average $e . m .8$. of $n$ angles of which the preliminary weights are $w_{1}, w_{2}, \ldots w_{n}$,

$$
e_{1}^{2}=\frac{n}{w_{1}+w_{2}+\ldots+w_{n}}
$$

Secondly, for the average e.m.s. of $n$ angles of $\frac{n}{3}$ triangles.

$$
e_{2}^{2}=\frac{\text { sum of squares of } \frac{n}{3} \text { triangular errors. }}{n}
$$

Thirdly, for the e.m.s. of a hypothetical angle, whose weight, $v$, is equal to the mean of the weights $w_{1}, w_{2}, w_{3}, \ldots$ of the $t$ angles of a polygonal figure in which there are $m$ geometrical equations of condition.

$$
e_{3}^{2}=\frac{w_{1} x_{1}^{2}+w_{2} x_{2}^{2}+\ldots+w_{t} x_{t}^{2}}{w m} ;
$$

where $x_{1}, x_{2}$, . . are the most probable values of the errors of the observed angles. But since the polygonal figures, which are coñmonly employed in the operations of this Survey, contain too few angles to give a satisfactory determination of the value of $e_{3}$ from the evidence of a single figure, the value is determined from several figures by the expression

$$
e_{3}{ }^{2}=\frac{\text { sum of }(U \div w)}{\text { sum of } m}
$$

for all the figures available. In this expression

$$
U=v_{1} x_{1}^{2}+w_{2} x_{2}^{2}+\cdots+v_{k} x_{i}^{2}
$$

and is the quantity which is made a minimum in the reduction of each figure. Its numerical value may be readily computed; see Vol. II, pages 106 and 198, also the end of the next section of this chapter.

Values of $e_{1}, e_{2}$ and $e_{3}$ having thus been determined, corresponding values of the modulus $\rho^{\prime}$, taken either as

$$
\rho^{\prime}=\frac{e_{1}}{e_{2}}, \text { or }=\frac{e_{1}}{e_{3}},
$$

as the case may be, are determined, the preference being given to the latter whenever $e_{3}$ is available.

Thus, putting $v_{f}$ for the final weight, and $w$ for the average preliminary weight by $e_{1}$, we have

$$
w_{f}=w\left(\frac{e_{1}^{2}}{e_{2}^{2}} \text { or } \frac{e_{1}^{2}}{e_{3}^{2}}\right)=w\left(\rho^{\prime}\right)^{2} .
$$

The modulus $\rho^{\prime}$ was determined for each group of angles immediately before the Simultaneous Reduction of the whole triangulation, as it was then first wanted.

The record of the measures of the angles is followed by a list of the "Sums of "Squares of Apparent Errors of Single Observations and of Apparent Errors of Single Zeros", which furnishes the requisite data for the investigation-by which it is followed-of the average ' error of mean square' of observation only, in a single measure, and that of graduation plus observation in the mean of the several measures on a single zero; these are determined for certain groups of the angles in which all the measures have been made by the same observer with the same instrument and under the same conditions, and also for groups formed by various other combinations of the conditions. With the data thus obtained for each of the several series, investigations of the influence of "Mixed Errors of Observation "and Graduation", similar to those which are given in Chapter VII of Vol. II, may be made.

## 3.

## Preliminary Reduction of the Groups of Angles contained in Independent Trigonometrical Figures.

So long as chains of triangles are treated as independent of one another, the angles naturally separate themselves into as many groups as there are single triangles and combinations
of triangles into single polygonal figures and networks. Each triangle is subject to the geometrical condition that the three angles are equal to $180^{\circ}$ plus the spherical excess, and each group of triangles to additional geometrical conditions, such as that the angles at any central point should together equal $360^{\circ}$, and that the value of any side as calculated through any portion of the figure back to itself should be unaltered.

The formula which has been employed for calculating the spherical excess of the triangles in this volume is

$$
\epsilon=a b \sin C \times \frac{\operatorname{cosec} \mathrm{r}^{\prime \prime} *}{2 r^{2}},
$$

in which $\epsilon$ is the spherical excess in seconds, $a, b$ and $C$ two sides of the triangle and the included angle, and $r$ the radius of curvature for the oblique section of which the azimuth is $45^{\circ}$, that is, $r=\frac{2 \rho \nu}{\rho+\nu}, \rho$ being the radius of curvature to the meridian and $\nu$ the normal on the axis minor for the mean latitude of the triangle. .

The geometrical conditions connecting groups of angles divide themselves under three heads, triangular, central and side. The first is, as before stated, that the three angles of a triangle must equal $180^{\circ}+$ the spherical excess, the second that all the angles meeting at a point and completely surrounding it must equal $360^{\circ}$, or when an angle is measured as a whole and also in parts the whole should equal the parts, and the third springs from the condition that the value of any side carried through the triangulation back on itself should reproduce itself. The excesses or deficiencies which manifest themselves in these comparisons either form the right-hand members of the equations amongst the angular errors furnished by the conditions, or they furnish the means for so doing.

The number of the equations for each independent trigonometrical figure is given by the formula

$$
N-2 S+4
$$

in which $N$ is the number of angles and $S$ the number of stations.
The formula is derived as follows :-A side having been taken as base, the minimum number of angles required to fix each new station is 2 ; but if all three angles of a triangle are observed they furnish a triangular equation. Suppose now that $S$ stations are fixed, but that in the case of only $P$ of these have the 3 angles been observed; then there are $2(S-2)+P$ angles giving $P$ equations. Every new angle not fixing a fresh station gives an additional equation, either side or angular. Let there be $N$ angles in all; then there are $N-2(S-2)-P$ additional equations : hence the total number of equations is $N-2(S-2)$.

[^3]This may be extended:-For suppose a net of triangles rests on $Q$ fixed stations and the positions of $(S-Q)$ new stations are determined by observing the necessary angles and that in $P$ instances all 3 angles are observed, then there are $2(S-Q)+P$ angles affording $P$ triangular equations. Every additional angle now affords a new equation; hence if there are $N$ angles in all, there are $N-2(S-Q)-P$ new equations. Therefore there are in all $N-2(S-Q)$ equations of condition.

In order to express the equations, denote the observed angles by $X_{1}, X_{2}, X_{3}, \ldots$ the corresponding angular error by $x_{1}, x_{2}, x_{3}, \ldots$ and the absolute terms of the equations by $e$ with subscripts denoting the equations to which they appertain. The triangular and central equations will then take the form

$$
x_{1}+x_{2}+\ldots=e
$$

Further, if $a_{1}=\cot X_{1}, a_{2}=\cot X_{2}$, \&c., the side equations will be represented by

$$
\begin{aligned}
a_{1} x_{1}-a_{2} x_{2}+a_{3} x_{3}-a_{4} x_{4}+\ldots & =\frac{\operatorname{cosec} \mathrm{I}^{\prime \prime}}{M} \times \log \frac{\sin X_{1} \cdot \sin X_{3} \ldots}{\sin X_{2} \cdot \sin X_{4} \cdots} \\
& =e
\end{aligned}
$$

$\mathbf{M}$ being the modulus of common logarithms. An alternative form of this equation has been frequently used, which is as follows:-

$$
\begin{aligned}
a_{1} x_{1}-a_{2} x_{2}+a_{3} x_{3}-a_{4} x_{4}+\ldots & =\log \cdot \frac{\sin X_{1} \cdot \sin X_{3} \ldots}{\sin X_{2} \cdot \sin X_{4} \cdots} \\
& =e
\end{aligned}
$$

where $a$ stands for the tabular difference (t.d.) of $\log$. $\sin X$ for $\mathrm{I}^{\prime \prime}$. The latter form is derivable from the former, because $M \cot X \sin \mathrm{I}^{\prime \prime}=t . d . \log . \sin X$ for $\mathrm{I}^{\prime \prime}$.

These geometrical conditions have to be satisfied in such a manner, that the angles shall receive the most probable of the several systems of correction which present themselves. This is done by the so-called method of solution by minimum squares, which is now so well known that nothing need be said regarding it further than it requires that the following expression shall be made a minimum,

$$
U=\frac{x_{1}^{2}}{u_{1}}+\frac{x_{2}^{2}}{u_{2}^{2}}+\ldots+\frac{x_{t}^{2}}{u_{t}}
$$

in which $u_{1}, u_{2}, \ldots u_{t}$ are the reciprocals of the weights, $w_{1}, w_{2}, \ldots w_{t}$, of the observed angles.
The following equations-taken from Section 5, Chapter VIII, Vol. II—express first the geometrical conditions, secondly their relations with the indeterminate factors, $\lambda_{a}, \lambda_{b}, \ldots \lambda_{n}$, by the introduction of which $U$ is made a minimum, and thirdly the most probable values of

* the angular errors in terms of the geometrical conditions and the indeterminate factors.

The geometrical equations of condition, $n$ in number between $t$ unknown quantities are

$$
\begin{aligned}
& a_{1} x_{1}+a_{2} x_{2}+\cdots . \quad .+a_{t} x_{t}=e_{a} \\
& b_{1} x_{1}+b_{2} x_{2}+\quad . \quad .+b_{t} x_{t}=e_{b} \\
& n_{1} x_{1}+n_{2} x_{2}+\cdots . \quad .+n_{t} x_{t}=e_{n}
\end{aligned}
$$

The equations between the indeterminate factors are

$$
\begin{aligned}
& {[a a . u] \lambda_{a}+[a b . u] \lambda_{b}+\quad . \quad .+[a n . v] \lambda_{n}=e_{d}} \\
& {[a b . u] \lambda_{a}+[b b . u] \lambda_{b}+\cdots \quad .+[b n . u] \lambda_{n}=e_{b}} \\
& {[a n . u] \lambda_{a}+[b n . u] \lambda_{b}+\cdots \cdot+[n n . u] \lambda_{n}=e_{n}}
\end{aligned}
$$

in which the brackets [ ] indicate summations, thus

$$
[a a . u]=a_{1} a_{1} \cdot u_{1}+a_{2} a_{2} \cdot u_{2}+\ldots .+a_{t} a_{\cdot} \cdot u_{t} .
$$

The resulting values of the angular errors are

$$
\begin{aligned}
& x_{1}=u_{1}\left(a_{1} \lambda_{a}+b_{1} \lambda_{b}+\cdots . \quad+n_{1} \lambda_{n}\right) \\
& x_{2}=u_{8}\left(a_{2} \lambda_{a}+b_{2} \lambda_{b}+\cdots . .+n_{8} \lambda_{n}\right) \\
& x_{t}=u_{t}\left(a_{t} \lambda_{a}+b_{t} \lambda_{b}+\ldots . .+n_{t} \lambda_{n}\right)
\end{aligned}
$$

and the value of the minimum, $U$, is

$$
\lambda_{a} e_{a}+\lambda_{b} e_{b}+\ldots+\lambda_{n} e_{n}
$$

In the case of a single triangle-one which does not enter with other triangles into the formation of a polygonal figure-there is only one geometrical equation of condition which is simply

$$
x_{1}+x_{2}+x_{3}=e
$$

and there is only one indeterminate factor, $\lambda$, which is

$$
\lambda=\frac{e}{u_{1}+u_{2}+u_{3}}
$$

and

$$
x_{1}=u_{1} \lambda, \quad x_{2}=u_{2} \lambda, \quad x_{3}=u_{3} \lambda
$$

## 4.

## Calculation of the Sides of the Triangles.

The values of the angular errors having thus been computed are applied to the observed angles with contrary signs; the angles of every triangle are then reduced to plane angles by the subtraction of one-third of the spherical excess of the triangle from each, and the sides of the triangles are obtained in the ordinary manner. The angular corrections furnished by the figural reductions, besides being the most probable, in so far as the conditions to which they have been subjected are concerned, render each figure or net of triangles consistent, so that the ratio of any one side to any other side is the same by whatever route it is calculated.

## 5.

Geodetic Elements of Stations and Sides.
The length of the sides of triangles and the dimensions of the Figure of the Earth being known, it will be evident that if the latitude of any one station and the azimuth of any side of the triangulation from it to a second station are given, the difference in latitude and longitude between it and the second station, and the back azimuth of the connecting side, may be computed.

Now the origin of co-ordinates which has been adopted for the Indian triangulation is Kalianpur, Station I of the North-West Quadrilateral, the initial elements at which are

Latitude North<br>Longitude E. of Greenwich<br>Azimuth of Station 29 (Súrentál)

| $\circ$ | $\prime \prime \prime$ |  |
| ---: | ---: | ---: |
| 24 | 7 | $11 \cdot 26$ |
| 77 | 41 | $44 \cdot 75$ |
| 190 | 27 | $5 \cdot 10$ |

as explained in Chapter XI of Vol. II.
But since the positions of all the stations of the North-West, North-East, South-East Quadrilaterals and the Southern Trigon are regarded as having been finally fixed in the Simultaneous Reductions of those figures, the elements of any of them may be adopted in place of those of Kalianpur, whenever it happens to be convenient to do so. Thus, as some of the Series of the South-West Quadrilateral are based on sides of the Karáchi Longitudinal Series of the North-West Quadrilateral and the Bombay Longitudinal Series of the Southern Trigon, the elements of those sides have been adopted as the fixed elements of the South-West Quadrilateral.

The formulæ which have been employed on the successive calculations of latitude, longitude and reverse azimuth are given below.

If $\mathbf{A}$ and $\mathbf{B}$ be two stations on the earth's surface, and the latitude and longitude of $\mathbf{A}$, and the arimuth of B at A be $\lambda, L$ and $A$ respectively, the distance between A and B being $\boldsymbol{c}$, and if
$\Delta \lambda$ denote the difference of latitude between $\mathbf{A}$ and B
$\Delta L \quad \geqslant \quad$ longitude $\quad$,

B ", azimuth of A at B
$\Delta A=B-(\pi+A)$
$e$ " the excentricity of the spheroid
$\rho$ " the radius of curvature to the meridian at $\lambda$
$\nu$, the normal to the meridian at $\lambda$ terminated by the minor axis,
then

$$
\begin{aligned}
& \Delta \lambda=\left\{\begin{array}{l}
-\frac{c}{\rho} \cos A \operatorname{cosec} \mathrm{I}^{\prime \prime} \\
-\frac{1}{1.2} \frac{c^{2}}{\rho \cdot \nu} \sin ^{2} A \tan \lambda \operatorname{cosec} \mathrm{I}^{\prime \prime} \\
-\frac{3}{4} \frac{c^{2}}{\rho \cdot \nu} \frac{e^{2}}{1-e^{2}} \cos ^{2} A \sin 2 \lambda \operatorname{cosec} \mathrm{I}^{\prime \prime} \\
+\frac{1}{1.2 .3} \frac{c^{3}}{\rho \cdot \nu^{2}} \sin ^{2} A \cos A\left(1+3 \tan ^{2} \lambda\right) \operatorname{cosec} \mathrm{I}^{\prime \prime} ;
\end{array}\right. \\
& \Delta L=\left\{\begin{array}{l}
-\frac{c}{\nu} \frac{\sin A}{\cos \lambda} \operatorname{cosec} \mathrm{I}^{\prime \prime} \\
+\frac{1}{1.2} \frac{c^{2} \sin 2 A \tan \lambda}{\nu^{2}} \frac{\cos \lambda}{\operatorname{cosec} 1^{\prime \prime}} \\
-\frac{1}{1.2 .3} \frac{c^{3}}{\nu^{3}} \frac{(1+3 \tan 2) \sin 2 A \cos A}{\cos \lambda} \operatorname{cosec} \mathrm{I}^{\prime \prime} \\
+\frac{1}{1.2 .3} \frac{c^{3}}{\nu^{3}} \frac{2 \sin A \tan 2}{\cos \lambda} \operatorname{cosec} \mathrm{I}^{\prime \prime} ;
\end{array}\right.
\end{aligned}
$$

and

$$
B=\pi+A+\left\{\begin{array}{l}
-\frac{c}{\nu} \sin A \tan \lambda \operatorname{cosec} \mathrm{I}^{\prime \prime} \\
+\frac{\mathrm{I}}{4} \frac{c^{2}}{\nu^{2}}\left\{1+2 \tan ^{2} \lambda+\frac{e^{2} \cos ^{2} \lambda}{1-e^{2}}\right\} \sin 2 A \operatorname{cosec} \mathrm{I}^{\prime \prime} \\
-\frac{c^{3}}{\nu^{3}}\left(\frac{5}{6}+\tan ^{2} \lambda\right) \frac{\tan \lambda}{2} \sin 2 A \cos A \operatorname{cosec} \mathrm{I}^{\prime \prime} \\
+\frac{\mathrm{I}}{2 \cdot 3} \frac{c^{3}}{\nu^{3}} \sin ^{3} A \tan \lambda\left(\mathrm{I}+2 \tan ^{2} \lambda\right) \operatorname{cosec} \mathrm{I}^{\prime \prime}
\end{array}\right.
$$

For the derivation of these formulæ, and also for the manner in which they have been arranged for calculation, see Chapter IX of Volume II, and the Auxiliary Tables to facilitate the Calculations of the Survey of India, 3rd Edition, 1887.

The values of the elements of the Figure of the Earth which have been employed in the calculations are those known as "Everest's Constants, 1st Set," and are:-

$$
\begin{aligned}
& \text { Semi-axis major, } a=20,922,932 \text { feet, } \quad \log =7.32062254, \\
& \text { Semi-axis minor, } b=20,853,375 \text { feet, } \quad „=7.31917634 \text {, } \\
& \text { Ellipticity, } \quad c=\frac{a-b}{a}=\frac{1}{300^{\prime} 80}, \quad \quad \#=\overline{3.52171968, ~} \\
& e^{2}=\frac{a^{2}-b^{2}}{a^{2}}=0.0066378, \quad \quad \geqslant=\overline{3} .82202718, \\
& 1-e^{2}=0.9933622, \quad „=Т .9971076 \mathrm{I},
\end{aligned}
$$

from which $\rho$ and $\nu$ are found by the well known formulæ.

## 6.

## Reduction of the Vertical Angles for the Determination of Differences of Height and the Co-efficients of Refraction.

The relative heights of the principal stations of this Survey are determined in almost all instances by measuring the reciprocal vertical angles. The heights so obtained are controlled, wherever possible, by connecting the stations of the triangulation with those of lines of Spirit

Levels, which are executed by this Survey, and occasionally with Tidal Stations on the coasts of the Peninsula, at which direct determinations of the mean sea level have been made: The formula that was employed for many years in the calculation of differences of height is due to Colonel Everest, and is as follows:-

If $h$ be the difference of height of two stations $\mathbf{A}$ and $\mathbf{B}, D^{\prime}$ the depression of $\mathbf{B}$ at $\mathbf{A}$ and $D$ that of $A$ at $B, H$ the height of $A$ above sea level, $c$ the distance between $A$ and $B$ at that level, and $r$ the radius of curvature corresponding to the mean latitude of $A$ and $B$, then the angle subtended at the lower station by the excess of height of the higher, or the socalled subtended angle, is $\frac{1}{2}\left(D \sim D^{\prime}\right)$, and the height of $B$ above or below $A$ is given by the expression

$$
h=c\left(\mathrm{I}+\frac{H}{r}\right) \frac{\sin \frac{1}{8}\left(D-D^{\prime}\right)}{\cos D}
$$

according as the result is plus or minus. If either of the angles is an elevation instead of a depression its value must be employed with the opposite sign to that here given.

In order to use this formula it is first necessary to correct the observed angles for the heights of the observing instrument and observed signal. A much less laborious process is to employ the uncorrected vertical angles, and then reduce the result thus obtained to the levels of the stations by an algebraical combination of the heights of the instruments and signals. .This procedure is as follows :-

If $i_{a}, i_{b}$ be the heights in feet of the theodolites at $A$ and $B$ respectively

$$
8_{a}, 8_{b} \quad \text { signals . } \quad \text {, }
$$

$\boldsymbol{D}_{a}, \boldsymbol{D}_{b}$ be the observed vertical angles, both assumed to be depressions,
and we put

$$
\delta=s_{a}-s_{b}+i_{a}-i_{b}
$$

then

$$
h=c\left(\mathrm{I}+\frac{H}{r}\right) \frac{\sin \frac{1}{8}\left(D_{b}-D_{a}\right)}{\cos D_{b}}+\frac{\delta}{2} .
$$

This formula, though not absolutely rigorous, holds good for all cases that have hitherto occurred or are likely to occur in this Survey.

For $r$, the radius of curvature, the same formula is employed as in the calculation of spherical excess, see page $15, \rho$ and $\nu$ being here taken for the mean latitude of the stations.

In the preceding formulæ it is assumed that the reciprocal angles are equally affected by refraction, and in order that this may be as nearly the case as possible, the vertical angles in all the modern operations are generally measured between the hours of 1 and 3 P.M., when the amount of refraction is usually a minimum.

The heights on the whole of the Khánpisura Meridional Series and on the lower portion of the Singi Meridional Series as originally executed, were very deficient in observations on certain rays and of a generally weak character, hence it ultimately became necessary to revise them completely. This was done during the seasons 1882-5. The heights on the Cutch Coast Series westward of the meridian of $70^{\circ}$ have also proved very unsatisfactory from another cause, viz., the abnormal refraction along the coast. This defect has now been overcome by carrying a line of levels, in season 1889-90, from the Bench-mark at Mundra along the Series to Tatta and connecting it with several of the Survey stations.

The reciprocal angles are also employed to determine the co-efficient of refraction, to be used in reducing unreciprocated vertical angles; for, putting $C$ for the arc between the stations A and B, or the contained arc as it is usually called, and $\phi_{a}, \phi_{b}$ for the refraction at the respective stations, we have

$$
C=D_{a}+\phi_{a}+D_{b}+\phi_{b}-\boldsymbol{\beta}
$$

in which expression

$$
\beta=\frac{i_{a}-8_{a}+i_{b}-s_{b}}{c \sin \mathrm{I}^{\prime \prime}} .
$$

Thus, the mean refraction, $\phi$, is given by the expression

$$
\phi=\frac{1}{2}\left\{C-\left(D_{a}+D_{b}\right)+\beta\right\}
$$

and $\frac{\phi}{C}$ gives the terrestrial refraction in decimals of contained arc-or in other words the co-efficient of refraction-for each pair of reciprocated observations. From the several values of the co-efficient thus determined, those which are deemed most suitable are selected for employment in the reduction of vertical angles to secondary points, at which reciprocal observations have not been taken.

The formula for calculating the contained arc is

$$
C^{\prime \prime}=\frac{c}{r} \operatorname{cosec} \mathrm{I}^{\prime \prime}
$$

## 7.

## The Final Values of Height.

The final values of all the heights of the stations of this Quadrilateral have been obtained by comparing the values obtained from the reciprocal vertical angles with determinations by Spirit-Levelling Operations wherever available, with a direct determination of Sea Level or with heights already finally fixed, and then dispersing the differences which exhibited themselves in the intermediate sections.

The mean sea level was determined in 1855 by Mr. J. DaCosta, by observations extending through half a lunation, at two points on the south coast of the Káthiáwár peninsula, viz.,

Miani and Diu. The latter was connected with the Principal Triangulation and has been used in obtaining final heights of Principal Stations; the former has only been connected with the Secondary Triangulation. More extended observations were made during 1874 and 1875 by Lieutenant A. W. Baird, R.E., at Okha, Navánár and Hanstal, of which the results at Okha-where observations continued for $16 \frac{1}{2}$ months-have alone been made use of in reducing the trigonometrical heights to mean sea level.

The following lines of level have been executed within the area embraced in the SouthWest Quadrilateral. Two lines originate on either side of the Gulf of Cutch, one at Okha at the entrance on the south and the other at Navanár a little way up the gulf on the north; they pass round the gulf and meet near Wandia station of the Kattywar Meridional Series; from there the northern border of the Little Ran is followed to the eastern extremity and then to Viramgam where it meets the B. B. and C. I. Railway which it follows vid Ahmedabad, Baroda, Broach and Surat to Bombay Tidal Station. A loop line from Jodiya via Rajkkot and Wadhwan connects the line on the south coast of the Gulf of Cutch with Viramgám. Several short branch lines were also executed and connections made with trigonometrical stations. Another line commencing from Bombay follows the G. I. P. Railway as far as Nándgaon, thence it proceeds to Málegaon and along the Bombay-Agra road vid Dhulia, Mhow and Indore to Dewás, thence via Sehore to Bhopal and along the Gwalior road to the Sironj Base-line. From Nándgaon a line is continued along the G. I. P. Railway to Shirsoli. Another line viá Ahmednagar connects Dhond Railway Station on the Poona Branch of the G. I. P. Railway with Manmád on the main line of that railway. Short branch lines were also executed and connections made with trigonometrical stations. All the above lines have been connected with Principal Stations in the Series of the South-West Quadrilateral. Another line of levels originating from Mundra, near Navánár on the Gulf of Cutch, was carried through the chain of triangles called the Cutch Coast Series towards Karáchi and connected with several stations of the Series: this line closed on Chilia Bench-mark of the line Manora Harbor to Kashmor executed about the year 1858. Furthermore, the heights of all the stations of the Karachi Longitudinal Series had been fixed in the course of the reduction of the North-West Quadrilateral and of the Bombay Longitudinal Series in that of the Southern Trigon. Thus sufficient data existed for the final reduction of the heights of the stations. A list of the stations at which the heights were determined by Spirit Levelling is given below :-

## Spirit Levelled Points in the South-West Quadrilateral.



Spirit Levelled Points in the South-West Quadrilateral-(Continued).

| Series |  | Station |  |
| :---: | :---: | :---: | :---: |
| Singi Meridional | ... | $\cdots\left\{\begin{array}{l} \text { XXIII } \\ \text { XXXIII } \\ \text { XXXV } \\ \text { XXXVII } \end{array}\right.$ | or Sidpur <br> , Párnera <br> , Ankai <br> ", Sinnar |
| Kattywar Meridional | ... | $\ldots\left\{\begin{array}{l}\text { VIII } \\ \text { X } \\ \text { XII } \\ \text { XIV } \\ \text { XVI } \\ \text { XXV } \\ \text { XXVI } \\ \text { XXVI }\end{array}\right.$ | ", Pata-i-Sháh ", Khánmír ", Monába ", Wándia ", Mália ", Karkia " Kakána |
| Guzerat Longitudinal | ... | $\cdots\left\{\begin{array}{l}\text { XI } \\ \text { XVII } \\ \text { XVIII } \\ \text { XXI } \\ \text { XXII } \\ \text { XXIV } \\ \text { XXVI } \\ \text { XXX }\end{array}\right.$ | , Poera <br> ", Jhinjhar <br> ", Wastrál <br> ", Sola <br> ", Sánand <br> ," Khoraj <br> ", Hasalpur <br> " Ingrori |
| Cutch Coast ... | ... | $\cdots\left\{\begin{array}{l} \text { I } \\ \text { VI } \\ \text { VIII } \\ \text { XVI } \\ \text { XXV } \\ \text { XXVI } \\ \text { XXVII } \\ \text { XXVIII } \\ \text { XXXI } \\ \text { XXXVII } \\ \text { XXXIX } \\ \text { XLIII } \\ \text { XLIV } \end{array}\right.$ | , Bhacháo <br> ,, Sakpur <br> ," Charakra <br> " Háthria <br> " Lakhpat <br> " Sugandia <br> ,, Said Ali <br> ," Guni <br> , Mod <br> ", Mugalbhin <br> " Gada <br> ," Vikia <br> ", Domani |

The usual method of dispersing discrepancies between spirit levelled and trigonometrical heights, is to divide them in proportion to the number of intermediate stations and to correct each height according to its number of removes from the point determined by spirit levelling. For a time, the method of minimum squares* was applied; but this is generally held to be too refined and laborious a process to be suitable for the purpose, and it was soon

[^4]abandoned for the more rough and ready one, which may be considered to give values quite as near the truth.

The heights resulting from the vertical observations of the South-West Quadrilateral have been divided, for final adjustment, into groups as shewn in the table which follows. In this table the errors dispersed in each group are exhibited; and where necessary a few explanatory remarks are added.

| $\begin{aligned} & \frac{2}{2} \\ & \frac{4}{0} \end{aligned}$ | Commencing at Stations | Ending at Stations | Ihriors in feet | Method of Dispersion, and Remarks |
| :---: | :---: | :---: | :---: | :---: |
|  | Khanpisura Meridional Series. |  |  |  |
| 1 | Búda* and Bálágara* | Singarchori and Thíkri | -2.58 -2.0 | Simple proportion. |
| 2 | Indrawan, Mograba and Thíkri | Dhanvár, Valvádi and Anakvádi | $+13 \cdot 5$ +14.3 $+13 \cdot 1$ | Ditto. |
| 3 | Valvadi, Dhanvar and Anakvadi | Ȧgargaon $\dagger$ | $-5.9$ | Ditto. |
|  | Singi Meridional Series. |  |  |  |
| 1 | Tana* and Lakarwas* | Játhrábhor and Patángri | $\begin{aligned} & +9 \cdot 8 \& \\ & +10 \cdot 0 \end{aligned}$ | Simple proportion. The heights of Játhrábhor and Patángri were determined in group 1 of the Guzerat Longitudinal Series. |
| 2 | ... ... | ... ... ... | ... | The heights of Kagarol, Wardhari, Ghoraráo, Rencha and Bhor were determined in group 1 of the Guzerat Longitudinal Series. |
| . 3 | Bhor and Rencha | Sidpur | $+4.2$ | Simple proportion. |
| 4 | Karáli and Sidpur | Párnera | $-0.4$ | Ditto. |
| 5 | Dopári, Pilwa and Párnera | Ankai and Sinnar | $-2 \cdot 4 \&$ | Ditto. |
| 6 | Bhorgarh, Gambírgarh, Sinnar and Ankai | Parnert and Singi $\dagger$ | - 3.18 | Ditto. |

[^5]| 若 | Commencing at Stations | Ending at Stations | Frrors in feet | Method of Diepersion, and Remarke |
| :---: | :---: | :---: | :---: | :---: |
|  | Abu Meridional Series. |  |  |  |
| 1 | Márd* and Jeraj* | Mirzapur and Sanoda of the Guzerat Longitudinal Series | $\mid-0.3^{2} \&$ | Simple proportion. The heights of Mirzapur and Sanoda were determined in groups 2 and 3 of the Guzerat Longitudinal Series. |
|  | Kattywar Meridional Series. |  |  |  |
| 1 | $\begin{aligned} & \text { Akoria** Bhilgaon* and } \\ & \text { Jhund** } \end{aligned}$ | Pata-i-Sháh | 2.4 | Simple proportion. |
| 2 | Dajka and Pata-i-Shah | Kakraji | ... | The heights in this group were determined by taking the arithmetical means of two or more values in the following order:-Chitror from Pata-i-Sháh, Khánmír, Monába and Wándia; Kanduka from Dajka, Pata-i-Shah, Khánmír and Chitror; Gángta from Bela, Dajka and Kanduka; Kesmára from Khanmír, Monába and Kakraji and Kakraji from Kesmára, Monába and Malia. |
| 3 | Kakraji and Mália | Tarkia and Kakana | $+1 \cdot 78$ -0.8 | Simple proportion. |
| 4 | Kakaña and Tarkia | Diu Level Datum Tower | - 1.6 | Ditto. |
|  |  | Guzerat Longitu | udinal S |  |
| 1 | Karsod $\dagger$ and Indrawan $\dagger$ | Poera | $+3.2$ | Simple proportion. |
| 2 | Jhiria and Poera | Jhinjhar and Wastral | $\begin{aligned} & +1 \cdot 5^{\&} \\ & +2 \cdot 6 \end{aligned}$ | Ditto. |
| 3 | Mirzapur, Wastral and Jhinjhar | Ingrori | ... | The heights in this group were determined by taking the arithmetical means of two or more values in the following order:-Sanoda from Mirzapur and W astral ; Pálri from Jhinjhar, Wastral, Sola and Sánand; Hajipur from Sola, Sknand, and Khoraj; Wádrora from Hájipur, Khoraj and Hasalpur ; Thuleta from Khoraj, Hasalpur and Kárigangar ; Kárigangar from Hasalpur, Ingrori and Thuleta; and Por from Hasalpur, Karigangar and Ingrori. |

[^6]| $\begin{aligned} & \text { a } \\ & \text { ! } \\ & \hline 0 \end{aligned}$ | Commencing at Stations | Thnding at Stations | Thrors in foot | Method of Dispersion, and Romarks |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Guzerat Longitudinal | Series-(Cor | ontinued). |
| 4 | Por and Ingrori | Sapakra and Chalarwa | $\left\lvert\, \begin{aligned} & -3 \cdot 0^{\&} \\ & -2 \cdot 8 \end{aligned}\right.$ | Simple proportion. The heights of Sappakra and Chalarwa were determined in group 3 of the Kattywar Meridional Series. |
|  | Cutch Coast Series. |  |  |  |
| 1 | Gangta, Chitror, Wandia and Bhacháo | Sakpur and Charakra | -•• | The heights in this group were determined by taking the arithmetical means of two or more values in the following order:-Nara from Gángta, Chitror, Wándia and Bhacháo; Kakarwa from Gángta, Bhacháo and Nara; Ran from Gángta and Kakarwa; Ráhida from Bhacháo, Kakarwa and Sakpur ; and Kararho from Bhacháo, Sakpur and Charakra. |
| 2 | Ráhida, Sakpur and Charakra | Hathria | $+1 \cdot 9$ | Simple proportion. |
| 3 | Roha, Dinoda and Hkthria | Lakhpat | $+2.4$ | Ditto. |
| 4 | Suri Muri, Bábia and Lakhpat | Patha-ki-beri | $\cdots$ | The heights in this group were determined by taking the arithmetical means of two or more values in the following order:-Jamanwala from Suri Muri and Bábia; Pinjor Pir from Bábia, Jamanwála, Lakhpat, and Sugandia; Hakra from Said Ali, Guni and Mod; and Patha-ki-beri from Guni and Mod. |
| 5 | Patha-ki-beri and Mod | Magalbhin | $+0.8$ | Simple proportion. |
| 6 | Patha-ki-beri, Jim and Mugalbhin | Gada | - 1.8 | Ditto. |
| 7 | Abanshah and Gada | Vikia | - 1.4 | Ditto. |
| 8 | Bíbi Mariam and Domani | N. Find and S. Find of Karáchi Base-line, N. W. Quadrilateral | $\begin{aligned} & -1.28 \\ & -0.2 \end{aligned}$ | Ditto. |

Abstracts of the calculations of the trigonometrical differences of height for the several Series embraced in the South-West Quadrilateral, and which also contain the final values of the heights adopted for the stations, will be found in the details of each Series.

In these abstracts there are given for each station, the astronomical date and mean time of observation whenever forthcoming, the mean of the observed angles preceded by a letter shewing whether it is D , a depression, or E , an elevation, and the number of observations of which it is the mean. Then follow in succession the heights in feet of the signal and instrument employed, the contained arc between each pair of stations and the amount of refraction expressed both in seconds and as a factor of the contained arc. Next is recorded the trigonometrical difference of height of each pair of stations as deduced from the observations. These differences are followed by the several values of height of the deduced station above sea level as brought up by the triangulation, and the mean of these values for each station. And lastly are recorded the final values, obtained as has been explained in this section, together with the heights of the pillars or towers from which the observations were made.

It has occasionally happened that after observations have been taken by one observer at a tower station, a second observer, coming to connect the station with new stations, has found it necessary to increase the height of the tower. In such cases the final height of the tower is that to which the results given in the numerical abstracts relate, the previous observations having been reduced to it , by referring the heights of the signal and instrument to the surface of the raised tower. When the height added to the tower exceeds either or both of these heights, the corrections for signal and instrument require the opposite sign to that which they usually take. In such cases a note is always inserted in the numerical abstracts, drawing attention to the fact.

## 8.

## The Determinations of Azimuths by Astronomical Observations.

In the course of the operations of this Survey it has been the custom to determine an azimuth at certain of the stations by astronomical observations taken at the time when the stations are visited in the execution of the triangulation. These independent observations of azimuth will be useful hereafter, in investigations of the Figure of the Earth and of local attraction. But for reasons which have already been explained at page 142 of Vol. II, it would not, as a rule, be proper to employ them in the general reduction of the triangulation. It happens, however, that the observations have been reduced each year pari passi with the preliminary reductions of the triangulation-figure by figure, or series by series-which precede the final simultaneous reductions. The observations and their reductions are therefore given in the volumes which treat of the triangulation; as they have more in common with it than with the astronomical observations for the determinations of latitude and differential longitudes.

The observations for azimuth consist of measures of the angle between a circumpolar star, when near either elongation, and some station-either directly or through the medium of a referring mark-which are made in accordance with the system followed in observing the horizontal angles as regards the changes of zero, but with a larger number of repetitions on each zero, as the observations are individually liable to greater error.

The time of each intersection of the star being carefully noted, the difference, $\delta A$, of the momentary azimuth from the value at elongation, is subsequently calculated and applied to the observed angle between the referring mark and the star. Thus a series of determinations of the angle between the referring mark and the star's position at elongation is obtained, from each of which and the known value of the star at elongation, a determination of the aximuth of the referring mark may be deduced.

The formula employed for the calculation has been

$$
\delta A^{*}=\frac{2 \sin ^{2} \frac{1}{2} \delta P \operatorname{cosec} 1^{\prime \prime} \tan A \cos ^{2} \text { N.P.D. }}{1-2 \sin ^{2} \text { N.P.D. } \sin ^{2} \frac{1}{2} \delta P \pm \cot P \cdot \sin \delta P}
$$

in which $A$ is the azimuth of the star at elongation, $P$ the corresponding hour angle, N.P.D. the North Polar Distance of the star, and $\delta A$ the difference in azimuth for the time $\delta P$ before and after elongation. The last term of the denominator is positive when the star is below and negative when above the position of maximum elongation.

At each station where the azimuth is observed, and a referring mark has been employed, the angle between the referring mark and one of the contiguous stations of the triangulation is also observed, just as any other horizontal angle : the several measures will generally be found in the Abstract of the Observed Angles at the observing station; but when not there given they follow the abstract of the azimuthal observations.

Abstracts of the azimuthal observations will be found at the end of the details of each series, where are given, besides all necessary information regarding the observations themselves, such details of the calculations as will enable them to be followed up to the final results, viz., the difference between the Astronomical and Geodetical Azimuths. Sometimes the whole of the observations on a pair of zeros could not be completed on one night; in such cases the remainder were taken on a subsequent night, and the change of the star's place was duly allowed for in the reductions.

## 9.

The Final Reduction of the Triangulation. Preliminary Sketch.
The different processes employed in the reductions which have as yet been described, are applied to the single triangles, polygonal figures and net-works by which the chains are

[^7]built up. It has been the custom to make each field season's work, whenever possible, close with a complete figure; so that, during the succeeding recess, the preliminary reduction of the whole might be effected, and the resulting data rendered available for any immediate purposes for which they might be required. The portions of the triangulation so treated fulfil all existing conditions until a chain closes on a base-line, or two or more chains combine together to form a circuit. Further conditions then present themselves which the triangulation has to satisfy as a whole, namely :-

First, in the case of a chain closing on a measured base-line, the length of the baseline obtained from the triangulation should agree with the measured length.

Secondly, when two or more chains combine together to form a circuit, the values of the length and azimuth of the side of origin, and of the latitude and longitude of the station of origin, which are obtained by processes of calculation through the triangulation and back to the origin, should agree with their initial values.

Before proceeding to indicate the forms of equations which result from the foregoing conditions, it may be as well to anticipate a possible objection in their application. As all errors are to be dispersed by the method of minimum squares, which assumes the independency of all the quantities under investigation, it might be imagined that we must now again revert to the observed angles, as the angles which have been corrected for figural conditions cannot be considered independent. It has, however, been shewn in Appendix No. 8 of Vol. II, that the observed angles may be corrected in accordance with a part only of the conditions which govern them; and that when new conditions present themselves, the corrected angles may be employed for finding other corrections, so that final corrections can be obtained by employing the angles after they have received any number of partial corrections, provided that the conditions which have already been satisfied are maintained when the further corrections, required to satisfy additional conditions, are calculated.

It appears therefore that all the preliminary calculations stand good, and consequently that the equations due to the new conditions may be obtained by employing the corrected, instead of reverting to the observed, values of the angles. But when we are seeking for final corrections, we must treat the corrected angles in such a manner as to preserve all the conditions already satisfied. These are, however, so numerous and entangled as to make an exact solution of the problem impossible. Consequently all the central and side conditions of the different polygonal figures and net-works composing the chains are excluded, by omitting from the Simultaneous Reduction all angles appertaining to polygonal figures and net-works, over and above what are needed to form continuous chains of single triangles, and increasing the weights of the angles of the retained triangles. By this means the entanglement is greatly diminished, and the number of figural equations is reduced to one for each triangle, of the simple form

$$
x+y+z=0
$$

which permits of the elimination of one of the unknown quantities in each triangle, and thus
enables all the triangular equations to be dispensed with. Thus the number of equations to be solved is eventually reduced to the number of new conditions to be satisfied, or in other words to the number of what are here called Circuit Equations, the term having reference to all the closing errors of the chains of triangles, whether occurring internally at the ends of the circuits, or externally on the base-lines.

After the completion of the Simultaneous Reduction, the angles appertaining to the portions of the polygonal figures and net-works, which had been excluded, are corrected in such a manner as to restore the consistency of each figure, without altering the values of the angles which have already been fixed.

## 10.

## The Final Reduction of the Triangulation. Formation of the Circuit Equations.

It will now be understood that the several chains of triangles which are presented for simultaneous reduction consist only of single triangles. These are numbered consecutively in such order as may be most convenient. The angle opposite the flank side of each triangle is known as $X$, that opposite the side of continuation as $Y$ and that opposite the base as $Z$, each being further distinguished by a subscript, which is the number of the triangle: $x, y$ and $z$ with corresponding subscripts are the symbols employed to represent the errors of the angles, or, in other words, the unknown fallible quantities of which the most probable values that will satisfy the equations have to be found. These equations are respectively termed Linear and Geodetic, the former taking cognizance of the errors in the ratios of the sides of triangles which are met with at the base-lines and junctions of chains, the latter expressing the errors in latitude, longitude and azimuth which exhibit themselves at the junctions of chains. In the reduction of this Quadrilateral these equations were formed in the following manner :-

## I. Linear Equations.

If $a$ be the length of the side of origin of $a$ chain and $b$ the length of the closing side as obtained by triangulation, and the triangles are numbered from 1 to $m$ consecutively, we express the value of $b$ logarithmically as follows:-

$$
\begin{aligned}
\log b=\log a & +\log \sin Y_{1}-\log \sin Z_{1}+\log \sin Y_{2}-\log \sin Z_{2} \\
& +\ldots+\log \sin Y_{m}-\log \sin Z_{m} .
\end{aligned}
$$

When this equation is differentiated, if we write $y$ for $d Y$ and $z$ for $d Z$, we shall have an expression for $d \log b$, the error in $\log b$, in terms of the angular errors $y$ and $z$. Now
$d \log \sin Y=\left\{\right.$ tabular difference (t.d.) $\log \sin Y$ for a change of $\left.\mathbf{I}^{\prime \prime}\right\} \times d Y$,
$d \log \sin Z=\{\quad \Rightarrow \quad \log \sin Z \quad \Rightarrow \quad \geqslant \quad\} \times d Z$.

Thus if for brevity we denote t.d. $\log \sin Y$ by $\beta$ and t.d. $\log \sin Z$ by $\gamma$, we have

$$
d \log b=\beta_{1} y_{1}-\gamma_{1} z_{1}+\beta_{2} y_{2}-\gamma_{2} z_{2}+\ldots+\beta_{m} y_{m}-\gamma_{m} z_{m}
$$

As in this equation $d \log b$ as well as $\beta$ and $\gamma$ represent quantities in the 7 th place of decimals, it is convenient to treat it as if both sides were multiplied by $10^{7}$, by which means $d \log b$; $\beta$ and $\gamma$ become respectively the number of units in the 7th place of decimals. If we put $E$ to represent the actual closing error in $\log b$, and employ brackets to denote summation, the last equation may be written

$$
E={ }_{1}^{m}\left[\beta y-\gamma^{z}\right] .
$$

The value of $E$ is derived by comparing the logarithms of the measured and computed values of a base-line, or those of the two computed values of the side of junction of any two chains. Thus at base-lines we have

$$
[\beta y-\gamma z]=\log b \text { computed }-\log b \text { measured } ;
$$

and at junctions of chains we have

$$
\left[\beta y-\gamma^{z}\right]_{r}-\left[\beta y-\gamma^{z}\right]_{l}=\log b_{r}-\log b_{l} ;
$$

the subscripts $r$ and $l$ referring to the right and left-hand chains of the circuit.
The coefficients $\beta$ and $\gamma$ are taken by inspection from any book of logarithms which. gives the logarithmic sines of angles for every second of arc.*

The form of linear equation here given is the same as that employed for the SouthEast Quadrilateral and the Southern Trigon, but differs from that employed in the reduction. of the North-West Quadrilateral, in that $\beta$ there stands for $\cot Y$ and $\gamma$ for $\cot Z$, and $E$ is the error in $\log b$ multiplied by $\frac{\operatorname{cosec} 1^{\prime \prime}}{\text { Modulus }}$.

## II. Geodetic Equations.

The formulæ which have been employed for calculating differences of latitude, longitude and reverse azimuths have already been quoted, see pages 19 and 20 . In dealing with these we now confine our attention to the first terms only. Expressing them logarithmically we have

$$
\begin{aligned}
& \log \Delta \lambda=-\log \rho \sin 1^{\prime \prime}+\log c+\log \cos A \\
& \log \Delta L=-\log \nu \cos \lambda \sin \mathrm{I}^{\prime \prime}+\log c+\log \sin A \\
& \log \Delta A=\log (B-\pi-A)=-\log \nu \cot \lambda \sin \mathrm{I}^{\prime \prime}+\log c+\log \sin A
\end{aligned}
$$

[^8]in which $A$ and $c$ are both functions of the observed angles. Differentiating, treating $\rho, \nu$ and $\lambda$ as constants, and expressing the differentials as tabular differences of logarithms
t.d. $\log \Delta \lambda d \Delta \lambda=$ t.d. $\log c d c+$ t.d. $\log \cos A d A$,
t.d. $\log \Delta L d \Delta L=$ t.d. $\log c d c+$ t.d. $\log \sin A d A$,
t.d. $\log \Delta A(d B-d A)=$ t.d. $\log c d c+t . d . \log \sin A d A$.

From these equations we have

$$
\begin{aligned}
& d \Delta \lambda=\frac{\text { t.d. } \log c d c}{\text { t.d. } \log \Delta \lambda}+\frac{\text { t.d. } \log \cos A}{\mathrm{t} \cdot \mathrm{~d} \cdot \log \Delta \lambda} d A \\
& d \Delta L=\frac{\text { t.d. } \log c d c}{\text { t.d. } \log \Delta L}+\frac{\text { t.d. } \log \sin A}{\text { t.d. } \log \Delta L} d A \\
& d B=\frac{\text { t.d. } \log c d c}{\text { t.d. } \log \Delta A}+\left\{\mathrm{r}+\frac{\text { t.d. } \log \sin A}{\text { t.d. } \log \Delta A}\right\} d A .
\end{aligned}
$$

The diagram in the margin, which is taken from page 172 of Vol. II, represents the commencement of a chain of triangles in which station $I$ is assumed to be the origin of geodetic co-ordinates, and 2, 3, . . . stations on the most direct route-indicated by the dotted line run-
 ning parallel to the sides on one flank of the chain-which connects I with any station in advance. The side $c$ is assumed to be a measured base-line, and the astronomical azimuth of a referring mark at $I$ to be the fundamental azimuth. The symbols of the equations just given are made applicable by the employment of subscripts, as follows :-

For the side I to 2; $\Delta \lambda_{1}, \Delta L_{1}, \Delta A_{1}, c_{1}, A_{1}$, and $B_{1}$,

$$
" \quad n \text { to } n+\mathrm{I} ; \quad \Delta \lambda_{n}, \Delta L_{n}, \Delta A_{n}, c_{n}, A_{n} \text { and } B_{n},
$$

where $n+I$ is the last flank station of the chain.
Now if $\delta c_{1}$ be the linear error generated between $c$ and $c_{1}$,

$$
\delta c_{2} \quad 川 \quad \# \quad c_{1} \text { and } c_{2}
$$

and so on; and if
$\delta A_{1}$ be the azimuthal error generated between the referring mark and $c_{1}$,

$$
\delta A_{2} \quad \eta \quad \eta \quad c_{1} \text { and } c_{2}
$$

and so on. Then

$$
\begin{aligned}
& \text { t.d. } \log c_{1} d c_{1}=\text { t.d. } \log c_{1} \delta c_{1} \\
& \text { t.d.log } c_{2} d c_{2}=\text { t.d. } \log c_{1} \delta c_{1}+\text { t.d. } \log c_{2} \delta c_{1},
\end{aligned}
$$

and

$$
\begin{aligned}
& d A_{1}=\delta A_{1} \\
& d A_{2}=d B_{1}+\delta A_{2} \\
& d A_{3}=d B_{2}+\delta A_{3}
\end{aligned}
$$

Returning to the expressions for $d \Delta \lambda, d \Delta L$ and $d B$, and treating the last first, because it is independent of the others, and omitting all terms in which higher powers of $\sin 1^{\prime \prime}$ occur or are latent, as in products of sini" by $\frac{d c}{c}$, expressions for $d B_{1}, d B_{2}, d B_{3}, \ldots$ may be obtained in succession. That for the $(n+1)$ th station will be

$$
\begin{aligned}
& d B_{n}={ }_{1}^{n}\left[\frac{1}{\text { t.d. } \log \Delta A}\right] \text { t.d. } \log c_{1} \delta c_{1}+{ }_{2}^{n}\left[\frac{1}{\text { t.d. } \log \Delta A}\right] \text { t.d. } \log c_{2} \delta c_{2} \\
& \\
& +\ldots+\frac{1}{\text { t.d. } \log \Delta A_{n}} \text { t.d.log } c_{n} \delta c_{n}
\end{aligned} \begin{array}{r}
+\left\{1+{ }_{1}^{n}\left[\frac{\text { t.d. } \log \sin A}{\text { t.d. } \log \Delta A}\right]\right\} \delta A_{1}+\left\{1+{ }_{2}^{n}\left[\frac{\text { t.d. } \log \sin A}{\text { t.d. } \log \Delta A}\right]\right\} \delta A_{2} \\
\\
+\ldots+\left\{1+\frac{\text { t.d. } \log \sin A_{n}}{\text { t.d. } \log \Delta A_{n}}\right\} \delta A_{n} .
\end{array}
$$

This is the expression for the error in the azimuth at the $(n+1)$ th station of station $n$, due to the errors of the angles of the triangles which form the chain.

The errors in latitude and longitude at the same station, the $(n+1)$ th, are the sums of the respective errors generated between the successive stations of the traverse. Calling these sums $d \lambda_{n+1}$, and $d L_{n+1}$, then

$$
d \lambda_{n+1},={ }_{1}^{n}[d \Delta \lambda] ; \quad d L_{n+1}={ }_{1}^{n}[d \Delta L] .
$$

Expressing $d \Delta \lambda$ and $d \Delta L$ for each side in terms of $\delta c$ and $\delta A$ and substituting for the right-hand members of the last equations, we shall have
and

$$
\begin{array}{r}
d \lambda_{n+1}={ }_{1}^{n}\left[\frac{1}{\mathrm{t} \cdot \mathrm{~d} \cdot \log \Delta \lambda}\right] \mathrm{t} \cdot \mathrm{~d} \cdot \log c_{1} \delta c_{1}+{ }_{2}^{n}\left[\frac{1}{\text { t.d. } \log \Delta \lambda}\right] \mathrm{t} \cdot \mathrm{~d} \cdot \log c_{2} \delta c_{2} \\
\\
+\ldots+\frac{1}{\text { t.d. } \log \Delta \lambda_{n}} \text { t.d.log } c_{n} \delta c_{n} \\
+{ }_{1}^{n}\left[\frac{\text { t.d. } \log \cos A}{\text { t.d. } \log \Delta \lambda}\right] \delta A_{1}+{ }_{2}^{n}\left[\frac{\text { t.d. } \log \cos A}{\text { t.d. } \log \Delta \lambda}\right] \delta A_{2}+\ldots+\frac{\text { t.d. } \log \cos A_{n}}{\text { t.d. } \log \Delta \lambda_{n}} \delta A_{n},
\end{array}
$$

$$
\begin{aligned}
& d L_{n+1}={ }_{1}^{n}\left[\frac{1}{\text { t.d.log } \Delta L}\right] \text { t.d. } \log c_{1} \delta c_{1}+{ }_{2}^{n}\left[\frac{1}{\text { t.d. } \log \Delta L}\right] \text { t.d. } \log c_{2} \delta c_{2} \\
& \\
& \quad+\ldots+\frac{1}{\text { t.d. } \log \Delta L_{n}} \text { t.d. } \log c_{n} \delta c_{n} \\
& +{ }_{1}^{n}\left[\frac{\text { t.d. } \log \sin A}{\text { t.d. } \log \Delta L}\right] \delta A_{1}+{ }_{2}^{n}\left[\frac{\text { t.d. } \log \sin A}{\text { t.d. } \log \Delta L}\right] \delta A_{2}+\ldots+\frac{\text { t.d. } \log \sin A_{n}}{\text { t.d. } \log \Delta L_{n}} \delta A_{n} .
\end{aligned}
$$

In these expressions for the errors in latitude, longitude and azimuth at the $(n+1)$ th station we have now to substitute for t.d. $\log c_{1} \delta c_{1}$, t.d. $\log c_{2} \delta c_{2}$, . . and for $\delta A_{2}, \delta A_{3}$, . . in terms of the errors of the angles in each triangle. Turning to the diagram it will be seen that

$$
\begin{aligned}
& \delta \boldsymbol{A}_{2}=z_{3}+x_{4}+y_{5} \\
& \delta \boldsymbol{A}_{3}=z_{5}+x_{6}+x_{7}+y_{8}
\end{aligned}
$$

and writing
a for t.d.log $\sin X$,
$\beta$,, t.d.log $\sin Y$,

$$
\gamma \quad, \text { t.d.log } \sin Z
$$

it can be easily demonstrated that

$$
\begin{aligned}
& \text { t.d. } \log c_{1} \delta c_{1}=\beta_{1} y_{1}-\gamma_{1} z_{1}+\beta_{2} y_{2}-\gamma_{2} z_{2}+\alpha_{3} x_{3}-\gamma_{3} z_{3} \\
& \text { t.d. } \log c_{2} \delta c_{2}=\beta_{3} y_{3}-a_{3} x_{3}+\beta_{4} y_{4}-\gamma_{4} z_{4}+a_{5} x_{5}-\gamma_{5} z_{5} \\
& \text { t.d. } \log c_{3} \delta c_{3}=\beta_{5} y_{5}-a_{5} x_{5}+\beta_{6} y_{6}-\gamma_{6} z_{6}+\beta_{7} y_{7}-\gamma_{7} z_{7}+a_{8} x_{8}-\gamma_{8} z_{8}
\end{aligned}
$$

Eliminating $x$ from these equations by help of the trianglar equation

$$
x+y+z=0
$$

and substituting in the expressions from $d \lambda_{n+1}, d L_{n+1}$ and $d B_{n}$ while making use of the following symbols

we shall have the following general expression for an error either in latitude, longitude or azimuth

$$
\begin{aligned}
E= & \phi_{1} \delta A_{1}+\mu_{1}\left\{\beta_{1} y_{1}-\gamma_{1} z_{1}+\beta_{2} y_{2}-\gamma_{2} z_{2}\right\} \\
& +\left\{\left(\mu_{2}-\mu_{1}\right) a_{3}+\mu_{2} \beta_{3}\right\} y_{3}+\left\{\left(\mu_{2}-\mu_{1}\right) a_{3}-\mu_{1} \gamma_{3}+\phi_{2}\right\} z_{3} \\
& \left.+\left(\mu_{2} \beta_{4}-\phi_{2}\right) \cdot y_{4} . \ldots+\mu_{2} \gamma_{4}-\phi_{2}\right) z_{4} \\
& +\left\{\left(\mu_{3}-\mu_{2}\right) a_{5}+\mu_{3} \beta_{5}+\phi_{2}\right\} y_{5}+\left\{\left(\mu_{3}-\mu_{2}\right) a_{5}-\mu_{2} \gamma_{5}+\phi_{3}\right\} z_{5} \\
& +\cdots . .
\end{aligned}
$$

The general forms for the coefficients of $y$ and $z$ are: -
First.-If the $p$ th triangle have no side in the line of traverse, but only an angle at the station $m$,

$$
\cdot\left(\mu_{m} \beta_{p}-\phi_{m}\right) y_{p}+\left(-\mu_{m} \gamma_{p}-\phi_{m}\right) z_{p}
$$

Secondly.-If the $q$ th triangle have a side in the traverse between the stations $n$ and $n+1$,

$$
\left\{\left(\mu_{n+1}-\mu_{n}\right) a_{q}+\mu_{n+1} \beta_{q}+\phi_{n}\right\} y_{q}+\left\{\left(\mu_{n+1}-\mu_{n}\right) a_{q}-\mu_{n} \gamma_{q}+\phi_{n+1}\right\} z_{q}
$$

Exceptions will appear to present themselves at the commencement and end of chains owing to the non-existence of some of the coefficients. In all instances, however, it will be found that $\phi_{m}$ enters the coefficients of all the errors of the angles at station $m$, and $\mu_{m}$ enters the coefficients of the errors of the other angles of the same triangles, with a plus sign if looking from station $m$ the angle is the left-hand one of the triangle and a minus sign if the right-hand.

The substitutions for $\mu$ and $\phi$ to render the general equation applicable to either latitude, longitude or avimuth are given in the following table.

Table of Substitutions for $\mu$ and $\phi$.

Latitude.
Longitude.
Azimuth.

| For $E$ | $d \lambda_{n+1}$ | $d L_{n+1}$ | $d B_{n}$ |
| :---: | :---: | :---: | :---: |
| \% $\mu$ | ${ }_{\lambda}{ }^{\mu}$ | ${ }_{2}{ }^{\mu}$ | ${ }_{4}{ }^{\mu}$ |
| \% $\phi$ | ${ }_{\lambda}{ }^{\phi}$ | ${ }_{2}{ }^{\phi}$ | ${ }_{4}{ }^{\phi}$ |
| \% $\mu_{1}$ | $+_{1}^{n}\left[\frac{1}{\text { t.d.log } \Delta \lambda}\right]$ | $+{ }_{1}^{*}\left[\frac{1}{\text { t.d. } \log \Delta L}\right]$ | $+{ }_{1}^{n}\left[\frac{\mathrm{I}}{\text { t.d. } \log \Delta A}\right]$ |
| ${ }^{\prime} \mu_{2}$ | $+{ }_{2}^{x}\left[\frac{1}{\text { t.d.log } \Delta \lambda}\right]$ | $+{ }_{2}^{n}\left[\frac{1}{\text { t.d. } \log \Delta L}\right]$ | $+_{2}^{n}\left[\frac{\mathrm{I}}{\text { t.d. } \log \Delta \boldsymbol{A}}\right]$ |
| - • | - | - • • • - . | - • . . . |
| \% $\mu_{n}$ | $+\frac{1}{\text { t.d. } \log \Delta \lambda_{n}}$ | $+\frac{\mathrm{I}}{\text { t.d. } \log \Delta \mathrm{L}_{n}}$ | $+\frac{\mathrm{I}}{\text { t.d. } \log \Delta A_{n}}$ |
| ${ }_{2} \phi_{1}$ | $+{ }_{1}^{n}\left[\frac{\text { t.d. } \log \cos A}{\text { t.d. } \log \Delta \lambda}\right]$ | $+{ }_{\mathrm{I}}^{\mathrm{n}}\left[\frac{\mathrm{t} . \mathrm{d} \cdot \log \sin A}{\text { t.d. } \log \Delta L}\right]$ | $1+{ }_{x}^{x}\left[\frac{\text { t.d. } \log \sin A}{\text { t.d. } \log \Delta A}\right]$ |
| \# $\phi_{2}$ | $+_{2}^{n}\left[\frac{\mathrm{t} . \mathrm{d} \cdot \log \cos A}{\text { t.d. } \log \Delta \lambda}\right]$ | $+{ }_{2}^{x}\left[\frac{t . d . \log \sin A}{\text { t.d. } \log \Delta L}\right]$ | $1+{ }_{2}^{n}\left[\frac{t \cdot d \cdot \log \sin A}{\text { t.d. } \log \Delta A}\right]$ |
| - • | - •••••• | -•••••• | - |
| " $\phi_{n}$ | $+\frac{\text { t.d. } \log \cos A_{n}}{\text { t.d. } \log \Delta \lambda_{n}}$ | $+\frac{\text { t.d. } \log \sin A_{n}}{\text { t.d. } \log \Delta L_{n}}$ | $1+\frac{\text { t.d. } \log \sin A_{n}}{\text { t.d. } \log \Delta A_{n}}$ |

Thus the geodetic errors met with at the close of any circuit of triangles, or at the junctions of separate chains of triangles, may be readily expressed in terms of the symbolic errors of the included angles: and the absolute terms of the equations will be the differences of the values in latitude, longitude and azimuth which are calculated from the origin of the circuit through the two branches up to this junction.

It is easy to shew that the coefficients of the unknown quantities in the typical equation on page 35 are identical with the corresponding coefficients of equation (12I) page 176 of Vol. II. In the former, however, the errors of the base-line and initial azimuth are omitted, as they do not enter the actual equations for solution and are only required for investigations of theoretical error.

## III. Calculation of the Absolute Terms of the Geodetic Equations.

It has now been demonstrated how the geodetic errors met with at the close of any circuit of triangles, or at the junctions of separate chains of triangles, may be readily expressed in terms of the symbolic errors of the included angles. The absolute terms of the equations will be the differences of the values in latitude, longitude and azimuth, which are calculated from the origin of the circuit through the two branches up to this junction. The calculation of the absolute term $E$ for the geodetic equations is performed thus. The circuit is divided into two branches-right-hand and left-hand-and the values of latitude, longitude and azimuth are calculated from a common station and side of origin to a closing station and side by each branch; and, if the subscripts $r$ and $l$ denote the values obtained by the right and lefthand branches,

$$
\begin{aligned}
& \lambda^{E}=\lambda_{r}-\lambda_{l}, \\
& { }_{L} E=L_{r}-L_{l}, \\
& { }_{\Lambda} E=B_{r}-B_{l} .
\end{aligned}
$$

## 11.

The Final Reduction of the Triangulation. Solution of the Equations between the Indeterminate Factors.

If we assume that the number of triangles entering the reduction is $t$ and that they furnish $n$ circuit equations, the latter may now be written in order

$$
\begin{aligned}
& { }_{1} \mathrm{~b}_{1} y_{1}+{ }_{1} \mathrm{c}_{1} z_{1}+. . .+{ }_{1} \mathrm{~b}_{1} y_{t}+{ }_{1} \mathrm{c}_{t} z_{t}={ }_{\mathrm{I}} E \text {, } \\
& { }_{2}{ }_{1}^{\mathrm{b}} y_{1}+{ }_{2} \mathrm{c}_{1} z_{1}+\cdots .+{ }_{2}^{\mathrm{b}} y_{t}+{ }_{2} \mathrm{c}_{z} z_{l}={ }_{2} E \text {, } \\
& { }_{n}{ }^{\mathrm{b}} y_{1}+{ }_{n}{ }^{\mathrm{c}} z_{1}+\cdots \cdot \cdot+{ }_{n}^{\mathrm{b}} y_{t}+{ }_{n}{ }^{\mathrm{c}} \boldsymbol{z}_{t}={ }_{n} E ;
\end{aligned}
$$

in which equations the left-hand subscript in 'old face' type corresponds to the number of the equation and the right-hand subscript in ordinary type gives the number of the triangle.

Now for reasons which have been stated in Section 2 of Chapter XIV, Vol. II, the angles appertaining to any single trigonometrical figure are taken as of equal.weight in the simultaneous reductions. Thus the minimum which governs the solution of the foregoing equations will, when $x$ has been eliminated from it, become

$$
U=\frac{\left(y_{1}+z_{1}\right)^{2}+y_{1}^{2}+z_{1}^{2}}{u_{1}}+\ldots .+\frac{\left(y_{t}+z_{t}\right)^{2}+y_{t}^{2}+z_{i}^{2}}{u_{t}} .
$$

The symbols employed for the 'indeterminate factors' are ${ }_{1} \Lambda,{ }_{2} \Lambda,{ }_{3} \Lambda, \& c$., and the equations between them are*.
in which

$$
\mathfrak{B}=\frac{u}{3}(2 \mathfrak{b}-c), \text { and } \mathbb{C}=\frac{u}{3}(2 c-b) .
$$

These equations having been solved, the values of the angular errors are given by the formulæ

$$
\begin{gathered}
y_{p}={ }_{1} \mathfrak{B B}_{p} \Lambda+{ }_{2} \mathfrak{B B}_{p 2} \Lambda+\cdots \cdot+{ }_{n} \mathfrak{B}_{p} \Lambda, \\
z_{p}={ }_{1} \mathbb{C}_{p 1} \Lambda+{ }_{2} \mathbb{C}_{p 2} \Lambda+\cdots \cdot+{ }_{n} \mathbb{C}_{p} \Lambda, \\
x_{p}=-\left(y_{p}+z_{p}\right) .
\end{gathered}
$$

[^9]$$
\frac{2}{3}_{1}^{t}\left[u\left(b^{2}-b c+c^{2}\right)\right] .
$$

## CHAPTER III.

THE DETAILS OF THE SIMULTANEOUS REDUCTION.

## 1.

## Preliminary.

The triangulation of the South-West Quadrilateral does not stand on a par with the greater part of the rest of the triangulation of India inasmuch as it was executed with less refined instruments. It was commenced with Dollond's 15 -inch theodolite, an instrument designed by Captain Kater and constructed to the order of Lieut. R. Shortrede, from whom it was purchased for Government by Colonel Everest in 1837. With this instrument a portion of, the Singi Meridional Series and the whole of the Khánpisura Meridional Series were executed. It was towards the completion of the latter series that the then Surveyor General, Colonel Waugh; had his attention drawn to the discordances in the readings of the microscopes after successive intersections of the same object, and he learnt then that the instrument had for some time past been giving wild readings and was thoroughly out of repair. He therefore replaced it by one of the two 18 -inch theodolites by Troughton and Simms, which had been constructed in 1829-30 and formed part of the equipment imported by Colonel Everest in 1830. With this instrument all the rest of the triangulation was executed. The fact of the triangulation having been performed with instruments not of the highest class, has no influence on the rest of the triangulation of India; for the SouthWest Quadrilateral lies between two series appertaining to sections of the triangulation which were previously reduced to final terms. With these series the South-West Quadrilateral has been brought into accordance, and they furnish the whole of the fixed data on which it is based. The triangulation forms 6 circuits giving 24 equations in latitude longitude, azimuth and side. The triangulation in Kattywar forms no circuit and therefore does not enter the Simultaneous Reduction, but is treated as a pendent to the main triangulation.

## 2.

## Synopsis of Independent Figural Reductions Antecedent to the Final Simultaneous Reduction.

The South-West Quadrilateral is made up of the following single triangles, quadrilaterals, polygons of one or more centres and compound figures; and the angular errors have been obtained by the method of Least Squares :-

| sibirs |  |  | $\begin{gathered} \text { Single } \\ \text { Triangles } \end{gathered}$ | Quadrilaterals | Polygons of 1 and 2 centres |  | Compound Figures | No. of Angles in each Series |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 1 | 2 |  |  |
| Khánpisura Meridional | ... | ... | ... | 4 | 2 | 2 | 1 | 139 |
| Singi | ... | ... | 18 | 2 | 1 | ... | 2 | 153 |
| Abu " | ... | ... | 1 | $\ldots$ | 3 | $\ldots$ | ... | 57 |
| Kattywar " | $\cdots$ | ... | 7 | 3 | 2 | ... | 3 | 159 |
| Guzerat Longitudinal | ... | ... | 31 | ... | 2 | ... | ... | 122 |
| Cutch Coast | ... | $\ldots$ | ... | 5 | 6 | 1 | 1 | 183 |
|  |  |  | 57 | 14 | 16 | 3 | 7 | 813 |

The figural conditions and reductions-excluding those of the single triangles, which are of so simple a form as not to require special exhibition, but will be found in the general data of the triangles-are given for each series, immediately after the abstracts of the observed angles: a diagram of each figure is also given in the plates for each series. These together afford the means of readily following the calculations appertaining to each figure*.

Summing up the geometrical equations of condition, triangular, central and side, furnished by the whole of the figures, they amount collectively to 280 triangular, 32 central and 57 side equations, or $369 \dagger$ equations in all.

There are certain peculiarities in some of the figural reductions which may be here noticed :-Fig. No. 10 of the Singi Meridional Series and No. 26 of the Guzerat Longitudinal each have one angle at the central station unobserved and consequently central equations are wanting. Fig. No. 14 of the Singi Meridional Series originally possessed

[^10]another triangle formed by the ray Kámandrug-Karanja. Had this ray been retained there would have been three additional equations of condition, one triangular, one central, and the other a side equation, forcing the figure to maintain the ratio of the sides Karanja-Singi to Singi-Párner ; while the central equation would have maintained the angle Karanja-SingiPárner at the value derived from the Bombay Longitudinal Series. Had the triangulation of the latter Series in this neighbourhood been very superior to that of the Singi Series, it would doubtless have been right to have maintained the connection; but this portion of the Bombay Longitudinal Series was executed with the same instrument, Dollond's 1of-inch theodolite, as was employed on the triangulation of Fig. 14, and was in no way superior; hence the ray in question was discarded and the figure was left unhampered. In the case of Fig. No. 18 of the Kattywar Meridional Series, which depends on two sides of triangles of the Karáchi Longitudinal Series, the treatment was exactly the reverse, for the Karáchi Series triangulation is in every way far superior to that of the Kattywar Meridional Series. It will be seen on reference to the reduction chart that Figures 20 and 29 have a common station Gángta which causes them, together with the intermediate Figures, 21,22 and 28, to form one figure, and they might all have been reduced simultaneously. The reduction would, however, have been very laborious and it was decided to reduce them separately, Fig. 29 being reduced last under conditions which maintained the position of Gángta as previously found.

## 3.

## Description of the Reduction Chart.

The Reduction Chart at the end of this volume exhibits the whole of the Principal Triangulation of the South-West Quadrilateral, as it was originally executed. Part of the triangulation consists of polygonal figures or net-works, of which some of the angles are not introduced into the final reduction, and part of single triangles, of which all the angles are introduced. 'Ihe fixed data for the final reduction are afforded by the Karáchi Longitudinal and the Bombay Longitudinal Series. These two fundamental series are fully exhibited, and are distinguished by the sides of the triangles being shewn by thicker lines than those of all the other triangles: the sides on which the several series of the South-West Quadrilateral abut, and of which the elements enter the calculations as fixed quantities, are defined by double lines terminated by black circles with white centres.

Of the several series which enter the reduction, the circuit triangles-the errors of whose angles are the unknown quantities in the reduction, and are all investigated simul-taneously-are indicated by continuous lines. The non-circuit triangles are the portions of the original polygonal figures and net-works which are excluded from the simultaneous reduction, and their sides are indicated by broken lines.

The six chains $G$ to $X_{\text {l }}$ form six so-called circuits, the term hitherto used being retained for convenience, though in no case is a complete circuit formed. For example

Circuit $I$ is constituted by Series $G$ alone, which originates from a fixed side to the north and closes on a fixed side to the south. Circuit $I I I$ is similarly constituted by Series H . Circuit $I I$ is formed by the northern portions of Series $G$ and $H$ in combination with a portion of Series K ; it originates from a fixed side of the Karáchi Longitudinal Series and closes on another fixed side of the same series. This circuit might equally well have been made to originate from a fixed side of the Bombay Longitudinal Series and to close on another side of the same series, but it would then have contained several more triangles and entailed a good deal more labour in the subsequent calculations. Circuits $I V, V$ and $V I$ resemble Circuit II.

Where, in the formation of circuits, the chains have to be divided into sections, they are denoted thus:-

G by $\mathrm{G}_{1}$ and $\mathrm{G}_{2}$,
$\mathrm{H}, \mathrm{H}_{1}, \mathrm{H}_{2}$,
$\mathrm{J}^{\prime}, \mathrm{J}_{1}, \mathrm{~J}_{2}$,
$K, K_{1}, K_{2}$ and $K_{3}$,
the sections being numbered from north to south or from east to west.
Thus the Circuits are composed as follows :-

| Circuit | $I$ of $\mathrm{G}_{1}$ and $\mathrm{G}_{2}$, |
| :---: | :---: |
| " | $I I, \mathrm{G}_{1}, \mathrm{~K}_{1}$ and $\mathrm{H}_{1}$, |
| " | III , $\mathrm{H}_{1}$ and |
| " | IV , $\mathrm{H}_{1}, \mathrm{~K}_{2}$ and |
| " | $V$, $\mathrm{X}, \mathrm{K}_{3}, \mathrm{~J}_{1}$ and $\mathrm{J}_{2}$ |
|  | VI ,, $\mathfrak{J}_{1}$ and $\mathfrak{L}$. |

Along the flank, on the right-hand side, looking south or west, of every chain of triangles, a dotted line runs parallel to the sides of the triangles; this is the line of traverse.

The line of traverse for each circuit is usually divided into two parts, known as the right-hand and left-hand branches; but Circuits $I, I I I$ and $V I$ have each only one branch, which originates from and closes on sides already fixed in length and position. The sides which form the origins of the right and left-hand branches of the circuits and on which they close are shewn by double lines.

The principal stations are indicated on the Chart by small circles, with their names and the serial numbers by which it has been found convenient to distinguish them for reference in the course of the reductions. These numbers, which are in Roman character, are progressive in order from north to south in meridional and from east to west in longitudinal series.

The principal stations on the right-hand flank of all the chains of circuit triangles, in the order in which the circuits are formed, have each an additional number in block type assigned to them. These numbers indicate the stations of which the geodetic elements have been calculated in ascertaining the circuit errors; they are the traverse numbers and commence from the initial station of Circuit $I$, viz., Bálágara of the Karáchi Longitudinal Series, which is numbered 1 , and terminate at Vikia, 80, near the north-western extremity of the Cutch Coast Series.

The circuit triangles are numbered from 1 to 172; commencing from the initial side of Circuit I, Bálágara-Búda of the Karáchi Longitudinal Series, they follow the same course as the traverse, and terminate at the north-western extremity of the Cutch Coast Series. In each of these triangles one of the angles is marked $y$ and another $z ; y$ and $z$ are the symbols for the errors of the 'angles of continuation' which have been adopted throughout the Simultaneous Reduction; $x$ is the symbol of the errors of the flank angles; but as $x$ has been eliminated throughout by the substitution for it of $-(y+z)$, it is not indicated on the Chart. The addition of the number of any triangle, as a subscript to either of these symbols, particularizes the angle in each instance. The numbering of the 'non-circuit triangles' is carried on in continuation of that of the circuit triangles; here smaller numerals are used on the Chart for distinction. The numbering commences witn 173 and terminates with 280.

Polygonal figures and net-works occur in all the series and are distinguished by numbers carried consecutively through the several chains in the order in which they are lettered. It is to be remarked that the term 'figure' is only applied in the Chart to groups of triangles forming a polygon or other net-work, and is not applied to single triangles. A single triangle has, however, as much claim to be called a figure: hence the term 'figural errors' when made use of elsewhere in this volume is generally applied to errors of single triangles as well as of net-works.

The course of the lines of Spirit Levels of this Survey which traverse the South-West Quadrilateral, and the connections which have been effected with many of the principal stations, are also shewn on the Chart. The lines of levels have already been indicated in Section 7 of Chapter II.

## 4.

General Outline of the Formation of the Linear and Geodetic Equations of Condition, and a Statement of the Entire Number of Equations presented by the Triangulation.

The triangulation having been first made consistent so far as all figural conditions were concerned, the linear calculations were commenced at the side Bálágara-Búda' of the Karáchi Longitudinal Series, and carried down Series G until they closed on the side ÁgargaonChincholi of the Bombay Longitudinal Series. They were taken up again at the side KarsodIndráwan on the western flank of Series G, and carried westward along Series $K$ to the side
[Chap. III.
Patángri-Bhor of Series H. The calculations were commenced again at Lakarwás-Tána of the Karáchi Longitudinal Series, and carried down Series $H$, to close on the side Singi-Párner of 'the Bombay Longitudinal Series; and then again taken up from the side JáthrábhorKágarol on the west flank of Series $H$ and carried along Series $K$ westward to the side Mirzápur-Wastrál of the same series. A commencement was again made from the Karáchi Longitudinal Series on the side Jeraj-Márd and the calculations were carried down Series $\mathfrak{I}$ and westward along Series $K$, and then north-westward along Series $\mathfrak{J}$ to the side MonábaWándia. They were once more commenced from the side Bhilgaon-Akoria of the Karáchi Longitudinal Series and carried down Series $\mathfrak{J}$, and then westward and north-westward along Series $\mathcal{L}$ to close again on the side Károthol-Sáhiji of the Karáchi Longitudinal Series.

The calculations of the geodetic latitudes, longitudes and azimuths were carried in all cases along the right-hand flanks of the chains of circuit triangles, commencing and terminating with the linear calculations. The order in which the calculations have been made for the simultaneous reduction, will be readily understood on reference to the Reduction Chart, for the linear calculations by tracing the sequence of the numbering of the circuit triangles, and for the geodetic calculations by noting the sequence of the numbers in block type.

The errors of the circuits are the differences between the two sets of linear and geodetic values at the stations and sides of junction, first where these have fixed values as in the case of Circuits $I$ and $I 1 I$ and next as exhibited by the calculations through the right and left-hand chains of each circuit.

We may employ the formulæ in pages 15 and 16 to ascertain the number of equations of condition, here called circuit equations, to which the triangulation should still be subjected to make it consistent. The figural equations make each group of angles of a figure or network consistent inter $8 e$; but they take no cognisance of the connection of chains into circuits, and the conditions required for such connection. The general formula is however equally applicable to both simple figures and to larger sections of the triangulation forming circuits.

The data are as follows: $-N$ (the number of angles) $=813, S$ (the number of stations) $=225$, and $Q$ (the number of stations of which the positions stand previously fixed by former reductions) $=15$, or

$$
N-2(S-Q)=393
$$

Now of these 393 equations it has been shewn that 369 have already been employed. Therefore there remain 24 equations of condition to which the triangulation has not been subjected.

Let the symbols $G, H, X, \ldots X_{\text {, }}$, which have been hitherto employed in lieu of the names of the several series, be now employed with the addition of certain subscripts, to indicate the sum of the terms on the right-hand side of the linear equations, page 32 , and of the geodetic equations, page 35, which express the errors of the several angles. Let the subscripts be $c$ and $\boldsymbol{A}$ for the linear and azimuthal errors, $\lambda$ and $L$, for the errors in latitude
and longitude, placed on the left-hand side of the governing symbol. Also let $E$ with a numerical subscript on the left-hand side, corresponding to the number of the equation, be employed to represent the absolute terms, as in the equations, page 37.

The several equations will now be briefly expressed in the order in which they enter the circuits as follows:-

Circuit $I$.

$$
\begin{aligned}
& { } \mathrm{G}_{1}+{ }_{\mathrm{e}} \mathrm{G}_{2} \text { • } \cdot \text {. . . . }={ }_{\mathrm{I}} E \text {; } \\
& { }_{\lambda} G_{1}+{ }_{\lambda} G_{2} \text {. . . . . . }={ }_{2} E ; \\
& { }_{1} \mathrm{G}_{1}+{ }_{\mathrm{L}} \mathrm{G}_{2} \text {. . . . . . }={ }_{3} E ; \\
& { }_{4} \mathrm{G}_{1}+{ }_{4} \mathrm{G}_{2} \text { • • . . . . }={ }_{4} E \text {. }
\end{aligned}
$$

Circuit III.

$$
\begin{aligned}
& { } \mathrm{H}_{1}+{ }_{d} \mathrm{H}_{2} \cdot \cdot \cdot \cdot \cdot \cdot={ }_{9} E ; \\
& { }_{\lambda} \mathrm{H}_{1}+{ }_{\lambda} \mathrm{H}_{2} \cdot \cdot \cdot \cdot \cdot \cdot={ }_{10} E ; \\
& { }_{2} \mathrm{H}_{1}+{ }_{\Sigma} \mathrm{H}_{2} \cdot \cdot \cdot \cdot \cdot \cdot={ }_{11} E ; \\
& { }_{\Lambda} \mathrm{H}_{1}+{ }_{\Delta} \mathrm{H}_{2} \cdot \cdot \cdot \cdot \cdot \cdot={ }_{12} E .
\end{aligned}
$$

Circuit $V$.

$\lambda_{\lambda} J_{1}-{ }_{\lambda} \mathrm{l}-{ }_{\lambda} K_{3}-{ }_{\lambda} \mathrm{J}_{2} \quad={ }_{18} E ;$
${ }_{\Sigma} \mathrm{J}_{1}-{ }_{2} \mathrm{X}-{ }_{L} K_{3}-{ }_{\Sigma} \mathrm{J}_{2} \quad \cdot={ }_{19} E ;$
${ }_{\Delta} J_{1}-{ }_{4} X-{ }_{\Delta} K_{3}-{ }_{\Delta} J_{2} \quad .={ }_{20} E$.

Circuit II.

Circuit IV.

## Circuit VI.

$$
{ }_{o J_{1}}+{ }_{c} X_{1} \cdot \text {. . . . . }={ }_{21} E ;
$$

$$
\lambda J_{1}+\lambda h_{1} \cdot \cdot \cdot \cdot \cdot \cdot \cdot={ }_{22} E ;
$$

$$
{ }_{\Delta x} \jmath_{1}+{ }_{2} h_{1} \cdot \text {. . . . . }={ }_{23} E ;
$$

$$
{ }_{4} J_{1}+{ }_{4} X_{C} \cdot \cdots \cdot \cdot \cdot \cdot={ }_{24} E
$$

## 5.

Formation of the Coefficients of the Unknowon Quantities.
On page 37 the equations of condition are represented by a form of which the follow--ing may be taken as a general illustration

$$
{ }^{b_{1}} y_{1}+{ }_{m_{1}} z_{1}+{ }_{m}^{b_{2}} y_{z}+{ }_{m} c_{2} z_{2}+\cdots \cdot \cdot={ }_{m} E
$$

$$
\begin{aligned}
& \text { dl }-{ }_{c} \mathrm{H}_{1}-{ }_{\mathrm{c}} \mathrm{~K}_{2} \cdot . \cdot .={ }_{13} E \text {; } \\
& { }_{\lambda} \mathrm{X}-{ }_{\lambda} \mathrm{H}_{\mathrm{l}}-{ }_{\lambda} \mathrm{K}_{2} \cdot \cdots \cdot \cdot={ }_{14} E \text {; } \\
& { }_{\Sigma} \mathrm{X}-{ }_{\mathrm{L}} \mathrm{H}_{1}-{ }_{\mathrm{L}} \mathrm{~K}_{2} . . \quad . \quad={ }_{15} E ; \\
& { }_{4} \mathrm{X}-{ }_{\Delta} \mathrm{H}_{1}-{ }_{4} \mathrm{~K}_{2} \cdot \cdots \cdot \quad={ }_{16} E \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& { }_{d} \mathrm{H}_{1}-{ } \mathrm{G}_{1}-{ }_{\mathrm{d}} \mathrm{~K}_{1} \cdot \cdots \cdot \cdot={ }_{5} E \text {; } \\
& { }_{\lambda} \mathrm{H}_{1}-{ }_{\lambda} \mathrm{G}_{1}-{ }_{\lambda} \mathrm{K}_{1} \cdot \cdots \cdot .={ }_{6} E ; \\
& { }_{2} \mathrm{H}_{1}-{ }_{L} \mathrm{~K}_{1}-{ }_{\mathrm{L}} \mathrm{~K}_{1} \cdot \cdots \cdot \cdot={ }_{7} E ; \\
& { }_{\Delta} \mathrm{H}_{1}-{ }_{\Delta} \mathrm{G}_{1}-{ }_{\Delta} \mathrm{K}_{1} \cdot \text {. } \cdot={ }_{8} E \text {. }
\end{aligned}
$$

the left-hand subscript denoting the equation-number and the right-hand subscript the num. ber of the triangle to which the errors appertain, and $b$ and $c$ being the coefficients of $y$ and $z$ respectively.

For the Linear Equations we shall have generally, see page 32,

$$
\begin{aligned}
& \mathfrak{b}_{p}= \pm \beta_{p}= \pm \text { t.d. } \log \sin Y_{p} \text { for } \mathbf{I}^{\prime \prime} ; \\
& \mathfrak{c}_{p}=\mp \gamma_{p}=\mp \text { t.d. } \log \sin Z_{p} \quad,
\end{aligned}
$$

For the Geodetic Equations we shall have, see page 35,

$$
\begin{gathered}
\mathfrak{b}_{p}= \pm\left(\mu_{l} \beta_{p}-\phi_{l}\right) ; \\
\mathfrak{c}_{p}=\mp\left(\mu_{l} \gamma_{p}+\phi_{l}\right) ; \\
\mathfrak{b}_{p}= \pm\left\{\left(\mu_{l+1}-\mu_{l}\right) a_{p}+\mu_{l+1} \beta_{p}+\phi_{l}\right\} ; \\
c_{p}= \pm\left\{\left(\mu_{l+1}-\mu_{l}\right) a_{p}-\mu_{l} \gamma_{p}+\phi_{l+1}\right\}
\end{gathered}
$$

the former being applicable to any, the $p$ th triangle, when it has only the angle $X$ in the traverse at the station $l$, and the latter when it has the side opposite $X$ in the traverse and lying between the stations $l$ and $l+\mathrm{x}$, the lower signs being employed in left-hand branches of circuits and the upper signs in all other cases.

## Exceptions to the General Expressions for and c.

Circuit I. Equations I to 4.
Equation I has no exceptional coefficients.
In Equations 2, 3 and 4

$$
b_{29}=-\mu_{14} a_{29}+\phi_{14} ; \quad \boldsymbol{c}_{29}=-\mu_{14}\left(a_{29}+\gamma_{29}\right) ;
$$

with the exception of $c_{29}$ in Equation 4, in Avimuth, which needs the addition of unity to carry the calculations as far as the side Ágargaon-Mathuri, and the same equation has two extra coefficients

$$
b_{30}=-1 \text { and } c_{30}=-1
$$

to carry the calculations to the closing side Ágargaon-Chincholi.
Circuit II. Equations 5 to 8.
In Equation 5

$$
\begin{array}{ll}
\mathbf{t}_{11}=+a_{11} ; & \mathfrak{c}_{11}=+\left(a_{11}+\gamma_{11}\right) ; \\
\mathfrak{b}_{55}=-a_{55} ; & \mathfrak{c}_{55}=-\left(a_{55}+\gamma_{55}\right) .
\end{array}
$$

In Equations 6, 7 and 8

$$
\begin{array}{ll}
\boldsymbol{y}_{11}=+\mu_{5} a_{11}-\phi_{5} ; & \boldsymbol{c}_{11}=+\mu_{5}\left(a_{11}+\gamma_{11}\right) ; \\
\mathfrak{b}_{39}=+\mu_{18} a_{39}-\phi_{18} ; & \boldsymbol{c}_{39}=+\mu_{18}\left(a_{39}+\gamma_{39}\right) ;
\end{array}
$$

except that in Equation 8, in Azimuth, $\mathrm{r}_{39}$ needs the addition of - 1 , and there are additional coefficients in this equation which do not occur in the other two

$$
\begin{array}{ll}
\mathfrak{b}_{40}=+\mathbf{1} ; & \mathfrak{t}_{40}=+\mathbf{1} ; \\
\mathfrak{b}_{54}=+\mathbf{1} ; & \mathfrak{c}_{54}=+\mathbf{1} ; \\
\mathfrak{b}_{55}=-\mathbf{1} ; & \mathfrak{c}_{56}=0 .
\end{array}
$$

## Circuit III. Equations 9 to 12.

Equation 9 has no exceptional coefficients.
In Equations 10, 11 and 12

$$
\dot{b}_{74}=-\mu_{35} a_{74}+\phi_{35} ; \quad \iota_{74}=-\mu_{35}\left(a_{74}+\gamma_{74}\right) ;
$$

except that in Equation 12, in Azimuth, $\boldsymbol{r}_{74}$ needs the addition of unity, and this equation has also additional coefficients

$$
\boldsymbol{b}_{75}=-1 ; \quad \boldsymbol{r}_{75}=-1
$$

Circuit IV. Equations 13 to 16.

## In Equation 13

$$
\begin{array}{ll}
\mathbf{m}_{54}=+a_{54} ; & \mathfrak{c}_{54}=+\left(a_{54}+\gamma_{54}\right) ; \\
\mathbf{t}_{100}=-a_{100} ; & \mathfrak{c}_{100}=-\left(a_{100}+\gamma_{100}\right) .
\end{array}
$$

In Equations 14, 15 and 16

$$
\begin{array}{ll}
\mathfrak{D}_{54}=+\mu_{25} a_{54}-\phi_{25} ; & \boldsymbol{c}_{54}=+\mu_{25}\left(a_{54}+\gamma_{54}\right) ; \\
\mathfrak{j}_{84}=+\mu_{39} a_{34}-\phi_{39} ; & \boldsymbol{c}_{84}=+\mu_{39}\left(a_{34}+\gamma_{84}\right) ;
\end{array}
$$

except that in Equation 16, in Azimuth, $\mathfrak{r}_{84}$ needs the addition of - 1 , and this equation has also additional coefficients

$$
\begin{array}{ll}
\mathbf{b}_{85}=+1 ; & \mathfrak{t}_{85}=+1 ; \\
\mathbf{b}_{86}=+1 ; & \mathfrak{t}_{86}=+1 ; \\
\mathbf{b}_{100}=-1 ; & \boldsymbol{c}_{100}=0 .
\end{array}
$$

Circuit $V$. Equations 17 to 20.

## In Equation 17

$$
\mathfrak{b}_{135}=-a_{135} ; \quad \mathbf{c}_{135}=-\left(a_{135}+\gamma_{135}\right) .
$$

In Equations 18, 19 and 20

$$
\mathfrak{b}_{123}=+\mu_{56} a_{123}-\phi_{56} ; \quad \mathfrak{c}_{123}=+\mu_{56}\left(a_{123}+\gamma_{123}\right) ;
$$

except that in Equation 20, in Azimuth, $\mathrm{c}_{123}$ needs the addition of - 1 , and this equation has also additional coefficients

$$
\begin{array}{ll}
\mathfrak{b}_{124}=+\mathbf{1} ; & \boldsymbol{c}_{124}=+\mathbf{I} ; \\
\mathfrak{b}_{135}=-\mathbf{1} ; & \boldsymbol{c}_{135}=0 .
\end{array}
$$

Circuit VI. Equations 21 to 24.
Equation 21 has no exceptional coefficients.
In Equations 22, 23 and 24

$$
\dot{b}_{171}=-\dot{\mu}_{80} a_{171}+\phi_{80} ; \quad \mathbf{c}_{171}=-\mu_{30}\left(a_{171}+\gamma_{171}\right) ;
$$

except that in Equation 24, in Azimuth, $\mathbf{c}_{171}$ needs the addition of unity, and this equation has also additional coefficients

$$
\dot{b}_{172}=-\mathrm{I} ; \quad \mathbf{c}_{172}=-\mathrm{I}
$$

## 6.

Synoptical Exhibition of the several Equations of Condition.
For the sake of brevity let us put ${ }_{m} \mathrm{k}_{p}$ for ${ }_{m}{ }^{\mathrm{b}_{p}} y_{p}+{ }_{m} \mathrm{c}_{p} z_{p}$, or in other words, for the sum of the errors $y$ and $z$ of the angles $Y$ and $Z$ in any, the $p$ th, triangle, respectively multiplied by their coefficients $b$ and $c$ in any, the $m$ th, equation of condition. Then in forming the equations it will be necessary to substitute for $m$ the number of the equation, and for $p$ the number of the triangle. It will now be convenient to arrange the ks in numerical order between the initial and the terminal sides or stations of the chains to which they respectively appertain, so far at least as this can be done without any break of continuity in the numeration of the triangles. We may here put ${ }_{m} \mathrm{k} \prod_{p}$ to represent the sum of the terms ${ }_{m} \mathrm{k}$ for a series of triangles of which the first term is ${ }_{m} k_{p}$ and the last term is ${ }_{m} k_{q}$ : when the triangles enter as usual in a numerically increasing order $p$ will be $<q$; when they enter in a numerically decreasing order, as sometimes though very rarely happens, $p$ will be $>q$.

The equations will then be expressed as follows:-

## Circuit I.

Circuit II.
( 1 ). Linear. $\left.\quad{ }_{1} \mathrm{k}\right|_{1} ^{30} \cdot \quad={ }_{1} E$.
( 5 ). Linear. $\quad{ }_{5} k \int_{4}^{55}+\left.{ }_{5} k\right|_{1} ^{11}+{ }_{5} k \int_{31}^{40}={ }_{5} \boldsymbol{E}$.
(2). Latitude. ${ }_{2} \mathrm{k} \prod_{1}^{29} \cdot={ }_{2}$ E.
(6). Latitude. $\left.\quad 6 \mathbf{k}\right|_{41} ^{63}+\left.6 \mathbf{k}\right|_{1} ^{11}+\left.6 \mathbf{k}\right|_{31} ^{39}={ }_{61} \mathbf{E}$.
(3). Longitude. $\left.{ }_{3} \mathrm{k}\right|_{1} ^{29} \cdot \cdots={ }_{3} E$.
( 7 ). Longitude. $\left.{ }_{7} \mathrm{k}\right|_{41} ^{53}+\left.{ }_{7} \mathrm{k}\right|^{11}+\left.{ }_{7} \mathrm{k}\right|_{91} ^{39}={ }_{7} E$.
(4). Azimuth. $\left.\quad{ }_{4} \mathrm{k}\right|_{1} ^{30} \cdot \cdots={ }_{4} E$.
(8). Azimuth. $\quad{ }_{8} \mathbf{k} \int_{41}^{50}+\left.{ }_{8} \mathbf{k}\right|_{1} ^{1}+{ }_{8} \mathbf{k} \int_{\beta_{1}}^{40}={ }_{8} E$.

Circuit III.
Circuit IV.
(9). Linear. $\left.\quad{ }_{9} \mathbf{k}\right|_{41} ^{75} \cdot \quad={ }_{9} E$.
(13). Linear. $\quad{ }_{13} k \int_{87}^{100}+\left.{ }_{13} k\right|_{41} ^{54}+\left.{ }_{13} k\right|_{76} ^{86}={ }_{13} E$. (10). Latitude. ${ }_{10} \mathrm{ok}_{41}^{7 \boldsymbol{4}} \cdot \quad={ }_{10} E$.
(14). Latitude. ${ }_{14} \mathrm{k} \int_{87}^{99}+\left.{ }_{14} \mathrm{k}^{54}\right|_{41}+\left.{ }_{14} \mathrm{k}\right|_{76} ^{84}={ }_{14} E$.
(ii). Longitude. $\left.{ }_{11} k\right|_{41} ^{74} \cdot \cdots={ }_{11} E$.
(15). Longitude. ${ }_{15} \mathrm{k} \int_{87}^{90}+\left.{ }_{15} \mathrm{k}\right|_{41} ^{54}+{ }_{15} \mathrm{k} \int_{7_{6}}^{44}={ }_{15} E$.
(12). Azimuth. ${ }_{12} \mathrm{k} \int_{41}^{5} \cdots={ }_{12} E$.
(16). Azimuth. $\left.\quad{ }_{16} \mathbf{k}\right|_{87} ^{100}+{ }_{16} \mathrm{k} \int_{41}^{54}+\left.{ }_{16} \mathrm{k}\right|_{76} ^{88}={ }_{16} E$.

Circuit $V$.
Circuit VI.
(17). Linear. $\quad{ }_{17} \mathrm{k} \int_{125}^{135}+\left.{ }_{17} \mathrm{k}\right|_{87} ^{124}={ }_{17} E$.
(21). Linear. $\quad{ }_{21} \mathbf{k}_{125}^{172} \cdot \cdots \cdots \cdot={ }_{21} E$.
(18). Latitude. $\quad{ }_{18} \mathrm{k} \int_{125}^{184}+\left.{ }_{18} \mathrm{k}\right|_{87} ^{182}={ }_{18} E$.
(22). Latitude. ${ }_{22} \mathrm{~K}_{125}^{171} \cdot \cdots \cdots \cdot{ }_{22} E$.
(19). Longitude. ${ }_{19} \mathrm{k} \int_{125}^{194}+\left.{ }_{19} \mathrm{k}\right|_{87} ^{193}={ }_{19} E$.
(23). Longitude. ${ }_{23} \mathrm{k}_{125}^{17} \cdot \cdots \cdots \cdot{ }_{23} \mathrm{E}$.
(20). Azimuth. $\quad{ }_{20 \mathrm{k}}{ }_{125}^{135}+{ }_{20} \mathrm{k}^{124}{ }_{87}^{\mid}={ }_{20} \mathrm{E}$.
(24). Azimuth. ${ }_{24} \mathrm{k} \int_{120}^{172} \cdot \cdots \cdots \cdot={ }_{24} E$.

## 7.

The Numerical Values of the Fixed Data on which the Simultaneous Reduction of the South-West Quadrilateral is based.

It has been stated in Section 3 of Chapter I, that the South-West Quadrilateral rests on two chains of triangles, which having been already finally adjusted, furnish the whole of the data on which the Quadrilateral is based. The two series are the Karáchi and Bombay Longitudinal Series, the former, Series B of the North-West Quadrilateral and the latter, Series B of the Southern Trigon. The fixed data have been taken from Volumes III and XII of the Account of the Operations of the Great Trigonometrical Survey of India containing the details of the North-West Quadrilateral and Southern Trigon; but for the geodetic elements a third place of decimals of seconds has been obtained by reference to the manuscript calculations of those sections. The data are as follows:-

Volume III, pages 46 _b. $_{\text {b }}$ to 51 .

## Khanpisura Meridional Series.

Station of origin Bálágara or XXIV ; side of origin Bálágara or XXIV to Búda or XXI.
At Bálágara

| Latitude North |  | ... |  | $24^{\circ}$ | $10^{\prime}$ | 21"•904, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Longitude East of | Greenwich | ... | ... | 75 | $\bigcirc$ | 15.836 |
| Azimuth of Búda |  |  | ... | 248 | 10 | $32 \cdot 619$, |
| Distance |  |  |  | g Fee |  | 960898,2. |

## Singi Meridional Series.

Station of origin Lakarwás or XXXII; side of origin Lakarwás or XXXII to Tána or XXIX.

At Lakarwás

| Latitude North | $\ldots$ | $\ldots$ |  | $\ldots$ | $24^{\circ}$ | $31^{\prime}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Longitude East of | $47^{\prime \prime} \cdot 991$, |  |  |  |  |  |
| Areenwich | $\ldots$ | $\ldots$ | 73 | 52 | $10 \cdot 410$, |  |
| Azimuth of Tána | $\ldots$ | $\ldots$ |  | $\ldots$ | 240 | 10 |
| Distance | $\ldots$ | $\ldots$ | $\ldots$ |  | $36 \cdot 368$, |  |
| Log Feet | $5 \cdot 1383141,5$. |  |  |  |  |  |

Abu Meridional Series.
Station of origin Jeráj or XLIII; side of origin Jeráj or XLIII to Márd or XL.
At Jeráj

| Latitude North | $\ldots$ | $\ldots$ |  | .. | $24^{\circ}$ | $24^{\prime}$ | $59^{\prime \prime} \cdot 768$, |
| :--- | :---: | :--- | :--- | :--- | :--- | :--- | ---: |
| Longitude East of Greenwich | $\ldots$ |  | $\ldots$ | 72 | 32 | $29 \cdot 857$, |  |
| Azimuth of Márd | $\ldots$ | $\ldots$ |  | $\ldots$ | 271 | 50 | $2 \cdot 185$, |

Distance " ... ... Log Feet 5. 1803796,3.

## Kattywar Meridional Series.

Station of origin Bhilgaon or LXIV; side of origin Bhilgaon or LXIV to Akoria or LXI.

At Bhilgaon


Cutch Coast Series.
Closing station of Circuit VI, Károthol or CIV ; closing side Károthol or CIV to Sáhiji or CVII.
at Károthol

| Latitude North | ... | ... | $24^{\circ}$ | $53^{\prime}$ |  | 6" 692, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Longitude East of Greenwich | ... | ... | 67 | 55 |  | -651, |
| Azimuth of Sáhiji | ... | ... | 80 | 16 |  | -052, |

Distance "... ... Log Feet 4'9930496, I.

Volume XII, pages 56 - $_{\text {B. }}$ and 57 _B. $_{\text {. }}$ :-

## Khanpisura Meridional Series.

Closing station of Circuit I, Ágargaon or XXIV; closing side Ágargaon or XXIV to Chincholi or XXIII.

At Ãgargaon

| Latitude North | ... |  | $19^{\circ}$ | $10^{\prime}$ |  | 523, |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Longitude East of Greenwich | ... | ... | 74 | 54 |  | -979, |
| Azimuth of Chincholi |  |  | 303 | 32 |  | -356, |
| Distance | $\cdots$ |  | Fee | 5 | 22 | 227,3 |

## Singi Meridional Series.

Closing station of Circuit III, Singi or XXX; closing side Singi or XXX to Párner or XXVI.

At Singi
Latitude North
... $\quad . . \quad 18^{\circ} \quad 56^{\prime} \quad 45^{\prime \prime} \cdot 894$,
Longitude East of Greenwich ... ... $73 \quad 42$ 10.304,
Azimuth of Párner ... ... ... $262 \quad 5 \quad 23$.758,
Distance " ... ... Log Feet 5 .4143939,5.

## 8.

## The Sides and Angles of the Circuit Triangles.

The values of the Figurally Corrected Angles, and the logarithms of the Side-lengths, computed (in feet) with these angles in terms of the fixed sides of origin furnished by the Karáchi Longitudinal Series, are exhibited in the following table. The given angles are the corrected plane angles, obtained by deducting the sum of the spherical excess and the figural error from the observed angles. Should it be desired to trace the formation of any corrected plane angle, reference must be made to the Abstract of the Observed Angles and to the final data of the Sides and Angles of the Triangles, which are given for each Series in this volume. The final data will be found to contain three columns of angular corrections, which are respectively headed by the words 'Figure', 'Circuit' and 'Non-circuit',-'figure' being here taken to include single triangles as well as polygons and net-works; the corrections in the first column are what have been applied, with the spherical excess, to the observed angles, in order to obtain the figurally corrected plane angles; those in the second column are what have been derived from the Simultaneous Reduction; and those in the third column are what have been computed to satisfy the geometrical conditions of figures containing noncircuit triangles, which have to be adjusted to the fixed circuit triangles; the application of the correction in the second or the third column, as the case may be, to the figurally corrected plane angle gives the finally corrected plane angle.

In order that it may be readily ascertained-without reference to the Reduction Chartwhether any angle is a 'flank angle' or an 'angle of continuation', a column is inserted in the table which gives the symbolic error of the angle, either $x, y$ or $z$, but without the numerical subscript, as that may be inferred from the number of the triangle in the contiguous column. And since the stations on the right-hand flank of each chain are those at which the angles are the data for the formation of the vlaues of the forward azimuth, and the sidelengths are the distances which were employed in the calculations of latitude, longitude and back azimuth-see the next section; these stations are indicated by numbers in block typeshewing by their sequence the order in which the geodetic calculations were performed-as well as by their Serial numbers. The latter are distinguished in respect to the Series to which they appertain by their Serial letters, as K for the Guzerat Longitudinal Series, \&c.

The logarithm of the side* opposite any angle is given in the same horizontal line as the angle.

[^11]

[^12]
*These stations appertain to the Bombay Longitudinal Series of the Bouthern Trigon.
† " \# Karáchi Longitudinal Series of the North-West Quadrilateral.

|  | \％ | Station Numbers |  | Corrected Plane Angle |  | Logarithm of side－length in Feet |  |  | Station Numbers |  | Corrected PlaneAngle |  | Logarithm of side－length in Feet |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 年 | Serial | 免 |  |  |  |  |  | Serial | 安 |  |  |  |
| 55 | $y$ | $\underset{\substack{\text { XIII } \\ \text { XIVII }}}{\text { XIN }}$ | 26 | 1 | ＂ |  | 69 | $y$$x$$z$ | $\underset{\underset{\mathbf{X X X I I}}{\mathbf{X X X I X}}}{\text { XXIX }}$ | 33 | $\begin{array}{ccc} \circ & \prime & \prime \prime \\ 64 & 54 & 33 \cdot 27 \\ 45 & 36 & 18 \cdot 93 \\ 69 & 29 & 7 \cdot 80 \end{array}$ | $\begin{aligned} & 2 \cdot 08 \\ & 2 \cdot 07 \\ & 2 \cdot 08 \end{aligned}$ | $\begin{aligned} & 5 \cdot 2758931,6 \\ & 5 \cdot 1729635,4 \\ & 5 \cdot 2904854,3 \end{aligned}$ |
|  |  |  |  | $\begin{array}{llll}78 & 2 & 9\end{array} \cdot 47$ | － 50 | 5＊0055427，8 |  |  |  |  |  |  |  |
|  |  |  |  | $505936 \cdot 70$ | － 50 | 4．9055434，3 |  |  |  |  |  |  |  |
|  |  |  |  | $505813 \cdot 83$ | －50 | 4＊9054020，5 |  |  |  |  |  |  |  |
| 66 | ＂ | $\begin{aligned} & \text { XIV } \\ & \text { XVII } \\ & \text { XVIII } \end{aligned}$ | 26 | $441025 \cdot 76$ | $\cdot 39$ | 488491092，4 | 70 | ＂ | $\begin{aligned} & \text { XXXI } \\ & \text { XXXII } \\ & \mathbf{X X X I V} \end{aligned}$ | 33 | $\begin{array}{llll} 66 & 35 & 43 \cdot 17 \\ 64 & 28 & 19 & 97 \\ \hline \end{array}$ | $3 \cdot 10$$3 \cdot 10$ | $\begin{aligned} & 5 \cdot 3612700,8 \\ & 5 \cdot 3539466,0 \\ & 5 \cdot 2758931,6 \end{aligned}$ |
|  |  |  |  | $431544 \cdot 65$ | $\cdot 38$ | $4.8418842,4$ |  |  |  |  |  |  |  |
|  |  |  | 27 | $923349 \cdot 59$ | － 39 | $5 \cdot 0055427,8$ |  |  |  | 34 | 4855 56•86 | 3.09 |  |
| 67 | ＂ | $\begin{aligned} & \text { XVII } \\ & \text { XVIII } \\ & \text { XIX } \end{aligned}$ | 27 | 95424.78 | $\cdot 39$ | 5．0181156，5 | 71 | ＂ | $\begin{aligned} & \text { XXXII } \\ & \mathbf{X X X I V} \\ & \mathbf{X X X V} \end{aligned}$ | 34 |  | 4.084.084.08 | $\begin{aligned} & 5 \cdot 3893565,6 \\ & 5 \cdot 4170884,6 \\ & 5.3612700,8 \end{aligned}$ |
|  |  |  |  | $\begin{array}{rlrl} \\ 41 & 54 & 1 & 64 \\ 42 & 23 & 53 & 58\end{array}$ | -38 $\cdot$ $\cdot$ | $4 \cdot 8449407,5$ $4 \cdot 8491092,4$ |  |  |  |  |  |  |  |
| ${ }_{8}$ | ＂ | $\begin{aligned} & \text { XVIII } \\ & \text { XIX } \\ & \mathbf{X X} \end{aligned}$ | 27 | $564346 \cdot 34$ | －64 | 4．9741205，2 | 72 | ＂ | $\begin{aligned} & \text { XXXIV } \\ & \mathbf{X X X V} \\ & \mathbf{X X X I X} \end{aligned}$ | 34 | $\begin{array}{rr} 98 & 5240 \cdot 78 \\ 34 & 945 \cdot 14 \end{array}$ | 3.603.603.60 | $\begin{aligned} & 5 \cdot 5202811,7 \\ & 5 \cdot 2748984,3 \\ & 5 \cdot 3893565,6 \end{aligned}$ |
|  |  |  |  | $553414 \cdot 65$ | $\cdot 64$ | 4．9682380，5 |  |  |  |  |  |  |  |
|  |  |  | 28 | 67 4159＊O1 | $\cdot 64$ | 5＇0181156，5 |  |  |  | 35 | 465734.08 |  |  |
| $\infty$ | ＂ | $\underset{\mathbf{X X I}}{\mathbf{X I X}}$ | 28 | $605311 \times 11$ | $\cdot 41$ | 4＊9244594，7 | 73 | ＂ | $\begin{aligned} & \text { XXXV } \\ & \text { XXXIX } \\ & \text { XXXVIII } \end{aligned}$ | 35 | $\begin{array}{ccc}33 & 44 & 38 \cdot 24 \\ 54 & 1 & 2 \cdot 82 \\ 92 & 14 & 18 \cdot 94\end{array}$ | $\begin{aligned} & 3.90 \\ & 3.90 \\ & 3.90 \end{aligned}$ | $\begin{aligned} & 5 \cdot 265283 \mathrm{I}, 3 \\ & 5^{\circ} 4286664,9 \\ & 5^{\circ} 52028 \mathrm{I}, 7 \end{aligned}$ |
|  |  |  |  | 4043 50＇95 | $\cdot 40$ | 4．7977031，2 |  |  |  |  |  |  |  |
|  |  |  |  | $782257 \times 94$ | $\cdot 41$ | 4．9741295，2 |  |  |  |  |  |  |  |
| 60 | ＂ | XX XXI XXIII | 28. | $\begin{array}{rr} 55 & 6 \\ 88 & 66 \cdot 64 \\ 48 & 21 \cdot 59 \\ 36 & 5 \\ 1 \end{array} \cdot 77$ | $\cdot 78$$\cdot 78$$\cdot 77$ | $\begin{aligned} & 5 \cdot 0683157,4 \\ & 5 \cdot 1542733,4 \\ & 4 \cdot 9244594,7 \end{aligned}$ | 74 | ＂ | $\begin{aligned} & \text { XXXIX } \\ & \mathbf{X X X V I I I I} \\ & \mathbf{X X X} \end{aligned}$ | 35 | $\begin{array}{cccc}80 & 2 & 9.09 \\ 58 & 38 & 32 \cdot \\ 41 \\ 41 & 19 & 18 . & 10\end{array}$ | 3.413.413.41 | $\begin{aligned} & 5 \cdot 4389500,8 \\ & 5 \cdot 3769762,0 \\ & 5 \cdot 2652831,3 \end{aligned}$ |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | 29 |  |  |  |  |  |  |  |  |  |  |
| 61 | ＂ | $\begin{aligned} & \text { XXI } \\ & \text { XXIII } \\ & \text { XXII } \end{aligned}$ | 29 | $\begin{array}{llll}84 & 453.82\end{array}$ | － 66 | 5＇1165215，4 | 75 | ＂ |  | $664432 \cdot 94$364816.39$762710 \cdot 67$ |  | $3 \cdot 37$$3 \cdot 37$$3 \cdot 38$ | $\begin{aligned} & 5 \cdot 4143966,9 \\ & 5 \cdot 2286944,3 \\ & 5 \cdot 4389500,8 \end{aligned}$ |
|  |  |  |  | 33 1 <br> 65 25.41 | ． 65 | 4．8552281，4 |  |  |  |  |  |  |  |  |
|  |  |  |  | $625340 \cdot 77$ | －66 | 5．0683157，4 |  |  |  |  |  |  |  |  |
| 62 | ＂ | $\begin{aligned} & \text { XXII } \\ & \text { XXIII } \\ & \text { XXIV } \end{aligned}$ | 29 | 81 $1120 \cdot 85$ | 1＊43 | $\begin{aligned} & 5 \cdot 2458036,6 \\ & 5 \cdot 1451481,6 \\ & 5 \cdot 1165215,4 \end{aligned}$ | 76 | ＂ |  | $\begin{aligned} & 25 \\ & 26 \\ & 36 \end{aligned}$ | $\begin{array}{r} 1004359 \cdot 29 \\ 475 \mathrm{II} 59 \cdot 49 \\ 3 \mathrm{I} 24 \mathrm{I} \cdot 22 \end{array}$ |  | $\begin{aligned} & 4.9881459,1 \\ & 4.8659713,6 \\ & 4.7126610,0 \end{aligned}$ |
|  |  |  |  | $513625 \cdot 68$ | 1.42 |  |  |  |  |  |  |  |  |
|  |  |  |  | 471213.47 | 1.42 |  |  |  |  |  |  |  |  |
|  |  | XXIII | 29 | 693754.58 | $1 \cdot 52$ | 5．2410660，3 |  |  |  |  |  |  |  |
| 68 | ＂ | XXIV |  | 385812.08 | 1.52 | $5 \cdot 0676971,3$ |  |  | XIV |  |  | $\cdot 29$ |  |
|  |  | $\mathbf{X X V}$ | 30 | 712353.34 | I•53 | 5．2458036，6 |  |  | $\bar{X} \bar{V}$ |  |  | $\cdot 29$ |  |
| 63 | ＂ | $\begin{aligned} & \text { XXIV } \\ & \mathbf{X X V} \\ & \mathbf{X X V I} \end{aligned}$ | 30 | $\begin{array}{llll}58 & 29 & 8.46\end{array}$ | 1－05 | 5．1717936，3 | 77 | ＂ | $\begin{aligned} & \text { XIV } \\ & X V V \\ & X V I \end{aligned}$ | $\begin{aligned} & 26 \\ & 36 \end{aligned}$ | $\begin{array}{r} 532247 \cdot 70 \\ 642932 \cdot 52 \\ 62 \quad 739 \\ 62 \end{array}$ | .61.62.61 | $\begin{aligned} & 4.9462013,7 \\ & 4.997582,7 \\ & 4.9881459, \mathrm{I} \end{aligned}$ |
|  |  |  |  | 305137.95 | $1 \cdot 04$ | 4．9511695，6 |  |  |  |  |  |  |  |
|  |  |  |  | 903913.59 | 1.05 | 5．2410660，3 |  |  |  |  |  |  |  |
| 65 | ＂ | $\begin{aligned} & \text { XXV } \\ & \text { XXVI } \\ & \text { XXVIII } \end{aligned}$ | $\begin{aligned} & 30 \\ & 31 \end{aligned}$ | $\begin{array}{lll} 83 & 38 & 4 \cdot 43 \\ 49 & 9 & 35 \cdot 70 \\ 47 & 12 & 19 \cdot 87 \end{array}$ | 1＇79 | 5－3035329，8 | 78 | ＂ | $\mathrm{K}^{\stackrel{\mathbf{X}}{\mathbf{X}} \mathbf{X}}$ | $\begin{aligned} & 36 \\ & 37 \end{aligned}$ | $\begin{aligned} & 43 \quad 843 \cdot 17 \\ & 542025 \cdot 08 \\ & 823051 \cdot 75 \end{aligned}$ | +34$\cdot 35$$\cdot 35$ | $\begin{aligned} & 4 \cdot 7848800,3 \\ & 4 \cdot 8597384,6 \\ & 4^{\circ} 9462013,7 \end{aligned}$ |
|  |  |  |  |  | 1＇78 | 5•1850492，5 |  |  |  |  |  |  |  |
|  |  |  |  |  | 1．78 | 5•1717936，3 |  |  |  |  |  |  |  |
|  | ＂ | $\begin{aligned} & \text { XXVI } \\ & \mathbf{X X V I I I} \\ & \mathbf{X X I X} \end{aligned}$ | 31 | 62210048 | $2 \cdot 52$ | 5．2963160，0 | 79 | ＂ | $\begin{aligned} & \mathrm{H} \underset{\mathrm{X}}{\mathrm{X}} \mathrm{I} \\ & \mathrm{~K} \underset{\mathrm{XI}}{ } \end{aligned}$ | 37 | 393322.51 <br> 574633.27 <br> 82 <br> 80 <br> 40 | $\cdot 16$$\cdot$$\cdot 16$$\cdot 16$ | $\begin{aligned} & 4.5924731,4 \\ & 4.7158003,1 \\ & 4.7848000,3 \end{aligned}$ |
| 63 |  |  |  | 532425.71 64 | 2.52 2.52 | $5.2536373,1$ |  |  |  |  |  |  |  |
|  |  |  |  | 641433.81 | $2 \cdot 52$ | $5 \cdot 3035329,8$ |  |  |  |  |  |  |  |
|  | ＂ | $\begin{aligned} & \mathbf{X X V I I I} \\ & \mathbf{X X I X} \\ & \mathbf{X X X} \end{aligned}$ | $\begin{aligned} & 31 \\ & 32 \end{aligned}$ | 82568.06 | $2 \cdot 20$ | 5•3595888，8 | 80 | ＂ | $\begin{aligned} & \mathbf{X} \\ & \mathbf{X I} \\ & \mathbf{X I I} \end{aligned}$ | 38 | $\begin{aligned} & 583413 \cdot 75 \\ & 68461 \\ & 523944 \cdot 79 \\ & 524 \end{aligned}$ | $\cdot 12$$\cdot 12$$\cdot 12$ | $\begin{aligned} & 4.6231577,8 \\ & 4.66 \mathrm{I} 535 \mathrm{x}, 3 \\ & 4.5924731,4 \end{aligned}$ |
| 影 |  |  |  | $\begin{array}{r}375913.25 \\ 59 \\ 4 \\ \hline\end{array}$ | $2 \cdot 20$ | 5．1521143，5 |  |  |  |  |  |  |  |
|  |  |  |  | $59 \quad 438 \cdot 69$ | $2 \cdot 20$ | $5.2963160,0$ |  |  |  |  |  |  |  |
|  | n | $\begin{aligned} & \text { XXX } \\ & \text { XXIX } \end{aligned}$ | $\begin{aligned} & 32 \\ & 33 \end{aligned}$ | $56 \quad 521 \cdot 00$ | $2 \cdot 59$ | 5．2904854，3 | 81 | ＂ | $\begin{aligned} & \text { XI } \\ & \mathbf{X I I I} \\ & \text { XIII } \end{aligned}$ | 38 | $\begin{array}{r} 625114 \cdot 82 \\ 645853 \cdot 73 \\ 52951 \cdot 45 \end{array}$ | $\cdot 14$ | $\begin{aligned} & 4 \cdot 6749712,6 \\ & 4 \cdot 6828661,9 \\ & 4 \cdot 6231577,8 \end{aligned}$ |
| 88 |  |  |  | 471439.31 | $2 \cdot 59$ | $5 \cdot 2373027,2$ |  |  |  |  |  | $\begin{array}{r} 15 \\ -14 \end{array}$ |  |
|  |  |  |  | $763959 \cdot 69$ | $2 \cdot 59$ | $5 \cdot 3595888,8$ |  |  |  |  |  |  |  |

＊Thowe stations appertain to the Bombay Longitudinal Saries of the Southern Trigon．

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} \& 鱼 \& \multicolumn{2}{|l|}{Station Numbers} \& \multirow[b]{2}{*}{Corrected Plane Angle} \& \multirow[t]{2}{*}{} \& \multirow[b]{2}{*}{Logarithm of side－length in Feet} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{} \& \multicolumn{2}{|l|}{Station Numbers} \& \multirow[b]{2}{*}{Corrected Plane Angle} \& \multirow[t]{2}{*}{} \& \multirow[b]{2}{*}{Logarithm of aide－length in Feet} <br>
\hline \& $$
\begin{aligned}
& \text { 을 } \\
& 8 \\
& \text { 8 }
\end{aligned}
$$ \& Sorial \& 边 \& \& \& \& \& \& Serial \& 遃 \& \& \& <br>
\hline \multirow{4}{*}{82} \& \multirow[b]{4}{*}{$y$
$x$
$z$} \& \multirow[b]{4}{*}{K XII} \& \multirow[b]{4}{*}{$$
\begin{aligned}
& 38 \\
& 39
\end{aligned}
$$} \& $\bigcirc 1$ \& ＂ \& \& \multirow{4}{*}{95} \& \multirow[b]{4}{*}{$$
\begin{aligned}
& y \\
& x \\
& z
\end{aligned}
$$} \& \multirow[b]{4}{*}{$$
\stackrel{I}{\mathbf{I X}} \underset{\mathbf{X}}{\mathbf{X}}
$$} \& \multirow{4}{*}{44} \& \multirow[t]{4}{*}{$$
\begin{array}{llll}
72 & 41 & 59^{\circ} 94 \\
47 & 15 & 20^{\circ} & 42 \\
60 & 2 & 39^{\circ} \cdot 64
\end{array}
$$} \& ＂ \& \multirow[b]{4}{*}{$$
\begin{aligned}
& 4 \cdot 8995099,7 \\
& 4 \cdot 7855420,1 \\
& 4 \cdot 8573399,4
\end{aligned}
$$} <br>
\hline \& \& \& \& $633818 \cdot 87$ \& －16 \& 4•7000955，5 \& \& \& \& \& \& － 33 \& <br>
\hline \& \& \& \& 583712.45 \& －16 \& 4．6791047，7 \& \& \& \& \& \& － 33 \& <br>
\hline \& \& \& \& $574428 \cdot 68$ \& － 16 \& 4．6749712，6 \& \& \& \& \& \& － 33 \& <br>
\hline \multirow{3}{*}{83} \& \multirow{3}{*}{＂} \& \multirow[t]{3}{*}{$$
\begin{aligned}
& \text { XIII } \\
& \text { XIV } \\
& \text { XV }
\end{aligned}
$$} \& \multirow[t]{3}{*}{} \& $525848 \cdot 59$ \& $\cdot 17$ \& 4＊6785930，4 \& \multirow{3}{*}{96} \& \multirow{3}{*}{＂} \& \multirow[t]{3}{*}{$$
\begin{aligned}
& \mathbf{X} \\
& \mathbf{X I} \\
& \text { XIII }
\end{aligned}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
44 \\
45
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{aligned}
& 605010 \cdot 56 \\
& 453127 \cdot 83 \\
& 733^{8} 21 \cdot 6 \text { I }
\end{aligned}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
32 \\
\cdot 32 \\
\cdot 33
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{aligned}
& 4 \cdot 8585905,1 \\
& 4 \cdot 7708852,8 \\
& 4 \cdot 8995099,7
\end{aligned}
$$} <br>
\hline \& \& \& \& 695924.30 \& －18 \& 4．7493162，4 \& \& \& \& \& \& \& <br>
\hline \& \& \& \& 57．147 11 \& － 18 \& 47000955，5 \& \& \& \& \& \& \& <br>
\hline \multirow{3}{*}{84} \& \multirow{3}{*}{＂} \& XIV \& \multirow[t]{3}{*}{39} \& $515021 \cdot 94$ \& － 15 \& 4．6361 407，4 \& \multirow{3}{*}{97} \& \multirow[b]{3}{*}{＂} \& \multirow[t]{3}{*}{K．${ }^{\text {XII }}$ XI} \& \multirow[t]{3}{*}{$$
\begin{aligned}
& 45 \\
& 46
\end{aligned}
$$} \& \multirow[b]{3}{*}{$$
\begin{array}{rrr}
47 & 2 & 40 \cdot 43 \\
68 & 18 & 3 \cdot 10
\end{array}
$$} \& \multirow[t]{3}{*}{$\begin{array}{r}+29 \\ \cdot \\ \cdot \\ \hline\end{array}$} \& \multirow[t]{3}{*}{$$
\begin{aligned}
& 4 \cdot 8465554,0 \\
& 4 \cdot 7549524,5 \\
& 4 \cdot 8585905, \mathrm{I}
\end{aligned}
$$} <br>
\hline \& \& XV \& \& $68 \quad 245 \cdot 64$ \& －15 \& 4．7078688，5 \& \& \& \& \& \& \& <br>
\hline \& \& XVI \& \& $60652 \cdot 42$ \& － 15 \& 46785930,4 \& \& \& \& \& \& \& <br>
\hline \multirow{3}{*}{85} \& \multirow{3}{*}{＂} \& XV \& \& $57363 \mathrm{I} \cdot 56$ \& －14 \& 4．6532705，6 \& \multirow{3}{*}{98} \& \multirow[b]{3}{*}{＂} \& \multirow[t]{3}{*}{$$
\begin{array}{ll}
\text { X } & \text { XI } \\
\text { K } & \text { XIX } \\
\mathfrak{X} & \text { XIV }
\end{array}
$$} \& \multirow{3}{*}{46} \& \multirow[b]{3}{*}{$$
\begin{array}{lrr}
61 & 2 & 7 \cdot 63 \\
70 & 12 & 41 \cdot 56
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
\cdot 27 \\
\cdot 27 \\
\cdot 28
\end{array}
$$} \& \multirow[t]{3}{*}{$$
\begin{aligned}
& 4^{\circ} \cdot 7491345,7 \\
& 4.8149574,0 \\
& 4.8465554,0
\end{aligned}
$$} <br>
\hline \& \& XVI \& \& $68 \quad 725 \cdot 50$ \& －15 \& 4．6942608，8 \& \& \& \& \& \& \& <br>
\hline \& \& XVII \& \& 5416 2．94 \& $\cdot 14$ \& 4．6361407，4 \& \& \& \& \& \& \& <br>
\hline \multirow{6}{*}{86} \& \multirow{3}{*}{＂} \& \multirow[t]{6}{*}{$$
\begin{aligned}
& \text { XVII } \\
& \mathbf{X V I} \\
& \mathbf{X V I I I}
\end{aligned}
$$} \& \& $731925{ }^{\prime} 92$ \& $\cdot 17$ \& 4．7492347，9 \& \multirow{3}{*}{99} \& \multirow[b]{3}{*}{＂} \& \multirow[t]{3}{*}{$\chi^{\prime}{ }^{\prime} \frac{\mathbf{X}}{\mathbf{X}}$} \& \multirow{3}{*}{46} \& \multirow[t]{3}{*}{$$
\begin{array}{rrr}
62 & 3 \mathrm{I} & 48 \cdot 13 \\
4952 & 1 \cdot 03 \\
67 & 36 & 10 \cdot 84
\end{array}
$$} \& \multirow[t]{3}{*}{－18
$\cdot 18$
$\cdot 19$} \& \multirow[t]{3}{*}{$$
\begin{aligned}
& 4.7312439,5 \\
& 4.6666023,6 \\
& 4.7491345,7
\end{aligned}
$$} <br>
\hline \& \& \& \& $562957 \cdot 57$ \& －17 \& 4•6889987，4 \& \& \& \& \& \& \& <br>
\hline \& \& \& \& $501036 \cdot 51$ \& － 16 \& 4．6532705，6 \& \& \& \& \& \& \& <br>
\hline \& \& \& \multirow[b]{6}{*}{$$
\begin{array}{r}
40 \\
41
\end{array}
$$} \& \multirow[b]{6}{*}{$$
\begin{array}{lll}
38 & 58 & 9 \cdot 66 \\
63 & 29 & 6 \cdot 24 \\
77 & 32 & 44 \cdot 10
\end{array}
$$} \& \multirow[b]{6}{*}{$$
\begin{aligned}
& \mathrm{I} \cdot 04 \\
& \mathrm{I} \cdot 04 \\
& \mathrm{I} \cdot 05
\end{aligned}
$$} \& \multirow[b]{6}{*}{$$
\begin{aligned}
& 4 \cdot 9893064,0 \\
& 5^{\prime} 1424564,2 \\
& 5 \cdot 1803796,3
\end{aligned}
$$} \& \& \& XVI \& \& $633220 \cdot 68$ \& $\cdot 22$ \& 4．7629968，2 <br>
\hline \& \& \& \& \& \& \& 100 \& ＂ \& XIX \& 46 \& $60 \quad 837 \cdot 69$ \& $\cdot 21$ \& 47492162，0 <br>
\hline \& \& \& \& \& \& \& \& \& XVIII \& \& 56191.63 \& － 21 \& 47312439，5 <br>
\hline \multirow{3}{*}{87} \& \multirow{3}{*}{＂} \& \multirow[t]{3}{*}{XLIII＊＊

X
X

I} \& \& \& \& \& \multirow{3}{*}{101} \& \multirow[b]{3}{*}{＂} \& \multirow[t]{3}{*}{$$
\begin{aligned}
& \text { XIX } \\
& \text { XVIII } \\
& \mathbf{X X I}
\end{aligned}
$$} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 46 \\
& 47
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{lll}
4644 & 0 \cdot 62 \\
89 & 2 & 6 \cdot 52 \\
44 & 13 & 52 \cdot 86
\end{array}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& \cdot 28 \\
& \cdot \\
& \cdot 28 \\
& \cdot 27
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 4 \cdot 78 \mathrm{I} 65 \mathrm{I} 9, \mathrm{I} \\
& 4 \cdot 9193553,3 \\
& 4 \cdot 7629968,2
\end{aligned}
$$
\]} <br>

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& <br>
\hline \& \& \& \& \& \& \& \& \& \& \& \& \& <br>

\hline \multirow{3}{*}{88} \& \multirow{3}{*}{＂} \& \multirow{3}{*}{$\underline{ }$} \& \multirow{3}{*}{41} \& 51342710 \& － 67 \& 4．9629513．7 \& \multirow{3}{*}{102} \& \multirow{3}{*}{＂} \& \multirow[t]{3}{*}{\[
$$
\begin{aligned}
& \mathbf{X V I I I} \\
& \mathbf{X X I} \\
& \mathbf{X X X}
\end{aligned}
$$

\]} \& \multirow{3}{*}{47} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 70 \text { I } 944^{\circ} 74 \\
& 53 \\
& 5449^{\circ} 40 \\
& 56 \\
& 56
\end{aligned}
$$ 5^{\circ} 86

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
\cdot 27 \\
\cdot 26 \\
\cdot 26
\end{array}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 4 \cdot 8365013,3 \\
& 4 \cdot 7682446,5 \\
& 4 \cdot 78 \mathrm{I} 6519,1
\end{aligned}
$$
\]} <br>

\hline \& \& \& \& $\begin{array}{llll}72 & 4 & 37 \cdot 04\end{array}$ \& － 68 \& 5．0473557，3 \& \& \& \& \& \& \& <br>
\hline \& \& \& \& $562055 \cdot 86$ \& $\cdot 67$ \& 4．9893064，0 \& \& \& \& \& \& \& <br>

\hline \multirow{3}{*}{89} \& \multirow{3}{*}{＂} \& \multirow[t]{3}{*}{$$
\begin{aligned}
& \text { II } \\
& \text { I } \\
& \text { IV }
\end{aligned}
$$} \& \multirow{3}{*}{41} \& 80 23 41＇92 \& －73 \& 5．0977595，0 \& \multirow{3}{*}{103} \& \multirow{3}{*}{＂} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& \mathbf{X X} \\
& \mathbf{X X I} \\
& \mathbf{X X I I}
\end{aligned}
$$

\]} \& \multirow{3}{*}{47} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{llll}
56 & 33 & 5 \cdot 72 \\
56 & 23 & 35 \cdot 4 \\
67 & 3 & 18 \cdot 85
\end{array}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
\cdot 28 \\
\cdot \\
\cdot 28 \\
\cdot 28
\end{array}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 4.7936629,0 \\
& 4.7928673,6 \\
& 4 \cdot 8365013,3
\end{aligned}
$$
\]} <br>

\hline \& \& \& \& $531846 \cdot 86$ \& －73 \& 5．0080171，1 \& \& \& \& \& \& \& <br>
\hline \& \& \& \& 461731．22 \& $\cdot 72$ \& 4．9629513．7 \& \& \& \& \& \& \& <br>

\hline \multirow{3}{*}{90} \& \multirow{3}{*}{＂} \& \multirow[t]{3}{*}{$$
\begin{aligned}
& \mathbf{I} \\
& \text { IV } \\
& \mathbf{V}
\end{aligned}
$$} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 41 \\
& 42
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{lll}
46 & 7 & 15 \cdot 86 \\
41 & 13 & 58 \cdot 79 \\
92 & 38 & 45 \cdot 35
\end{array}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
\cdot 59 \\
\cdot 59 \\
\cdot 59
\end{array}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 4.9560411,6 \\
& 4.9171890,4 \\
& 5^{\circ} 0977595,0
\end{aligned}
$$

\]} \& \multirow{3}{*}{104} \& \multirow{3}{*}{＂} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& \text { XXI } \\
& \text { XXII } \\
& \mathbf{X X I I I}
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 47 \\
& 48
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{llll}
64 & 7 & 33 \cdot 62 \\
48 & 25 & 11 & \cdot 89 \\
67 & 27 & 14 & 4
\end{array}
$$
\]} \& \multirow[t]{3}{*}{$\cdot$

$\cdot$
$\cdot$
$\cdot$

$\cdot$ 22} \& \multirow[t]{3}{*}{$$
\begin{aligned}
& 4 \cdot 7823167,8 \\
& 4 \cdot 702 \mathrm{IIO}, 5 \\
& 4 \cdot 7936629,0
\end{aligned}
$$} <br>

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& <br>
\hline \& \& \& \& \& \& \& \& \& \& \& \& \& <br>

\hline \multirow{3}{*}{91} \& \multirow{3}{*}{＂} \& \multirow[t]{3}{*}{$$
\begin{aligned}
& \text { V } \\
& \text { IV } \\
& \text { VI }
\end{aligned}
$$} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 42 \\
& 43
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{（ $\begin{array}{rrrr}59 & 48 & 29 \cdot 81 \\ 80 & 1 & 23 \cdot 61 \\ 40 & 10 & 6 \cdot 58\end{array}$} \& \multirow[t]{3}{*}{| $\cdot 85$ |
| :--- |
| $\cdot 85$ |
| $\cdot 85$ |} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 5 \cdot 0831444,8 \\
& 5 \cdot 1398385,5 \\
& 4 \cdot 9560411,6
\end{aligned}
$$

\]} \& \multirow{3}{*}{105} \& \multirow{3}{*}{＂} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& \text { XXII } \\
& \text { XXIII } \\
& \text { XXIV }
\end{aligned}
$$

\]} \& \multirow{3}{*}{48} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 782045 \cdot 31 \\
& 421832 \cdot 45 \\
& 592042 \cdot 24
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
\cdot 23 \\
\cdot 22 \\
\cdot 22
\end{array}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 4 \cdot 8386437,5 \\
& 4 \cdot 6757885,3 \\
& 4 \cdot 7823167,8
\end{aligned}
$$
\]} <br>

\hline \& \& \& \& \& \& \& \& \& \& \& \& \& <br>
\hline \& \& \& \& \& \& \& \& \& \& \& \& \& <br>

\hline \multirow{3}{*}{92} \& \multirow{3}{*}{＂} \& \multirow[t]{3}{*}{$$
\begin{aligned}
& \text { IV } \\
& \text { VI } \\
& \text { VII }
\end{aligned}
$$} \& \multirow{3}{*}{43} \& $5330 \quad 1 \cdot 63$ \& $\cdot 70$ \& 4．9970450，3 \& \multirow{3}{*}{106} \& \multirow{3}{*}{＂} \& XXIII \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
48 \\
49
\end{array}
$$
\]} \& \multirow[t]{3}{*}{4956 19．01 $605244^{\circ} 07$ $691056 \cdot 92$} \& \multirow[t]{3}{*}{$\cdot 27$

$\cdot$
$\cdot$

$\cdot 27$} \& \multirow[t]{3}{*}{$$
\begin{aligned}
& 4.7518267,3 \\
& 4.8092727,9 \\
& 4 \cdot 8386437,5
\end{aligned}
$$} <br>

\hline \& \& \& \& $475632 \cdot 37$ \& $\cdot 70$ \& 4．9625431，8 \& \& \& XXIV \& \& \& \& <br>
\hline \& \& \& \& $783326 \cdot 00$ \& －71 \& 5．0831444，8 \& \& \& XXV \& \& \& \& <br>

\hline \multirow{3}{*}{93} \& \multirow{3}{*}{＂} \& \multirow[t]{3}{*}{$$
\begin{aligned}
& \text { VII } \\
& \text { VI } \\
& \text { IX }
\end{aligned}
$$} \& \multirow{3}{*}{43} \& $521533 \cdot 76$ \& ． 50 \& 4．9100150，9 \& \multirow{3}{*}{107} \& \multirow{3}{*}{＂} \& XXV \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 49 \\
& 50
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 605012 \cdot 34 \\
& 592258 \cdot 75 \\
& 594648 \cdot 91
\end{aligned}
$$
\]} \& \multirow[t]{3}{*}{+22

$\cdot$
$\cdot$
$\cdot$

+22} \& \multirow[t]{3}{*}{$$
\begin{aligned}
& 4.7563931,5 \\
& 4.7500587,4 \\
& 4.7518267,3
\end{aligned}
$$} <br>

\hline \& \& \& \& $\begin{array}{llll}52 & 40 & 4 & .73\end{array}$ \& ． 51 \& 4．9123947，4 \& \& \& XXIV \& \& \& \& <br>
\hline \& \& \& \& $75 \quad 421.51$ \& －51 \& 4＊9970450，3 \& \& \& XXVI \& \& \& \& <br>

\hline \& \multirow{3}{*}{＂} \& \multirow[t]{3}{*}{$$
\begin{aligned}
& \mathbf{V I} \\
& \mathbf{I X} \\
& \mathbf{X}
\end{aligned}
$$} \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
& 43 \\
& 44
\end{aligned}
$$
\]} \& $592449 \cdot 83$ \& － 32 \& 4＊8573399，4 \& \multirow{3}{*}{108} \& \multirow[b]{3}{*}{＂} \& XXIV \& \multirow{3}{*}{50} \& $554817 \times 39$ \& － 20 \& 4．7209171，8 <br>

\hline 94 \& \& \& \& 44122591 \& $\cdot 32$ \& 4．7657965，7 \& \& \& XXVI \& \& $602135^{\circ} 95$ \& $\cdot 21$ \& 4．7424391，3 <br>
\hline \& \& \& \& $762244 \cdot 26$ \& － 33 \& 4．9100150，9 \& \& \& XXVII \& \& 63506.66 \& － 21 \& 47563931，5 <br>
\hline
\end{tabular}

[^13]
*These stations appertain to the Karáchi Longitudinal Series of the North-West Quadrilateral.

| Triangle Number |  | Station Numbers |  | Corrected Plane Angle |  | Logarithm of side-length in Feet |  | $\begin{aligned} & \text { 曷 } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$ | Stution Numbers |  | Corrected Plane Angle |  | Logarithm of side-length in Feet |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Serial | $\begin{aligned} & \stackrel{\circ}{4} \\ & \stackrel{y}{\circ} \\ & \stackrel{4}{4} \\ & \hline \end{aligned}$ |  |  |  |  |  | Serial | 员 |  |  |  |
| 136 | $y$ | $\begin{array}{ll} \mathrm{J} & \text { XI } \\ \text { X } & \text { IIV } \end{array}$ | 62 | - , | " |  | 150 | $y$$x$ | $\underset{\substack{\text { XVVI } \\ \text { XVIII }}}{\text { XVI }}$ | 69 | 43148858 | " | 4•8510725,7 <br> 4.9668305,8 <br> 4.9967898,7 |
|  |  |  |  | $88 \quad 224.65$ | $\cdot 22$ | 4:8695441, |  |  |  |  |  | 49 |  |
|  |  |  |  | $401756 \cdot 84$ | $\cdot 22$ | 4.6805535,4 |  |  |  |  | $632435 \cdot 17$ | - 50 |  |
|  |  |  | 63 | ${ }^{51} 3938.51$ | $\cdot 22$ | 4.7643087,1 |  |  |  | 70 | 732116.25 | 50 |  |
| 137 | " | $\begin{array}{ll} \mathrm{J} & \text { XIV } \\ \mathfrak{x} & \text { II } \\ \text { II } \end{array}$ | 63 | 61 1249.06 | $\cdot 47$ | 4.9339982,2 | 151 | " | $\begin{aligned} & \text { XVIII } \\ & \text { XVI } \\ & \text { XXI } \end{aligned}$ | 70 | $\begin{aligned} & 76 \quad 745 \cdot 33 \\ & 51378 \cdot 50 \end{aligned}$ | $\cdot 39$$\cdot 38$$\cdot 38$ | $\begin{aligned} & 4.9402037,7 \\ & 4 \cdot 8473170,0 \\ & 4.8510725,7 \end{aligned}$ |
|  |  |  |  | $694248 \cdot 96$ | $\cdot 47$ | 4.9634749,2 |  |  |  |  |  |  |  |
|  |  |  |  | $49 \quad 421 \cdot 98$ | $\cdot 47$ | 4.8695441, 1 |  |  |  | 71 | 5215617 | $\cdot 38$ |  |
| 138 | " | IIIII | 63 | $581055 \cdot 08$ | 31 | 4-8668023,1 | 152 | " | $\begin{aligned} & \mathbf{X V I} \\ & \mathbf{X X I} \\ & \mathbf{X X} \end{aligned}$ | 71 | $\left\lvert\, \begin{array}{ccc} 45 & 1 & 59^{\circ} 05 \\ 80 & 20 & 35 \cdot 06 \\ 54 & 37 & 25 \cdot 89 \end{array}\right.$ | $\cdot 51$.52.51 | $\begin{aligned} & 4 \cdot 8785851,4 \\ & 5 \cdot 0226515,5 \\ & 4^{\circ} 9402037,7 \end{aligned}$ |
|  |  |  |  | $\begin{array}{llll} & 39 & 6 & 28 \cdot 87\end{array}$ | $\stackrel{.}{31}$ | $4.7374039,7$ |  |  |  |  |  |  |  |
|  |  |  | 64 | $824236 \cdot 05$ | $\cdot 32$ | 4*9339982,2 |  |  |  |  |  |  |  |
| 139 | " | III | $\begin{aligned} & 64 \\ & 65 \end{aligned}$ | $685546 \cdot 79$ | $\because 45$ | 4.9492625,8 | 153 | " | $\mathrm{XX}_{\mathbf{X I}}$ | 71 |  | $\stackrel{24}{ }$ | 4.7507867,0 4.7409809,0 4.8785851,4 |
|  |  | IV |  | $603326 \cdot 88$ $503046 \cdot 33$ | $\stackrel{+45}{ }$ | $4.9192588,1$ $4.8668023,1$ |  |  | XXI |  |  | - 25 |  |
|  |  | IV |  | $503046 \cdot 33$ | $\cdot 45$ | 4.8668023,1 |  |  | XXII |  |  |  |  |
|  | " | I | 65 | 495414.45 | $\cdot 33$ | 4.8337419,1 | 154 | " | XXI | 71 | $\begin{aligned} & 353638 \cdot 48 \\ & 953245 \cdot 07 \\ & 485036 \cdot 45 \end{aligned}$ | -19 | 4.6391690,3 |
| 140 |  | IV |  | 43396.75 | $\stackrel{+}{\square} \cdot$ | 47891215,5 |  |  | XXII |  |  | $\begin{array}{r}\cdot \\ \cdot \\ \cdot 19 \\ \hline 19\end{array}$ | $4.8720035,3$$4.7507867,0$ |
|  |  | VI |  | $862638 \cdot 80$ | $\cdot 33$ | 4.9492625,8 |  |  | XXV | 72 |  |  |  |
| 141 | " | IV | 65 | $583836 \cdot 86$ | $\cdot 31$ | 4.8282076,5 | 155 | " | XXII | 72 | $\begin{array}{\|l\|l} 9315 & 55^{\prime} \cdot 00 \\ 56 & 32 \\ 35 \cdot 97 \\ 30 & \text { II } \\ 9 \cdot 03 \end{array}$ | $\cdot 25$$\cdot$.25.24 | $4.9370626,2$$4.8591197,8$$4.6391690,3$ |
|  |  | VI |  | 61 297816 | $\cdot 32$ | 4.8406149, |  |  | XXV |  |  |  |  |
|  |  | IX | 66 | 595215.98 | $\cdot 32$ | 4.8337419,1 |  |  | XXIV |  |  |  |  |
|  | " | VI | 66 | $64304 \mathrm{x} \cdot 66$ | $\cdot 36$ | 4.8814768,1 | 156 | " | XXV | 72 | $754128 \cdot 84$$373554 \cdot 40$$664236 \cdot 76$ | $\cdot$$\cdot$$\cdot 38$$\cdot 38$ | $\begin{aligned} & 4 \cdot 9602895,6 \\ & 4.7593933,4 \\ & 4^{\prime} 9370626,2 \end{aligned}$ |
| 142 |  | $\underset{\text { VIIII }}{\text { IX }}$ |  | 62 3013.59  <br> 52 59 4.75 | +36 .36 | $\begin{aligned} & 4 \cdot 878906,0 \\ & 4 \cdot 8282076,5 \end{aligned}$ |  |  | XXIV |  |  |  |  |
|  |  | VIII |  | 52594.75 | $\cdot 36$ | $4 \cdot 8282076,5$ |  |  | XXVII | 73 |  |  |  |
| 143 | " | VIII | 66 | 78 31 47-64 | $\cdot 38$ | 4*9507697,4 | 157 | " | XXIV | 73 | 435325.78 | 31 | 4.8019353,3 |
|  |  | IX |  | $4448 \quad 8 \cdot 26$ | $\cdot 37$ | 4.8075122,3 |  |  | XXVII |  | $\begin{aligned} & 42463177 \\ & 9320 \quad 2.45 \end{aligned}$ | $\cdot 31$ | $4.7929764,8$$4.9602895,6$ |
|  |  | X |  | 5640 4*10 | $\cdot 38$ | 4.881 4768, 1 |  |  | XXVI |  |  |  |  |
| 144 | " | IX | 66 | $484224 \cdot 12$ | 31 | 4.8266868,7 | 158 | " | XXVIIXXVIXXVIII | 73 | $\begin{array}{rl} 625953 \cdot 94 \\ 5013 & 33 \cdot 83 \\ 664632 \cdot 23 \end{array}$ | $\cdot 24$ | 4.7885094,6 |
|  |  | X |  | $401139 \cdot 16$ | $\cdot 30$ | 4.7606654,4 |  |  |  |  |  | - 24 | 47243211,3 |
|  |  | XI | 67 | 91 $556 \cdot 72$ | $\cdot 31$ | 4.9507697,4 |  |  |  |  |  |  | 4.8019353,3 |
| 145 | " | XI | 67 | $82 \quad 417 \cdot 17$ | $\cdot 45$ | 5*0026927,8 | 159 | " | $\begin{aligned} & \text { XXVI } \\ & \text { XXVIII } \\ & \mathbf{X X X} \end{aligned}$ | 74 | 464313.78 | $\cdot 27$ | 4.7507580, 1 |
|  |  |  |  | $563546 \cdot 94$ | $\cdot 44$ | $49284534.5$ |  |  |  |  | $\begin{aligned} & 804221 \cdot 59 \\ & 523424 \cdot 63 \end{aligned}$ | $\cdot 27$ | $4.8828769,3$ |
|  |  | XIII | 68 | 411955.89 | - 44 | 4-8266868,7 |  |  |  |  |  | $\cdot 27$ | 4'7885094,6 |
| 146 | " | X | 68 | 3927 7.04 | $\cdot 49$ | 48255036,3 | 160 | " | XXVIII$\underset{\mathbf{X X X X I}}{ }$ | 74 | $\begin{aligned} & 713936 \cdot 38 \\ & 568836 \cdot 93 \\ & 52 \text { II } 46 \cdot 69 \end{aligned}$ | $\cdot 25$$\cdot 25$$\cdot 25$$\cdot 25$ | $\begin{aligned} & 4 \cdot 8304282,1 \\ & 4.7723738,4 \\ & 47507580,1 \end{aligned}$ |
|  |  | XIII |  | $674136 \cdot 88$ | $\cdot 49$ | 49836554,3 |  |  |  |  |  |  |  |
|  |  | XII |  | 725116.08 | $\cdot 49$ | 5*0026927,8 |  |  |  |  |  |  |  |
| 147 | " | XII | 68 | $935051 \cdot 43$ | $\cdot 43$ | 5*0369707,2 | 161 | " | $\mathbf{X X X}$ | 75 | $\begin{array}{llll}63 & 184 & 40\end{array}$ | - 29 | 4.8278291,9 |
|  |  | XIII |  | $482010 \cdot 23$ | $\cdot 43$ | $4.9113050,5$ |  |  | XXXI |  | $\begin{aligned} & 524219 \cdot 40 \\ & 635936 \cdot 20 \end{aligned}$ | - 28 | $\begin{aligned} & 4.7774493,3 \\ & 4.8304282,1 \end{aligned}$ |
|  |  | XIV |  | $374858 \cdot 34$ | $\cdot 43$ | $48255036,3$ |  |  | XXXII |  |  |  |  |
| 148 | " | XIII | 68 | $57831 \cdot 09$ | - 60 | 4.9761791, | 162 | " | XXXI | 75 | $\begin{aligned} & 581724 \cdot 29 \\ & 491636 \cdot 04 \\ & 722559 \cdot 67 \end{aligned}$ | 24$\cdot 24$$\cdot 24$-24 | $\begin{aligned} & 4.7783562,0 \\ & 4.7281635,9 \\ & 4.8278291,9 \end{aligned}$ |
|  |  | XIV |  | 4747 27 ${ }^{\text {O1 }}$ | . 60 | $4.9215315,0$ |  |  | XXXII |  |  |  |  |
|  |  | XV |  | $\begin{array}{lllll}75 & 4 & 1\end{array} 90$ | - 60 | 5*0369707,2 |  |  | XXXIV |  |  |  |  |
| 149 | " | XIV | 69 | $534215 \cdot 26$ | $\cdot 72$ | 4.9967898,7 | 163 | " | XXXIV | $\begin{aligned} & 76 \\ & 77 \end{aligned}$ | $\begin{aligned} & 535045 \cdot 51 \\ & 574651 \cdot 23 \\ & 682223 \cdot 26 \end{aligned}$ | - 21$\cdot$$\cdot 21$$\cdot 21$ | $4.7171653,9$47374366,7$4.7783562,0$ |
|  |  | XV |  | $76 \quad 357.67$ | $\cdot 72$ $\cdot 7$ | 5.0774984,8 |  |  | XXXII |  |  |  |  |
|  |  | XVI |  | 501347.07 | $\cdot{ }^{\prime 2}$ | 4*9761791, 1 |  |  | XXXVII |  |  |  |  |


|  | 免 | Station Numbers |  | Corrected Plane Angle |  | Logarithm of side－length in Feet |  |  | Station Numbers |  | Corrected Plane Angle |  | Logarithm of side－length in Feot |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Serial | 宮 |  |  |  |  |  | Serial | 䓓 |  |  |  |
| 164 |  |  |  | $\bigcirc$－＂ | ＂ |  |  |  |  |  | －，＂ | ＂ |  |
|  | $y$ | le XXXII |  | $57 \quad 312.54$ | $\cdot 20$ | 4．7280670，7 |  | $y$ | ¢ XL | 79 | $97 \quad 556 \cdot 34$ | $\cdot 22$ | 4．901 4700，9 |
|  | $x$ | XXXVII | 77 | $\begin{array}{ll}68 & \text { 1 } 26 \cdot 38\end{array}$ | $\cdot 21$ | 47714519，7 | 169 | $x$ | ${ }_{\text {XLII }}$ |  | $464216 \cdot 68$ | $\cdot 22$ | $4.7668410,2$ |
|  | $z$ | XXXV |  | 5455 2I•08 | － 20 | 4．7171653，9 |  | $z$ |  | 80 | 36 II $46 \cdot 98$ | $\cdot 21$ | 4．6760723，0 |
| 165 |  | XXXVII | 77 | $76.55 \quad 2 \cdot 84$ | $\cdot 20$ | 4．7961825，0 |  |  | XLII |  | $60107 \cdot 58$ | $\cdot 25$ | 4．8413141，3 |
|  | ＂ | $\mathbf{X X X V}$ |  | $464237 \cdot 45$ | －19 | 4．6696735，8 | 170 | ＂ | XLIII | 80 | 344241.60 | $\cdot 25$ | 4．6584994，3 |
|  |  | XXXIX | 78 | 562219.71 | $\cdot 19$ | 4．7280670，7 |  |  | XLIV |  | $85 \quad 710 \cdot 82$ | $\cdot 25$ | 4＊901 4700，9 |
| 166 |  | XXXV |  | 672824.28 | $\cdot 32$ | 4－8658550，4 |  |  | XLIII | 80 | $623928 \cdot 27$ | $\cdot 44$ | 4．9323756，3 |
|  | ＂ | XXXIX | 78 | 603823.92 51 | $\stackrel{3}{\cdot} \cdot \stackrel{ }{32}$ | $4 \cdot 8406186,2$ | 171 | ＂ | XLIV |  | $711558 \cdot 83$ | $\cdot 45$ | 4．9601859，1 |
|  |  | XXXVIII |  | 515311•80 | $\cdot 31$ | 4．7961825，0 |  |  |  |  | $46 \quad 43^{2} 90$ | $\cdot 44$ | 4．8413141，3 |
| 167 |  | XXXIX | 78 | $565015 \cdot 70$ | － 30 | 4．8122540，9 |  |  | XLIV |  | $592743 \cdot 72$ | －63 | 4．9930753，2 |
|  | ＂ | XXXVIII |  | $51532 \cdot 11$ | $\cdot 29$ | 4．7853073，9 | 172 | ＂ | CIV＊ |  | 72  <br> 2 18.75 | $\cdot 64$ | 5．0362252，1 |
|  |  | XL | 79 | 711642＇19 | 30 | $4.8658550,4$ |  | $\cdots$ | CVII＊ |  | $482957 \cdot 53$ | $\cdot 63$ | 4．9323756，3 |
|  |  | XXXVIII |  | $412233 \cdot 69$ | $\stackrel{.23}{ }$ | $4.6760723,0$ |  |  |  |  |  |  |  |
| 168 | ＂ | $\begin{aligned} & \text { XL } \\ & \text { XLII } \end{aligned}$ | 79 | $\begin{aligned} & 735231 \cdot 56 \\ & 644454 \cdot 75 \end{aligned}$ | $\begin{array}{r} \cdot 24 \\ \cdot 23 \end{array}$ | $\begin{aligned} & 4.8384419,8 \\ & 4.8122540,9 \end{aligned}$ |  |  |  |  |  |  |  |

＊These stations appertain to the Karáchi Longitudinal Series of the North－West Quadrilateral．


#### Abstract

\section*{9.}

Preliminary Latitudes, Longitudes and Azimuths of the Stations on the Right-hand


 Flanks of the Circuit Triangles.The following table gives the geodetic Latitudes, Longitudes and Azimuths which have been obtained, for all the stations and sides on the right-hand flank of the chains of circuit triangles, by applying the values of the difference of latitude, longitude and azimuthcomputed by the formulæ of Section 5 of the preceding chapter-first to the fixed elements of the several stations of origin of the chains $G$ to $\mathscr{X}$, as given in Section 7 of this chapter, and then to the deduced elements of every subsequent station: the order of succession is indicated by the numbers in block type. Each station is thus regarded, first as the 'Deduced Station B' and afterwards as the 'Fixed Station A.'

In order to ascertain the differential values given by the geodetic calculations on which the tabulated elements are built up, we have for any, the ath, side on the flank of the chain

$$
\begin{gathered}
\Delta \lambda_{a}=\left(\lambda_{a+1}-\lambda_{a}\right) ; \quad \Delta L_{a}=\left(L_{a+1}-L_{a}\right) ; \\
\Delta A_{a}=B_{a}-\left(\pi+A_{a}\right) ;
\end{gathered}
$$

where $\boldsymbol{A}_{a}$ stands for the forward azimuth at 'fixed station' $\boldsymbol{A}_{a}$ of 'deduced station' $\boldsymbol{B}_{a}$ and $\boldsymbol{B}_{a}$ for the back azimuth of $\boldsymbol{A}_{a}$ at $\boldsymbol{B}_{a}$.

The three differential values depend on the length $c_{a}$ and forward azimuth $\mathcal{A}_{a}$ of the side $a$, and also on the latitude $\lambda_{a}$. The logarithmic length is given in the preceding Section, on the same horizontal line as the angle at the Serial station which enters, in the table, between the stations numbered in block type $a$ and ( $a+1$ ). The forward azimuth of the side $a$ may be deduced by adding all the spherical angles at $a$, as given in the table, to the back azimuth $\boldsymbol{B}_{a-1}$. Thus the logarithmic length of flank side 12 is $5^{\circ}{ }^{11} 179633,3$, which occurs in triangle $\mathbf{2 5}$, on the same line as the angle for the Serial station G XXVIII, entering between the flank stations 12 and 13 ; and the forward azimuth of this side is equal to the back azimuth of 11 at 12 + the sum of the spherical angles at 12, which occur in triangles 23, 24 and 25, the respective values of which are $188^{\circ} 16^{\prime} 20^{\prime \prime} \cdot 219$ and $167^{\circ} 22^{\prime} 24^{\prime \prime} \cdot 27$, together amounting to $355^{\circ} 3^{\prime \prime} 44^{\prime \prime} \cdot 489$.

In the following table, breaks of continuity in the numbering of the stations necessarily occur at the origins and closing points of all the Circuits. The two values of each of the geodetic co-ordinates and of the azimuth of the side of junction at these closing points, furnish the data for the determination of the absolute terms of the geodetic equations of condition in the Simultaneous Reduction.


[^14]| Fixed Station $\mathbf{A}$ |  | Deduced Station B |  |  |  | Fired Station $\mathbf{A}$ |  | Deduced Station B |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Azimuth of B |  | Latitude North | Longitude East of Greenwich | Asimuth of $\mathbf{A}$ |  | Aximuth of B | 号最 | Latitude North | Longitude East of Greenwich | Aximuth of $\mathbf{A}$ |
|  | - ' " |  | - $1 \times$ | - ' $\quad$ | - |  | - ' " |  | $\bigcirc 1$ | - 1 | - ' |
| 53 | 861317129 | 5.4 | 23 - 45.341 | 711952.904 | $266 \quad 8 \quad 59 \cdot 362$ | 65 | 5543 6.691 | 66 | 232137613 | 70127482 | 235392.537 |
| 54 | $7530 \quad 4.772$ | 55 | $225720 \cdot 756$ | 71 541206 | 2552432.203 | 66 | $\begin{array}{llll}91 & 32 & 5 & 847\end{array}$ | 67 | 232152.570 | 69519120 | 271280.637 |
| 55 | 134549.063 | 56 | $23 \quad 439.276$ | 705745.394 | 314513021 | 67 | 843815.287 | 68 | $232033 \cdot 305$ | 69362.949 | 2643216.076 |
| 56 | 15362511 | III | 231635770 | 705111850 | $333 \begin{array}{lll}317622\end{array}$ | 68 | 119 $232 \cdot 126$ | 69 | 232714.267 | $692259 \times 162$ | $2985720 \cdot 868$ |
| III | 802516.982 | xIV |  |  |  | 69 | 1331930.828 | 70 | $233743 \cdot 664$ | $691054 \cdot 318$ | 3131441317 |
|  |  |  |  |  |  | 70 | $1024343 \cdot 787$ | 71 | 234016780 | 685835.989 | $2823847 \cdot 606$ |
| 57 | $39 \quad 939.858$ | 58 | $242010 \cdot 659$ | 7048 Ir.058 | 2191846.866 | 71 | $13725 \quad 5 \cdot 926$ | 72 | 234919.841 | 684933.238 | 3172127.363 |
| 58 | - $3721 \times 176$ | 59 | 2354 II\%902 | 704752.634 | 1803713.647 | 72 | 1382629443 | 73 | $235625 \cdot 721$ | $684242 \cdot 285$ | 3182343.071 |
| 59 | $343 \quad 334.677$ | 60 | 23 41 32.462 | 70523.821 | $163 \quad 516.034$ | 73 | $1305246 \cdot 471$ | 74 | 2429.262 | 683529.923 | 3104950.695 |
| 60 | 434313.894 | 61 | 2333 36.001 | $704349 \times 41$ | 2233955.882 | 74 | 1695821.655 | 75 | $241146 \cdot 896$ | $683338 \cdot 567$ | $3495736 \cdot 156$ |
| 61 | 1 $3820 \cdot 992$ | 62 | 2323 30.883 | 7043 30'979 | 1813813.518 | 75 | 1153 9 7 | 76 | 241939.543 | $68 \mathbf{2 9 1 7 4 2 1}$ | $333 \quad 719.998$ |
| 62 | $31415 \quad 26.968$ | III | $231635 \% 09$ | $705111 \times 78$ | $13418 \quad 29.488$ | 76 | $9924 \quad 5628$ | 77 | 24217646 | 681934.528 | 2792050389 |
| III | 802520.028 | xiv |  |  |  | 77 | 1323858.489 | 78 | 242621.243 | 6813 22.491 | 3123624824 |
|  |  |  |  |  |  | 78 | $1262724^{\prime 9} 94$ | 79 | 243220.075 | $68 \quad 431 \times 126$ | 30623447703 |
| 62 | III 5528.578 | 63 | $232627 \times 987$ | 703533.524 | 2915218.831 | 79 | 1883855.553 | 80 | 244152.623 | 68 666.457 | 83935.266 |
| 63 | III $2542 \cdot 381$ | 64 | $232945 \cdot 468$ | 702627.191 | 291224806 | 80 | 1421333016 | CIV* | $245346 \cdot 752$ | 675559.395 | 322918.410 |
| 64 | $83 \sim 28.416$ | 65 | $2328 \quad 4614$ | 701141897 | 2625435.66 r | $\mathrm{CrV}^{*}$ | 801611140 | cris* |  |  |  |

*These stations appertain to the Karáohi Longitudinal Series of the North-West Quadrilateral.

## 10.

## Numerical Values of the Absolute Terms in the Primary Equations of Condition.

The Lengths and Azimuths of the sides of the triangles, and the Latitudes and Longi. tudes of the stations on the right-hand flank of the chains having been computed-as set forth in the two preceding Sections-the values of the several Absolute Terms in the Primary Equations of Condition are indicated by the discrepancies at the junctions with the Bombay Longitudinal Series of the S. Trigon and between the two sets of computed values, which are presented at the close of the right and left-hand branches of the several Linear and Geodetic Circuits. In all cases the closing linear discrepancies are first expressed logarithmically, as the differences between the logarithms of the two values which are given in each instance, and the 7th place of decimals is then treated as unity.

The Absolute Terms will now be particularized.
Circuit I. Equations I to 4.
Equation 1, Linear. Between the sides Balagara-Búda and Ãgargaon-Chincholi.
Log. computed length Ágargaon-Chincholi by Triangle No. 30 . . . . . $5 \cdot 222241$, 1 Log. final value from Bombay Longitudinal Series, see page 51, . . . . $\mathbf{5 P 2}^{\cdot 222227,3}$ ${ }_{1} E=+{ }_{189} \cdot 8 \quad$ Logarithmic Error $+0.0000189,8$

Equations 2 to 4, Geodetic. Terminal Station, Ágargaon. Terminal Side, ÁgargaonChincholi.

| Branch of Circuit. | Latitude. | Longitude. | Azimuth. |
| :---: | :---: | :---: | :---: |
|  | - , " | - , " | - , |
| Right-hand | 191039.886 | $745432 \cdot 408$ | 30332 11.550 |
| $\left.\begin{array}{c}\text { Final values from Bombay Longi- } \\ \text { tudinal Sorios, }\end{array}\right\}$ | $\underline{191040.523}$ | $74543^{2 \cdot 979}$ | $3033^{2}$ 19.356 |
| Errors | ${ }_{2} E=-0.637$ | ${ }_{3} E=-0.57 \mathrm{x}$ | ${ }_{4} E=-7 \cdot 806$ |

Circuit II. Equations 5 to 8.
Equation 5, Linear. Junction, Patángri-Bhor.
Log. computed length by right-hand chain, Triangle No. 55 . . . . . . 4 '9055434,3


Equations 6 to 8, Geodetic. Terminal Station, Patángri. Terminal Side, PatángriBhor.

Branch of Circuit.

| $\cdot$ Latitude. |
| :---: |
| $\circ \quad, \quad \prime \prime$ |
| $225_{2} \quad 15.67 \mathrm{I}$ |
| $22 \quad 5215.603$ |
| $6 E+0.068$ |

Longitude.


## Azimuth.

164727.336
164734.449
${ }_{8} E=-7 \cdot 113$

Circuit III. Equations 9 to 12.
Equation 9, Linear. Between the sides Lakarwás-Tána and Singi-Párner.
Log. computed length Singi-Párner by Triangle No. 75 . . . . . . . $5 \times 4143966,9$
Log. final value from Bombay Longitudinal Series, see page 51, . . . . 5‘4143939,5
${ }_{9} E=+27.4 \quad$ Logarithmic Error $+0.0000027,4$

Equations 10 to 12, Geodetic. Terminal Station, Singi. Terminal Side, Singi-Párner.

Branch of Circuit.
Latitude.


Longitude.

| - , " | - , |
| :---: | :---: |
| $73 \quad 42 \quad 10 \cdot 369$ | $262 \quad 517.039$ |
| $734210 \cdot 304$ | $262 \quad 5 \cdot 23 \cdot 758$ |
| ${ }_{11} E=+0.065$ | ${ }_{12} E=-6.719$ |

Circuit IV. Equations 13 to 16.
Equation 13, Linear. Junction, Mirzápur-Wastrál.
Log. computed length by right-hand chain, Triangle No. 100 . . . . . . 4 7492162,0
left-hand $\quad$ No. 86 . . . . . . 4'7492347,9
${ }_{13} E=-185 \cdot 9$
Logarithmic Error - $0.0000185,9$

Equations 14 to 16, Geodetic. Terminal Station, Mirzápur. Terminal Side, MirzápurWastrál.

| Branch of Circuit. | Latitude. | Longitude. | Azimuth. |
| :---: | :---: | :---: | :---: |
|  | - , " | - " " | - , " |
| Right-hand | 225917.859 | 725234.695 | 91429.147 |
| Left-hand | $22 \quad 5917.708$ | $72 \quad 5234 \% 708$ | $91 \quad 426 \cdot 190$ |
| Errors | ${ }_{14} E=+0.151$ | ${ }_{15} E=-0.013$ | ${ }_{16} E=+2 \cdot 957$ |

Circuit V. Equations 17 to 20.
Equation 17, Linear. Junction, Monába-Wándia.
Log. computed length by right-hand chain, Triangle No. 135 . . . . . . $4 \times 8289265,7$

| " | left-hand | " | No. 124. | 4.8289327,9 |
| :---: | :---: | :---: | :---: | :---: |
| ${ }_{17} E=-62 \cdot 2$ |  |  | Logarithmic Error - | 0.0000062,2 |

Equations 18 to 20, Geodetic. Terminal Station, Monába. Terminal Side, MonábaWándia.

| Branch of Circuit. | Latitude. | Longitude. | Azimuth. |
| :---: | :---: | :---: | :---: |
|  | - . | - , " | - , " |
| Right-hand | $231635 \% 909$ | 70 51 11.778 | 8025 20.028 |
| Left-hand | 231635.770 | $705111 \times 850$ | $80 \quad 2516 \cdot 982$ |
| Errors | ${ }_{18} E=+0.139$ | ${ }_{19} E=-0.072$ | ${ }_{20} E=+3.046$ |

Circuit VI. Equations 21 to 24.
Equation 21, Linear. Between the sides Bhilgaon-Akoria and Károthol-Sáhiji.
Log. computed length Károthol-Sáhiji by Triangle No. 172 . . . . . . 4•9930753,2 Log. final value from Karáchi Longitudinal Series, see page 51 . . . . . 4 '9930496, I ${ }_{\mathbf{2 1}} \boldsymbol{E}=+{ }_{25}{ }^{\circ} \mathbf{1} \quad$ Logarithmic Error $+\mathbf{0 . 0 0 0 0 2 5 7 , 1}^{\underline{0.0}}$

Equations 22 to 24, Geodetic. Terminal Station, Károthol. Terminal Side, KárotholSáhiji.

| Branch of Circuit. | Latitude. | Longitude. | Azimuth. |
| :---: | :---: | :---: | :---: |
|  | - , | - , " | - , " |
| Right-hand | 2453 46.752 | 6755 59*395 | 80 16 11 140 |
| $\left.\begin{array}{l}\text { Final values from Karáchi Longi- } \\ \text { tudinal Series, } \rightarrow \text {-eeo page } 51,\end{array}\right\}$ | 2453 46.692 | 675559.651 | 801615.052 |
| Errors | ${ }_{22} E=+0.060$ | ${ }_{23} E=-0.256$ | ${ }_{24} E=-3.912$ |

## 11.

## Numerical Values of the $\mu 8$ and $\phi 8$.

The table of substitutions at page 36 shews the general form of the factors $\mu$ and $\phi$. The numerical values are tabulated in this section: they were constructed in the opposite order to that in which they are now recorded, commencing at the closing of the chain.*

On reference to the equation on page 35 it will be observed that the $\mu \mathrm{s}$ are factors of the tab. log. differences of sine, $a, \beta$ or $\gamma$. In the side equations it has been found convenient to multiply $a, \beta$ and $\gamma$ by $10^{7}$, or in other words to treat the 7th place of decimals as unity. It is convenient to do the same in the geodetic equations and to divide the $\mu \mathrm{s}$ by $10^{7}$, because the latter are large integral quantities containing more significant figures than are required : after division the last two places of decimals can be omitted. In the following tables $\mu \times \frac{1}{10^{7}}$ is accordingly given.

|  | Latitude |  | Longitude |  | Azimuth |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ${ }_{\lambda} \mu \times \frac{1}{10^{7}}$ | ${ }_{\lambda}{ }^{\phi}$ | ${ }_{2} \mu \times \frac{1}{10^{7}}$ | ${ }_{L} \boldsymbol{\phi}$ | ${ }_{\Delta} \mu \times{ }_{10}{ }^{\frac{1}{7}}$ | ${ }_{4} \phi$ |
| Circuit I. Direct. |  |  |  |  |  |  |
| 1 | - .00414 | + -0016 | - .00008 | -.0937 | - •00002 | $+0.9651$ |
| 2 | 391 | 47 | 23 | 882 | 09 | -9674 |
| 3 | 365 | 39 | 19 | 824 | 07 | $\cdot 9697$ |
| 4 | 340 | 65 | 32 | 765 | 12 | -9721 |
| 5 | 326 | 93 | 46 | 734 | 18 | -9733 |
| 6 | 301 | 54 | 26 | 677 | 09 | -9755 |
| 7 | 282 | 04 | Or | 634 | + or | -9772 |
| 8 | 233 | - or | + or | 522 | or | $\cdot 9815$ |
| 9 | 200 | + 09 | - 04 | 447 | - or | $\cdot 9842$ |
| 10 | 177 | 29 | 15 | 395 | 05 | -9862 |
| 11 | 130 | 53 | 26 | 288 | 09 | -9900 |
| 12 | 096 | 43 | 21 | 213 | 07 | -9927 |
| 13 | 066 | 46 | 24 | 146 | 08 | -9950 |
| 14 | 028 | 58 | 29 | 060 | 10 | -9980 |
| Circuit II. Right-hand Branch. |  |  |  |  |  |  |
| 19 | - . 00137 | -.0012 | + $\cdot 00005$ | - -0315 | + .00002 | + 0.9873 |
| 20 | 110 | 31 | 14 | 253 | 6 | -9899 |
| 21 | 079 | 31 | 15 | 181 | 6 | -9928 |

*The values of the tabular log. differences of the first terms of $\Delta \lambda, \Delta L$ and $\Delta \Delta$, in the expressions for them, on pages 18 and 20, were employed for t.d. $\log . \Delta \lambda$, t.d. $\log . \Delta L$ and t.d. $\log . \Delta 4$.

|  | Latitude |  | Longitude |  | Aximuth |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ${ }_{\lambda}{ }^{\mu} \times \frac{1}{10^{7}}$ | ${ }_{\lambda} \phi$ | ${ }_{2} \mu \times \frac{1}{10^{7}}$ | ${ }_{L} \boldsymbol{\phi}$ | $\Delta^{\mu} \times \times \frac{1}{10^{7}}$ | ${ }_{4} \boldsymbol{\phi}$ |
| Circuit II. Right-hand Branch-(Continued). |  |  |  |  |  |  |
| 22 | - .00068 | + . 0016 | - .00009 | - - 0157 | - •00004 | + 0.9937 |
| 23 | 51 | OI |  | 119 | 1 | -9953 |
| 24 | 31 | - 03 | + or | 074 | 0 | -9971 |
| 25 |  | 36 | 18 | 031 | + 7 | -9988 |
| Circuir II. Left-hand Branch. |  |  |  |  |  |  |
| 1 | - . 00108 | $+\cdot 0172$ | - -00089 | -. 0250 | - •00034 | + 0:9900 |
| 2 | 084 | 203 | 104 | 196 | 41 | -9922 |
| 3 | 059 | 195 | 100 | 137 | 39 | -9946 |
| 4 | 034 | 220 | 113 | 078 | 44 | -9969 |
| 5 | 020 | 249 | 128 | 047 | 50 | -9981 |
| 15 | 021 | 207 | 106 | 047 | 41 | -998I |
| 16 | 021 | 124 | 064 | 047 | 25 | -998I |
| 17 | 013 | 090 | 046 | 030 | 18 | -9988 |
| 18 | 004 | 046 | 024 | 009 | 09 | -9996 |
| Circuit III. Direct. |  |  |  |  |  |  |
| 19 | - .00463 | + $\cdot 0027$ | - $\cdot 00014$ | - - 1049 | - $\cdot 00006$ | + 0.9609 |
| 20 | 436 | 08 | 05 | $\cdot 0987$ | 03 | -9634 |
| 21 | 404 | 08 | 05 | -0915 | 03 | -9664 |
| 22 | 393 | 55 | 28 | -089 | 12 | -9673 |
| 23 | 376 | 40 | 20 | -0853 | 09 | -9688 |
| 24 | 357 | 36 | 18 | -0808 | 08 | -9706 |
| 25 | 338 | 03 | OI | -0765 | Or | -9724 |
| 26 | 327 | - or | + or | -0738 | 01 | -9734 |
| 27 | 311 | 07 | 04 | -0703 | + 01 | -9748 |
| 28 | 292 | 23 | 12 | -0658 | 04 | -9765 |
| 29 | 259 | 26 | 15 | -0584 | 05 | -9794 |
| 30 | 233 | 41 | 22 | $\cdot 0526$ | 08 | -9816 |
| 31 | 201 | 67 | 35 | -0451 | 13 | -9843 |
| 32 | 171 | 97 | 50 | -0385 | 18 | -9867 |
| 33 | 141 | 43 | 22 | -0320 | 08 | -9890 |
| 34 | 097 | + 10 | - 06 | -0216 | - 02 | -9927 |
| 35 | 054 | 05 | 04 | -0121 | OI | -9960 |

[CHip. III.

|  | Latitude |  | Longitude |  | Azimuth |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\lambda \mu \times \frac{1}{10^{7}}$ | ${ }_{\lambda} \phi$ | ${ }_{2} \mu \times \frac{1}{107}$ | ${ }_{2}{ }^{\text {¢ }}$ | ${ }_{4} \mu \times \frac{1}{10^{7}}$ | ${ }_{\Delta} \phi$ |
| Circuit IV. Right-hand Branch. |  |  |  |  |  |  |
| 40 | - 00118 | - .0050 | + $\cdot 00028$ | - -0271 | + $\cdot 00012$ | + 0.9890 |
| 41 | 098 | $\infty$ | 02 | 223 | Or | -9910 |
| 42 | 080 | 14 | 09 | 183 | 04 | -9926 |
| 43 | 049 | 07 | 04 | 112 | 02 | -9956 |
| 44 | 036 | 14 | 07 | 082 | 03 | -9967 |
| 45 | 023 | 22 | 12 | 053 | 05 | -9979 |
| 46 | Ori | 11 | 06 | 025 | 02 | -9990 |
| Circuit IV. Left-hand Branch. |  |  |  |  |  |  |
| 19 | - 00128 | + ${ }^{\circ} \mathrm{OI} 59$ | - $\cdot 00082$ | - -0293 | - .00032 | + 0.9882 |
| 20 | 101 | 140 | 73 | 230 | 29 | 0.9908 |
| 21 | 069 | 140 | 73 | 158 | 29 | - 0.9937 |
| 22 | 058 | 187 | 96 | 135 | 38 | $0 \cdot 9946$ |
| 23 | 041 | 172 | 89 | 096 | 35 | - 09962 |
| 24 | 022 | 168 | 86 | 051 | 34 | - 0.9980 |
| 25 | 003 | 135 | 69 | 008 | 27 | $0 \cdot 9997$ |
| 36 | 009 | 102 | 52 | 020 | 20 | - 0.9992 |
| 37 | 002 | 069 | 36 | 007 | 14 | - 0.9997 |
| 38 | $\infty 1$ | 047 | 24 | 004 | 10 | - 09999 |
| 39 | $\infty$ | 024 | 13 | $\infty \times 1$ | 05 | 1-0000 |
| Circuit V. Right-hand Branch. |  |  |  |  |  |  |
| 57 | - 00117 | + $\cdot 0047$ | - $\cdot 00022$ | - -0267 | - .00010 | + 0.9891 |
| 58 | 087 | - 06 | + 04 | 201 | + 02 | -9919 |
| 59 | 052 | 10 | 05 | 118 | 02 | -9953 |
| 60 | 034 | + 02 | - or | 078 | - or | -9969 |
| 61 | 023 | - 20 | + 10 | 053 | + 04 | -9979 |
| 62 | 010 | 21 | 11 | 021 | 04 | -9992 |
|  |  |  | T V. Left | d Branc |  |  |
| 40 | - •00094 | +.0277 | - -00140 | - -0217 | - - 00054 | + 0.991I |
| 41 | 73 | 327 | 166 | 170 | 65 | $0 \cdot 9931$ |
| 42 | 56 | 313 | 159 | 130 | 62 | - 0.9947 |
| 43 | 25 | 319 | 163 | 058 | 64 | 0.9977 |
| 44 | 12 | 313 | 160 | 029 | 63 | - 0.9988 |
| 45 | + 02 | 305 | 156 | $+\infty 1$ | 61 | I•0000 |
| 46 | 13 | 316 | 162 | 028 | 64 | 1-0011 |
| 47 | 16 | 276 | 142 | 034 | 56 | 1.0013 |


|  | Latitude |  | Longitude |  | Aximuth |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ${ }_{\lambda} \mu \times \frac{1}{10^{7}}$ | ${ }_{\lambda}{ }^{\phi}$ | $z^{\mu} \times \frac{1}{10^{7}}$ | ${ }_{L} \boldsymbol{\phi}$ | ${ }_{4} \mu \times \frac{1}{10^{7}}$ | ${ }_{4} \boldsymbol{\phi}$ |
| Circuit V. Left-hand Branch-(Continued). |  |  |  |  |  |  |
| 48 | + .00010 | - 0255 | - - 00131 | + $\cdot 0023$ | - -00052 | + 1.0009 |
| 49 | 08 | 225 | 115 | 18 | 45 | I-0007 |
| 50 | 16 | 205 | 105 | 38 | 41 | 1.0015 |
| 51 | 13 | 172 | 088 | 29 | 35 | I'0011 |
| 52 | 16 | 138 | 070 | 36 | 28 | $1 \cdot 0014$ |
| 53 | 21 | 108 | 055 | 49 | 22 | 1.0019 |
| 54 | 22 | 078 | 040 | 50 | 16 | 1-0020 |
| 55 | 27 | 040 | 020 | 60 | 08 | $1 \cdot 0023$ |
| 56 | 17 | 018 | $\infty$ | 37 | 04 | $1 \cdot 0015$ |
| Circuit VI. Direct. |  |  |  |  |  |  |
| 57 | + .00017 | -0514 | - . 00264 | + $\cdot 0038$ | - -00107 | + 1.0015 |
| 58 | 047 | 461 | 238 | 103 | 096 | I•0043 |
| 59 | 083 | 458 | 237 | 186 | 095 | 1-0077 |
| 60 | 100 | 470 | 243 | 226 | 098 | I -0093 |
| 61 | III | 448 | 232 | 251 | 093 | 1-0103 |
| 62 | 125 | 446 | 231 | 283 | 093 | 1•0116 |
| 63 | 121 | 425 | 220 | 274 | 088 | 1-0112 |
| 64 | 116 | $400^{\circ}$ | 208 | 265 | 083 | 1-0109 |
| 65 | 119 | 360 | 187 | 269 | 075 | 1.0110 |
| 66 | 127 | 333 | 173 | 289 | 070 | r-0118 |
| 67 | 127 | 305 | 159 | 288 | 064 | 1-0118 |
| 68 | 129 | 265 | 138 | 294 | 056 | 1•0120 |
| 69 | 120 | 230 | 120 | 274 | 049 | $1 \cdot 0112$ |
| 70 | 105 | 198 | 103 | 241 | 042 | 1•0099 |
| 71 | 102 | 165 | 086 | 234 | 035 | 1.0096 |
| 72 | 089 | 141 | 074 | 205 | 030 | 1-0085 |
| 73 | 079 | 123 | 064 | 183 | 027 | 1-0076 |
| 74 | 071 | 104 | 054 | 165 | 023 | $1 \cdot 0069$ |
| 75 | 058 | 100 | 052 | 135 | 022 | 1.0056 |
| 76 | 047 | 088 | 046 | 110 | 019 | $1 \cdot 0046$ |
| 77 | 045 | 062 | 032 | 104 | 014 | 1-0044 |
| 78 | 038 | 045 | 024 | 087 | 010 | 1.0036 |
| 79 | 030 | 022 | 012 | 068 | 005 | 1-0028 |
| 80 | 016 | 026 | 014 | 038 | 006 | 1-0016 |

## 12.

## Numerical Values of the Coefficients $\mathfrak{y}$ and $\mathfrak{c}$ of the Unknown Quantities y and z .

The following table gives the numerical values of the coefficients $b$ and $c$ of the unknown quantities $y$ and $z$ in each equation of condition. Should it be desired to reproduce any one of these coefficients, as the value of $\dot{b}_{p}$ in the $q$ th equation, it is first necessary to ascertain, by reference to pages 46-48, whether the coefficient is one of those of an exceptional form, for which symbolical expressions are there given. When not found in this list it will be understood to take one of the general forms on page 46.

## Examples.

(1). To find the values of $\mathfrak{b}_{6}$ and $\boldsymbol{f}_{6}$ in equation $I$ of Circuit $I$.

This is a linear equation, and the forms of the coefficients are normal,

$$
\begin{aligned}
& \mathrm{rb}_{6}=+ \text { t. d. } \log \sin 46^{\circ} 17^{\prime} 19^{\prime \prime}=+20 ; \\
& { }_{\mathbf{r}} \mathrm{f}_{6}=-\mathrm{t} . \mathrm{d} . \log \sin 8 \mathrm{I} 5736=-3 .
\end{aligned}
$$

(2). To find the values of $\mathfrak{b}_{17}$ and $\mathfrak{f}_{17}$ in equation 2 of Circuit $I$.

The equation is latitudinal, and the forms of the coefficients are normal,

$$
\begin{aligned}
{ }^{2} \mathrm{~b}_{17} & =+\left\{\left(\lambda \mu_{9}-\lambda \mu_{8}\right) a_{17}+\lambda \mu_{9} \beta_{17}+\lambda \phi_{8}\right\} \\
& =+\cdot 00033 \times 24-\cdot 00200 \times{ }_{17}-\cdot 0001 \\
& =+\cdot 0079-\cdot 0340-\cdot 0001 \\
& =-\cdot 0262 ; \\
{ }_{2} \mathrm{c}_{17} & =+\left\{\left(\lambda \mu_{9}-\lambda \mu_{8}\right) a_{17}-\lambda \mu_{8} \gamma_{17}+\lambda \phi_{9}\right\} \\
& =+\cdot 00033 \times 24+\cdot 00233 \times 1+\cdot 0009 \\
& =+\cdot 0079+\cdot 0023+\cdot 0009 \\
& =+\cdot 0111 .
\end{aligned}
$$

(3). To find the values of $\mathfrak{b}_{29}$ and $\boldsymbol{f}_{29}$ in equation 4 of Circuit $I$.

The equation is azimuthal, and the forms of the coefficients are exceptional, see page 46,

$$
\begin{aligned}
{ }^{\mathrm{b}_{29}} & =-\Lambda \mu_{14} a_{20}+{ }_{29} \phi_{14} \\
& =+\cdot 00010 \times 17+\cdot 9980 \\
& =+\cdot 0017+\cdot 9980 \\
& =+\cdot 9997 ; \\
{ }_{4} \mathrm{c}_{20} & =1-\Delta \mu_{14}\left(a_{29}+\gamma_{29}\right) \\
& =1+\cdot 00010 \times(17+21) \\
& =1+\cdot 0038 \\
& =1 \cdot 0038 .
\end{aligned}
$$

| $\begin{aligned} & \text { B } \\ & \frac{1}{2} \\ & 8 \\ & 6 \\ & 0 \end{aligned}$ | Coefficients of $y$ and $z$ |  | $\begin{aligned} & \text { No. of Circuit } \\ & \text { Triangle } \end{aligned}$ | Coefficients of $y$ and $z$ |  | $\begin{gathered} \text { No. of Circuit } \\ \text { Triangle } \end{gathered}$ | Coefficients of $y$ and $z$ |  |  | Coefficients of $y$ and $z$. |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | B | 1 |  | D | 1 |  | 万 | ¢ |  | b | ¢ |
| 18t | wation. | Linear. |  | uation | Continued). | 2nd | quation | (Continued). |  | quation | Continued). |
|  | Direct |  | 29 | - 3 | - 21 | 26 | -0.0006 | $+0.0178$ | 24 | +0.0188 | $+0.0247$ |
| 1 | 4 | - $3^{8}$ | 30 | 18 | 2 | 27 | + $\cdot 0057$ | - $\cdot 0150$ | 25 | - 0271 | - - O143 |
| 2 | 25 | 0 | 2nd | quation. | Latitude. | 28 | -.0106 | - .0016 | 26 | $+.0160$ | $+.0228$ |
| 3 | 10 | 20 |  | Direc |  | 29 | $+.0106$ | $+.0106$ | 27 | -. 0203 | $-\cdot 0056$ |
| 4 | 6 | 19 | 1 | -0.0123 | $+0.1637$ | $3 r d$ E | uation. | Longitude. | 28 | + $\cdot 0011$ | $+\cdot 0104$ |
| 5 | 5 | 16 | 2 | -1025 | - $\cdot 0047$ |  | Direc |  | 29 | - $\cdot 0011$ | - OI 10 |
| 6 | 20 | 3 | 3 | -0438 | + $\cdot 0735$ | 1 | -0.0957 | $-0.0863$ | $4 t h$ | uation. | Azimuth. |
| 7 | 11 | 0 | 4 | -0139 | -0815 | 2 | + . 0824 | + $\cdot 0882$ |  | Direc |  |
| 8 | - 18 | 4 | 5 | - 0222 | -0545 | 3 | -0859 | -0928 | 1 | +0.9642 | $+0.9677$ |
| 9 | 3 | 15 | 6 | -0597 | $\cdot 0219$ | 4 | - •0886 | - •0773 | 2 | - •9697 | - -9674 |
| 10 | 14 | 26 | 7 | $\cdot 0439$ | - .0065 | 5 | + .08i4 | $+.0854$ | 3 | -9683 | -9656 |
| 11 | 13 | 14 | 8 | $\cdot 0501$ | + $\quad .0250$ | 6 | - 0910 | - $\cdot 0781$ | 4 | $+\cdot 9673$ | + 9717 |
| 12 | 9 | 22 | 9 | $\cdot 0191$ | - 0396 | 7 | $+.0730$ | $+\quad .0765$ | 5 | - $\cdot 9701$ | - •9686 |
| 13 | 9 | 10 | 10 | -0549 | $\cdot 0755$ | 8 | -. 0871 | - . 0744 | 6 | $+\cdot 9664$ | + -9714 |
| 14 | 10 | 20 | 11 | -0275 | -0533 | 9 | $+.0720$ | $+.0803$ | 7 | - 9734 | - $\cdot 9721$ |
| 15 | 11 | 4 | 12 | $\cdot 0325$ | - 0608 | 10 | -0670 | - 0854 | 8 | + 9680 | + •9729 |
| 16 | 2 | 12 | 13 | -0164 | -0341 | 11 | - - 0750 | - - 0595 | 9 | - •9738 | - $\cdot 9706$ |
| 17 | 17 | 1 | 14 | - C 185 | - 0607 | 12 | +. $\cdot 0654$ | + •0734 | 10 | -9758 | -9686 |
| 18 | 5 | 9 | 15 | -0255 | -0094 | 13 | - .0630 | - $\cdot 0560$ | 11 | + 9728 | $+\quad .9787$ |
| 19 | 12 | 7 | 16 | -0046 | -0281 | 14 | -063I | $\cdot 0518$ | 12 | - $\cdot 9763$ | - $\cdot 9735$ |
| 20 | 5 | 23 | 17 | $\cdot 0262$ | $\cdot 0111$ | 15 | $+\cdot 0523$ | $+\quad .0522$ | 13 | + 9777 | + 98800 |
| 21 | 26 | $+\quad 4$ | 18 | -0016 | -0273 | 16 | $\cdot 0522$ | $\cdot 0521$ | 14 | -9774 | -9814 |
| 22 | 12 | - II | 19 | -0241 | -0095 | 17 | -.0541 | - •0459 | 15 | - 9814 | - 9815 |
| 23 | 12 | J 3 | 20 | $+\cdot 0017$ | $\cdot 0513$ | 18 | - 0486 | -0422 | 16 | -9815 | -9816 |
| 24 | 12 | 16 | 21 | - -0391 | -. 0105 | 19 | $+.0377$ | + $\cdot 0406$ | 17 | + 9808 | + $\cdot 9837$ |
| 25 | 23 | 3 | 22 | $\cdot 0209$ | $+.0090$ | 20 | -. 0421 | - $\cdot 0266$ | 18 | -9828 | -9852 |
| 26 | - 6 | 34 | 23 | - 0026 | - 0248 | 21 | + $\cdot 0220$ | $+.0278$ | 19 | - 9868 | - $\cdot 9858$ |
| 27 | + 17 | 5 | 24 | - 0158 | -OIII | 22 | - 0257 | -0317 | 20 | $+\cdot 9853$ | + •9908 |
| 28 | 17 | 15 | 25 | -0064 | - 0120 | 23 | -. 0307 | - •0173 | 21 | - $\cdot 9923$ | - -9904 |


|  | Coefficients of $y$ and $z$ |  |  | Coeffcients of $y$ and $z$ |  |  | Coefficients of $y$ and $z$ |  |  | Coefflcients of $y$ and $\varepsilon$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\square$ | c |  | $b$ | c |  | ${ }^{6}$ | c |  | $\mathfrak{b}$ | c |
| 4th Equation-(Continued). |  |  | 5th Equation-(Continued). |  |  | 6th Equation-(Continued). |  |  | 7th Equation-(Continued). |  |  |
| 22 | $2\|-0.9911\|-0.9890$ |  | $3\|-10\|$ |  | + 20 | 49 | -0.0052 | +0.0040 | 42 | -0.0285 | -0.0243 |
| 23 | + $\cdot 9894$ | + •9941 | 4 | 6 | 19 | 50 | -0000 | -0069 | 43 | + $\cdot 0264$ | + .0238 |
| 24 | - •9935 | - -9916 | 5 | 5 | 16 | 51 | -0050 | -0040 | 44 | - . 0226 | - -0192 |
| 25 | + •9907 | + •9950 | 6 | 20 | 3 | 52 | + $\cdot 0013$ | -0052 | 45 | -0228 | -0195 |
| 26 | - -9945 | - •9923 | 7 | 11 | $\bigcirc$ | 53 | -0014 | -0037 | 46 | +-0142 | + -0163 |
| 27 | + 99930 | + $\cdot 998 \mathrm{I}$ | 8 | 18 | 4 | Left-hand Branch |  |  | 47 | -0152 | -0174 |
| 28 | - -9997 | - •9965 | 9 | 3 | 15 | 1 | -0155 | 1-0.0630 | 48 | - 0141 | - . 0090 |
| 29 | + •9997 | + 1.0038 | 10 | 14 | 26 | 2 | + 0413 | + . 0203 | 49 | + -0118 | + . 0120 |
| 30 | -1•0000 | - I•0000 | 11 |  | 23 | 3 | $\cdot 0287$ | -0035 | 50 | - . 0114 | - . 0069 |
| 5th Equation. Linear. |  |  | 31 | 14 | 3 | 4 | - .0201 | - . 0388 | 51 | + $\cdot 0076$ | + .0073 |
| Right-hand Branch |  |  | 324 |  | 17 | 5 | + . 0225 | + - 0101 | 52 | - -0043 | - -0011 |
| 41 | + 15 | - 17 | 33 | 24 | 14 | 6 | - -0171 | - . 0282 | 53 | + 0062 | + -0029 |
| 42 | 11 | 9 | 34 | 21 | - | 7 | + -0257 | + . 0220 | Left-hand Branch |  |  |
| 43 | 8 | 11 | 35 | 15 | 11 | 8 | - .0205 | - . 0284 | 1 | +0.0303 | -0.013I |
| 44 | 18 | 8 | 36 | + 1 | 35 | 9 | +.0255 | + .0219 | 2 | -0064 | -0196 |
| 45 | 20 | 6 | 37 | - 10 | 7 | 10 | -0277 | -0197 | 3 | - . 0092 | -0404 |
| 46 | 17 | 7 | 38 | 14 | 4 | 11 | - . 0267 | - . 0046 | 4 | + 0249 | -0068 |
| 47 | 6 | 19 | 39 | 6 | 13 | 31 | -0217 | -0210 | 5 | - . 0087 | -0297 |
| 48 | 5 | 13 | 40 | 27 | 4 | 32 | +.0215 | + $\cdot 0171$ | 6 | + ${ }^{\circ} 088$ | + -0070 |
| 49 | 10 | 8 | 6th Equation. Latitude. |  |  | 33 | - -0157 | - .0153 | 7 | -0046 | - .0078 |
| 50 | 12 | 7 | Right-hand Branch |  |  | 34 | +. 0168 | + -0124 | 8 | -033 ${ }^{1}$ | + .0025 |
| 51 | 17 | 12 | 41 | -0.0194 | $+0.0245$ | 35 | - 0112 | - -0121 | 9 | - -0009 | - .0239 |
| 52 | 5 | 21 | 42 | -0087 | -0138 | 36 | + -0089 | + -0044 | 10 | + ${ }^{0} 0132$ | -0380 |
| 53 | 17 | 1 | 43 | -0057 | -0152 | 37 | - .0106 | - . 0075 | 11 | - -0068 | -0294 |
| 54 | 12 | 1 | 44 | -0136 | -0094 | 38 | + $\cdot 0052$ | + -0044 | 31 | + -0140 | -0046 |
| 55 | - 17 | 34 | 45 | -0154 | -0076 | 39 | - .0054 | - . 0013 | 32 | - -0005 | -0227 |
| Left-hand Branch |  |  | 46 | -0132 | -0032 | 7th Equation. Longitude. |  |  | 33 | + -0188 | -0114 |
| 1 | - | $+\quad 3^{8}$ | 47 | -0057 | -0113 | Right-hand Branch |  |  | 34 | -0087 |  |
| 2 | 25 | - | 48 | + $\cdot 0026$ | -0125 | 41 | +0.0323 | +0.0306 | 35 | $\cdot 0098$ | $\cdot 0058$ |


|  | Coefficients of $y$ and $\varepsilon$ |  |  | Coefficients of $y$ and $k$ |  |  | Coefficients of $\boldsymbol{y}$ and $\boldsymbol{\varepsilon}$ |  |  | Coefflicients of $y$ and $\varepsilon$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $b$ | ¢ |  | b | ¢ |  | b | ¢ |  | $b$ | c |
| 7th Equation-(Continued). |  |  | 8th Equation-(Continued). |  |  | 9th Equation-(Continued). |  |  | 10th Equation-(Continued). |  |  |
| 36 | -0.0035 | -0.0191 | 8 | -0.9870 | -0.9990 | 54 | $+12$ | - I | 46 | -0.0723 | $+0.0220$ |
| 37 | + .0003 | -0074 | 9 | + •9996 | + 99906 | 55 | 5 | 17 | 47 | -0291 | -0692 |
| 38 | $\cdot .0025$ | -0019 | 10 | 1•005 | -985I | 56 | 21 | + $\quad 1$ | 48 | -0097 | $\cdot 0587$ |
| 39 | - •0037 | -0077 | 11 | -1.0026 | - -0115 | 57 | - 2 | - 23 | 49 | -0416 | -0261 |
| 8th Equation. |  | Azimuth. | 31 | - 0.9947 | 1-0019 | 58 | $+14$ | 9 | 50 | -0352 | -0335 |
| Right-hand Branch |  |  | 32 | + •9997 | +0.9911 | 59 | 12 | 4 | 51 | -0643 | -0392 |
| $41\|-0.9870\|-0.9876$ |  |  | 33 | - •9926 | - I•0043 | 60 | 14 | 29 | 52 | -0110 | -0776 |
| 42 | + $\cdot 9887$ | + •9904 | 34 | +1.0034 | +0.9981 | 61 | 3 | II | 53 | -0578 | -0031 |
| 43 | -. 9894 | - •9906 | 35 | -0.9961 | - I•0023 | 62 | 3 | 20 | 54 | -035 | $\cdot 0071$ |
| 44 | + $\cdot 9910$ | + •9923 | 36 | + $\cdot 9986$ | +0.9925 | 63 | 7 | 7 | 55 | -0163 | -0557 |
| 45 | -9908 | -992I | 37 | - •9999 | - 1.0029 | 64 | 13 | 0 | 56 | -0617 | - -0003 |
| 46 | - '9944 | - •9934 | 38 | +1.0009 | +0.9992 | 65 | 2 | 20 | 57 | +.0069 | + $\cdot 0722$ |
| 47 | -9939 | -9929 | 39 | -1.0013 | - 1.0029 | 66 | 11 | 10 | 58 | - .0388 | -0285 |
| 48 | + •9942 | + $\cdot 9964$ | 40 | +1.0000 | + 1.0000 | 67 | 2 | 12 | 59 | -0327 | -0140 |
| 49 | - -9954 | - - 9952 | 9th Equation. |  | Linear. | 68 | 14 | 5 | 60 | -0386 | -0821 |
| 50 | + •99.55 | + •9974 | Direct |  |  | 69 | 10 | 8 | 61 | -0052 | -03II |
| 51 | - -9971 | - •9971 | 41 | + 15 | - 17 | 70 | 9 | 19 | 62 | -0052 | -0544 |
| 52 | + •9984 | + •9997 | 42 | 11 | $9 \times$ | 71 | 12 | 15 | 63 | -OI2I | -0208 |
| 53 | - - 9976 | - -9989 | 43 | 8 | 11 | 72 | 3 | 20 | 64 | - 0262 | -0041 |
| 54 | +1•0000 | + I•0000 | 44 | 18 | 8 | 73 | $+32$ | + 1 | 65 | -0022 | -0458 |
| 55 | -1.0000 | $0 \cdot 0000$ | 45 | 20 | 6 | 74 | 3 | - 24 | 66 | -0154 | - 0268 |
| Left-hand Branch |  |  | 46 | 17 | 7 | 75 | 9 | 5 | 67 | -0020 | -0225 |
| 1 | -0.9879 | - 1.0046 | 47 | 6 | 19 | 10th Equation. Latitude. |  |  | 68 | -0237 | - 0100 |
| 2 | +1.0025 | +0.9922 | 48 | 5 | 13 | Direct |  |  | 69 | -0098 | - 0156 |
| 3 | 0.9963 | -9840 | 49 | 10 | 8 | 41 | -0.0722 | $+0.0760$ | 70 | -0086 | -0322 |
| 4 | - 9902 | - 1.0027 | 50 | 12 | 7 | 42 | $\cdot 0407$ | -0471 | 71 | -0126 | -0136 |
| 5 | + $\cdot 9966$ | + 0.9884 | 51 | 17 | 12 | 43 | -0357 | -0472 | 72 | + 0159 | -0332 |
| 6 | - 9849 | - $\cdot 9972$ | 52 | 5 | 21 | 44 | -.0682 | -0394 | 73 | - -0178 | - $\cdot 0010$ |
| 7 | +1.0017 | + •9969 | 53 | 17 | 1 | 45 | -0765 | -0310 | 74 | + •0070 | + .0194 |


|  | Coefflients of $y$ and $z$ |  |  | Coefficients of $y$ and $z$ |  |  | Coefflieients of $y$ and $x$ |  |  | Coeflciente of $y$ and $\varepsilon$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | b | c |  | b | c |  | $b$ | c |  | $b$ | c |
| 11th | uation. | ongitude. | 11th | Equation | -(Continued). | 12th | Equation | -(Continued). | 13th | Equation | (Continued). |
|  | Direct |  | 69 | +0.0342 | +0.0302 | 62 | -0.9792 | -0.9804 | 100 | - 121 | - 26 |
| 41 | +0.1028 | +0.1073 | 70 | - -0354 | - . 0287 | 63 | + 9808 | + 9882 |  | ft-hand B | ranch |
| 42 | - $\cdot 1040$ | - •0959 | 71 | + •0209 | + .0225 | 64 | - -9806 | - 98816 | 41 | 15 | + 17 |
| 43 | + -0983 | + •0993 | 72 | - -0209 | - .0103 | 65 | + 9882 | + 98836 | 42 | 11 | 9 |
| 44 | - -0996 | - .0911 | 73 | + -0108 | + .0121 | 66 | - 9882 | - 9885 | 43 | 8 | 11 |
| 45 | $\cdot 1000$ | -0917 | 74 | - -01ı6 | -0014 | 67 | + 988 I | + 9885 | 44 | 18 | 8 |
| 46 | +. 0843 | + .0911 | 12th | Equation. | Azimuth. | 68 | -9859 | - 9862 | 45 | 20 | 6 |
| 47 | -0874 | -0944 |  | Direct |  | 69 | - 9882 | - .9896 | 46 | 17 | 7 |
| 48 | - -0884 | - -0800 | 41 | -0.9618 | -0.9599 | 70 | + 9888 | + 9902 | 47 | 6 | 19 |
| 49 | + - 0833 | + -0869 | 42 | + 9613 | + $\cdot 9646$ | 71 | - •9929 | - -9924 | 48 | 5 | 13 |
| 50 | - -0871 | - -0790 | 43 | - $\cdot 9636$ | - .9631 | 72 | + 9930 | + $\cdot 9967$ | 49 | 10 | 8 |
| 51 | + -0777 | + .0830 | 44 | + 9662 | + 9666 | 73 | - -9963 | - 9996 | 50 | 12 | 7 |
| 52 | - -0787 | - .0705 | 45 | -9628 | -9663 | 74 | + ${ }^{\text {-9961 }}$ | + 1.0004 | 51 | 17 | 12 |
| 53 | + -0763 | + -0765 | 46 | - -9693 | - .9665 | 75 | - $1 \cdot 0000$ | - 1-0000 | 52 | 5 | 21 |
| 54 | - -0758 | - -0732 | 47 | . 9680 | -9650 | 13 | uation. | Linear. | 53 | 17 | 1 |
| 55 | + -0739 | + .073 ${ }^{6}$ | 48 | + $\cdot 9674$ | + 9710 |  | ight-hand B | Branch | 54 | + 32 | 33 |
| 56 | - -0723 | - .0696 | 49 | - -9697 | - 9688 | 87 | $+\quad 26$ | - 5 | 76 | 4 | 35 |
| 57 | + - 0702 | + .0694 | 50 | + 9680 | + 97714 | 88 | 17 | 14 | 77 | - 16 | 11 |
| 58 | - -0675 | - .0651 | 51 | - -9720 | - -9696 | 89 | 4 | 20 | 78 | 23 | 3 |
| 59 | + $\cdot 0672$ | +.0653 | 52 | + 9714 | + $\cdot 9750$ | 90 | 20 | $+$ | 79 | 25 | 3 |
| 60 | - . 0637 | - .0619 | 53 | - -9726 | - •9724 | 91 | 12 | - 25 | 80 | 13 | 16 |
| 61 | + $\cdot 0589$ | + $\cdot 0.057$ | 54 | + 9726 | + •9737 | 92 | 15 | 5 | 81 | 11 | 16 |
| 62 | $\cdot 0589$ | -0554 | 55 | - -9735 | - •9732 | 93 | 16 | 5 | 82 | 10 | 13 |
| 63 | - -0551 | - .0519 | 56 | + 9738 | + 97950 | 94 | 13 | 5 | 83 | 16 | 14 |
| 64 | + -0555 | + $\cdot 0526$ | 57 | - -9748 | - $9775^{\circ}$ | 95 | 7 | 13 | 84 | 17 | 12 |
| 65 | - - 0496 | - . 0472 | 58 | + 9798 | + $\cdot 9768$ | 96 | 12 | 7 | 85 | 13 | 15 |
| 66 | + $\cdot 0490$ | + 0.0416 | 59 | - 9760 | - •9767 | 97 | 10 | 8 | 86 | 6 | 18 |
| 67 | - -0403 | - -0389 | 60 | + 9772 | + 9782 | 98 | 18 | 7 |  |  |  |
| 68 | -0405 | -0396 | 61 | - -9792 | - 9880 | 99 | 11 | 9 |  |  |  |


|  | Coefflients of $y$ and $z$ |  |  | Coefficients of $\boldsymbol{y}$ and $\boldsymbol{\varepsilon}$ |  |  | Coeffcients of $\boldsymbol{y}$ and $\boldsymbol{z}$ |  |  | Coefflicients of $y$ and $\varepsilon$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $b$ | c |  | $b$ | c |  | $b$ | c |  | 0 | c |
| 14th Equation. Latitude. |  |  | 14th Equation-(Continued). |  |  | 15th Equation-(Continued). |  |  | 16th Equation-(Continued). |  |  |
| ight-hand Branch |  |  |  |  |  | $45\|+0.0379\|+0.0120$ |  |  | 95 | $-0.9965$ |  |
| 87 | -0.028 | +0.0080 | 77 | + -0116 | + -0092 | 46 | -0028 | - -0202 | 96 | + 9977 | + ${ }^{\text {9981 }}$ |
| 88 | -016 | -0137 | 78 | 108 | - .0083 | 47 | - -0077 | -031 | 97 | -9977 | 82 |
| 89 | -0039 | -019 | 79 | + $\cdot 0074$ | + $\cdot 0068$ | 48 | + -0163 | -0046 | 98 | - -9986 | - -9991 |
| 90 | $\cdot 0117$ | $\cdot 0019$ | 80 | - | - .0051 | 49 | - -0067 | -0167 | 99 | -9988 | -9992 |
| 91 | -006I | $\cdot 0$ | 81 | + $\cdot 0048$ | + •0045 | 50 | + -0195 | -0015 | 100 | . 000 | - 0000 |
| 92 | -0067 | - 0 | 82 | 24 | - .0026 | 51 | -0095 | -015 |  | ft-hand | Branch |
| 93 | -007 | $\cdot 0032$ | 83 | $+$ | + .0023 | 52 | -0064 | -019 | 41 | +0.9930 | 828 |
| 94 | $\cdot \infty$ | -003 | 84 |  | - .0002 | 53 | -0109 | -001 | 42 | 9857 | - •9944 |
| 95 | $\cdot 0011$ | -0061 | 15th Equation. Longitude. |  |  | 54 | - . 0213 | -0228 | 43 | + ${ }^{\text {-9931 }}$ | + 9887 |
| 96 | $\cdot 0015$ | -00 | Right-hand Branch |  |  | 76 | -0045 | -025 | 44 | 9856 | - •9960 |
| 97 | -00 | - | $87\|-0.0292\|-0.0263$ |  |  | 77 | + ${ }^{\circ} 006$ | -007 | 45 | 98 | 9951 |
| 98 |  |  | 88 | +.0226 | + .022 | 78 | -007 | -003 | 46 | I•0011 | + 9919 |
| 99 |  |  |  | 224 | -0219 | 79 | -008 | -00 | 47 | - | 4 |
| Left-hand Branch |  |  | 90 | - -0188 | - .016 | 80 | -002 | -006 | 48 | 993 | - 1.0017 |
| 41 | 035 | - 0005 | 91 | $\begin{array}{r} -0188 \\ \cdot 0180 \end{array}$ | -0137 | 81 | -002 | -004 | 49 | + 9999 | -.9934 |
| 42 | - -0094 | -030 | 92 | + .0118 | + -0110 | 82 | -000 | -004 | 50 | - -9923 | - 1.0007 |
| 43 | + $\cdot 0221$ | + $\cdot 0029$ | 93 | -0118 | -0110 | 83 | -0020 | -0019 | 51 | 1 | 9939 |
| 44 | - -005 | - . 025 | 94 | - -0097 | - -0078 | 84 | - .0009 | -0026 | 52 | -0.9975 | -00 |
| 45 | -0037 | -024 | 95 | + $\cdot 0087$ | + $\cdot 0073$ |  | Equation | imut | 53 | + 1-0043 | + 0.9994 |
| 46 | + 0286 | +. 014 | 96 | - .0060 | - .005 |  | ight-hand B | ranch | 54 | -1-0083 | - -0089 |
| 47 | -0222 | -0077 | 97 | - 005 | -004 | 87 | +0.9882 | 989 | 76 | 1-0018 | $1 \cdot 0100$ |
| 48 | - 0202 | - .0283 | 98 | $+\cdot 0036$ | + .0021 | 88 | - -9908 | - 999 | 77 | $+1 \cdot 0024$ | 9970 |
| 49 | +.0213 | + .0139 | 99 | -0032 | -00 | 89 | -9910 | -9912 | 78 | -0.997 | 0014 |
| 50 |  | - .0233 | Left-hand Branch |  |  | 90 | + 9925 | + $\cdot 993$ | 79 | + $1 \cdot 0032$ | + 0.9993 |
| 51 | + | + .014 | 41 | -0.0170 | -0.0432 | 91 | -992\% | -994 | 80 | -0.998 | 0024 |
| 52 | - .0189 | - .0204 | 42 | + $\cdot 0.35^{8}$ | + .014 | 92 | - -9953 | - •995 | 81 | +1•0010 | + - |
| 53 | + .0140 | + .0135 | 43 | - . 0172 | -.031 | 93 | -9953 | -995 | 82 | -1-0001 | 1•020 |
| 54 | - -0145 | - .0010 | 44 | + ${ }^{\circ} \mathbf{3 6 1}$ | + . 0100 | 94 | + ${ }^{\prime} 9962$ | + 9968 | 83 | +1:0008 | + 0.9993 |


|  | Coefflcients of $y$ and \% |  |  | Coefflients of $y$ and $\varepsilon$ |  |  | Coefficiente of $y$ and $x$ |  |  | Coefficients of $y$ and z |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | b | c |  | $\square$ | c |  | b | c |  | $\square$ | c |
| 16th Equation-(Continned). |  |  | 17th Equation-(Continued). |  |  | 18th Equation-(Continued). |  |  | 18th Equation-(Continued). |  |  |
| $84\|-1.0004\|-1.0010$ |  |  | 99 | 11 | $+\quad 9$ | 126 | -0.0145 | +0.0313 | 106 | -0.0267 | -0.0215 |
| 85. | +1.0000 | +1.0000 | 100 | 11 | 14 | 127 | -0038 | -0276 | 107 | -0254 | -0205 |
| 86 | $1 \cdot 0000$ | 1.0000 | 101 | 19 | 22 | 128 | -0097 | -0038 | 108 | + -018I | + -022I |
| 17th Equation. Linear. |  |  | 102 | 7 | 14 | 129 | + $\cdot 0002$ | -0076 | 109 | -0192 | -0224 |
| Right-hand Branch |  |  | 103 | 13 | 9 | 130 | -. 0128 | -0032 | 110 | - -0215 | - .0139 |
| 125 | + | - 29 | 104 | 10 | 9 | 131 | + $\cdot 0014$ | -0067 | 111 | + -0159 | + •0184 |
| 126 | 21 | 28 | 105 | 5 | 12 | 132 | -0004 | -0038 | 112 | - -0193 | - -0121 |
| 127 | 5 | 31 | 106 | 18 | 8 | 133 | - -0009 | -0010 | 113 | + -0112 | + •0157 |
| 128 | 30 | $+\quad 2$ | 107 | 12 | 12 |  | $34+$-0009 | -0027 | 114 | - -018ı | - -0097 |
| 129 | 9 | - 6 | 108 | 15 | 10 | Left-hand Branch |  |  | 115 | + $\cdot 0076$ | + ${ }^{0150}$ |
| 130 | 37 |  | 109 | 8 | 12 | 87 | -0.0108 | -0.0395 | 116 | - •0142 | - .0058 |
| 131 | 3 | 20 | 110 | 10 | 19 | 88 | + - 0451 | + . 0225 | 117 | + -0056 | + -0096 |
| 132 | 7 |  | 111 | 10 | 9 | 89 | -0356 | -018ı | 118 | - -0115 | .0011 |
| 133 | 18 |  | 112 | 11 | 15 | 90 | - -0258 | - -034 | 119 | -0019 | -0081 |
| 134 | 12 | 6 | 113 | 16 | 12 | 91 | -0295 | -0471 | 120 | + 0005 | -0064 |
| 135 | 8 | 22 | 114 | 18 | 10 | 92 | + 0357 | + -03 | 121 | - -0052 | -0036 |
| Left-hand Branch |  |  | 11 | 15 | 20 | 93 | -0359 | . 0306 | 122 | -0014 | -0052 |
| 87 | - 26 | + 5 | 116 | 15 | 10 | 94 | - -0330 | - -0353 | 123 | -0008 | 044 |
| 88 | 1 | 14 | 117 | 10 | 8 | 95 | + .0321 | + •0297 | 19th Equation. Longitude. |  |  |
| 89 | 4 | 20 | 11 | 13 | 24 | 96 | - -0342 | - -0340 | Right-hand Branch |  |  |
| 90 | 20 | - | 11 | 22 | 15 | 97 | -0341 | -0337 | 125 | +0.0245 | +0.033 |
| 91 | 12 | + 25 | 120 | 13 | 9 | 98 | + $\cdot 0293$ | + $\cdot 0325$ | 126 | - -0267 | - .0147 |
| 92 | 15 | 5 | 121 | 12 | 17 | 99 | -0302 | -0328 | 127 | + 0203 | + -0189 |
| 93 | 16 | 5 | 122 | 19 | 20 | 100 | -0302 | -0334 | 128 | - -0186 | - .0117 |
| 94 | 13 | 5 | 123 | 12 | 20 | 101 | - -0346 | - . 0247 | 129 | -0134 | $\cdot 0096$ |
| 95 | 7 | 13 | 124 | 15 | 10 | 102 | + -0265 | + .029 | 130 | + $\cdot 0074$ | + •0079 |
| 96 | 12 | 7 | 18th Equation. Latitude. |  |  | 103 | -0255 | -0290 | 131 | - -0056 | - -0032 |
| 97 | 10 | 8 | Right-hand Branch |  |  | 104 | - -0275 | - . 0230 | 182 | + $\cdot 0060$ | + $\cdot 0045$ |
| 98 | 18 | 7 | 125 | -0.0164 | +0.0292 | 105 | $+\cdot 0250$ | $+.0267$ | 133 | - .0033 | - .0022 |


|  | Coefficients of $y$ and $z$ |  |  | Coefficients of $y$ and $z \cdot$ |  |  | Coefficients of $\boldsymbol{y}$ and $\boldsymbol{z}$ |  |  | Coefficients of $y$ and $\boldsymbol{z}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \% | b | c |  | b | ¢ |  | b | ¢ |  | ¢ | ¢ |
| 19th Equation-(Continued). |  |  | 19th Equation-(Continued). |  |  | 20th Equation-(Continued). |  |  | 20th Equation-(Continued). |  |  |
| $134\|+0.0034\|+0.0014$ |  |  | $114\|+0.0049\|-0.0133$ |  |  | 92 | +1•0073 | +0.9945 | 121 | -1•0021 | - 1.0032 |
| Left-hand Branch |  |  | 115 | -0132 | -006I | 93 | 1-0079 | -9945 | 122 | + 1-0023 | + $1 \cdot 0007$ |
| 87 | +0.0675 | $+0.0126$ | 116 | - •0006 | -0122 | 94 | -0.9897 | -1.0022 | 123 | -1.0017 | - 1.0010 |
| 88 | -0112 | - $\cdot 0402$ | 117 | + -0090 | $+\cdot 0018$ | 95 | + I•0032 | +0.9906 | 124 | +1.0000 | +1.0000 |
| 89 | - .0104 | -0502 | 118 | - -0030 | - .0162 | 96 | -0.9919 | - 1•0048 | 218 | Equation. | Linear. |
| 90 | + $\cdot 0471$ | $+.0130$ | 119 | + -0104 | $+.0030$ | 97 | -9932 | 1-0056 |  | Direct |  |
| 91 | -0328 | - .0338 | 120 | -0086 | -0042 | 98 | +1.0126 | + 0.9966 | 125 | + 10 | - 29 |
| 92 | -0187 | -0140 | 121 | - .0058 | - . 0080 | 99 | 1-008I | -9953 | 126 | 21 | 28 |
| 93 | -0203 | -0140 | 122 | +..0054 | + .0019 | 100 | I-008 | $\bullet 9921$ | 127 | 5 | 31 |
| 94 | - 0260 | -0059 | 123 | - •0042 | - .0023. | 101 | -0.9905 | - 1.0154 | 128 | 30 | $+\quad 2$ |
| 95 | -0083 | -0237 | 20th | Equation. | Azimuth. | 102 | +1.0052 | +0.9935 | 129 | 9 | 6 |
| 96 | -0208 | -012I |  | ht-hand B | Branch | 103 | 1-0086 | -9963 | 130 | 37 | 10 |
| 97 | -0172 | -0142 | 125 | -0.9901 | -0.9862 | 104 | -0.9969 | - 1•006 | 131 | 3 | 20 |
| 98 | -0320 | -0085 | 126 | + 9882 | + •9944 | 105 | +1.0035 | $+0.9947$ | 132 | 7 | 8 |
| 99 | -0206 | - 0118 | 127 | - $\cdot 9918$ | - 99925 | 106 | -0.9935 | - 1.0056 | 133 | 18 | 1 |
| 100 | -0206 | - 0199 | 128 | + $\cdot 9925$ | + ${ }^{\text {- }} 9953$ | 107 | -9963 | 1-0074 | 134 | 12 | 6 |
| 101 | -0242 | -0390 | 129 ' | -9947 | -9963 | 108 | +1.0077 | +0.9974 | 135 | 15 | 14 |
| 102 | -0133 | -0165 | 130 | - '9973 | - $\cdot 9968$ | 109 | 1-0048 | -9966 | 136 | 1 | 17 |
| 103 | -0219 | -0094 | 131 | + •9979 | + $\cdot 9990$ | 110 | -0.9986 | - 1•0095 | 187 | 12 | 18 |
| 104 | -0076 | -0172 | 132 | - •9976 | - $\cdot 9982$ | 111 | +1.0046 | +0.9979 | 138 | 13 | 2 |
| 105 | -0089 | -0134 | 133 | + •9986 | + •9992 | 112 | -0.9987 | - 1:0074 | 139 | 8 | 17 |
| 106 | -0165 | -0142 | 134 | - $\cdot 9987$ | - •9994 | 113 | + I.0059 | +0.9980 | 140 | 18 | 1 |
| 107 | -0095 | - 0189 | 135 | 1-0000 | -0000 | 114 | -0.9979 | - 1-0052 | 141 | 13 | 12 |
| 108 | -0196 | -0067 | Left-hand Branch |  |  | 115 | + + 0005 | + 0.9975 | 142 | 10 | 16 |
| 109 | -0122 | -0088 | 87 | -0.9731 | - 0.9947 | 116 | -1•0002 | - I•0049 | 143 | 4 | 13 |
| 110 | -0035 | -0244 | 88 | +1.0042 | + 98840 | 117 | +1.0036 | + 1.0007 | 144 | 19 | 0 |
| 111 | -0117 | -0050 | 89 | $0 \cdot 9957$ | -9801 | 118 | -1.0012 | - 1•0063 | 145 | 3 | 24 |
| 112 | -0030 | -0186 | 90 | - $\cdot 9814$ | - •9947 | 119 | +1.0041 | + 1.0011 | 146 | 25 | 6 |
| 113 | -0148 | $\cdot 0048$ | 91 | $\cdot 9869$ | 1-0131 | 120 | $1 \cdot 0033$ | 1•0016 | 147 | - 2 | 27 |

［Chap．III．

|  | Coefficients of $y$ and $z$ |  | No．of CircuitTriangle | Coefficients of $\boldsymbol{y}$ and $\boldsymbol{z}$ |  | $\begin{aligned} & \text { No. of Circuit } \\ & \text { Triangle } \end{aligned}$ | Coefficients of $\boldsymbol{y}$ and $\boldsymbol{z}$ |  |  | Coefficients of $y$ and $z$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | あ | c |  | b | 1 |  | 万 | 1 |  | あ |  | c |
| 218t | Equation | Continued）． | $22 n c$ | quation | （Continued）． | $22 n$ | Equation | （Continued）． | 23ra | Equation | Co | tinued）． |
| 148 | $+14$ | － 6 | 127 | －0．0437 | $-0.0607$ | 156 | ＋0．0161 | $+0.0007$ | 136 | ＋0．0289 |  | 0.0695 |
| 149 | 15 | 18 | 128 | ＋ 0775 | ＋$\cdot 0532$ | 157 | －0051 | －•OIJ5 | 137 | －$\cdot 0538$ |  | －OI 22 |
| 150 | 22 | 7 | 129 | －0591 | － 0463 | 158 | －0180 | ＋．0019 | 138 | ＋$\cdot 0038$ |  | －0343 |
| 151 | 5 | 16 | 130 | －－0100 | －•0570 | 159 | －．0038 | －$\cdot 0218$ | 139 | － 0139 |  | － 0647 |
| 152 | 21 | 15 | 131 | ＋ 0.0522 | $+.0267$ | 160 | －0127 | －0039 | 140 | －－0606 | － | － 0250 |
| 153 | 19 | I | 132 | －－ 0370 | －•0537 | 161 | －$\cdot 0042$ | $\cdot 0164$ | 141 | ＋•0059 | $+$ | －0528 |
| 154 | 29 | 19 | 133 | $+\cdot 0702$ | ＋－0464 | 162 | ＋－0141 | ＋ 00027 | 142 | － 0462 | － | － 0012 |
| 155 | 2 | 36 | 134 | －． 0296 | － 00521 | 163 | － 0157 | －0017 | 143 | － 0358 |  | $\cdot 0064$ |
| 156 | ＋ 6 | 10 | 135 | － 0258 | ． 0621 | 164 | －•0003 | －．0130 | 144 | $\cdot 0022$ | ＋ | －0323 |
| 157 | 22 | ＋$\quad 1$ | 136 | ＋$\cdot 0448$ | ＋$\cdot 0202$ | 165 | ＋$\cdot 0067$ | －0032 | 145 | $\cdot 0276$ |  | $\cdot 0705$ |
| 158 | 10 | 9 | 137 | －． 0280 | －．0643 | 166 | － 00015 | －0106 | 146 | －－0639 | － | －0211 |
| 159 | 20 | 16 | 138 | $+\cdot 0563$ | $+.0363$ | 167 | ＋ 00074 | －0018 | 147 | － 0266 | $t$ | － 0079 |
| 160 | 7 | 17 | 139 | －0497 | ． 0165 | 168 | －0050 | －0052 | 148 | $+.0160$ |  | －0391 |
| 161 | 10 | 11 | 140 | －．0146 | －－ 0372 | 169 | －． 0007 | $\cdot 0087$ | 149 | －•0454 | － | －0058 |
| 162 | 13 | 7 | 141 | $+\cdot 0535$ | ＋$\cdot 0200$ | 170 | $\cdot 0007$ | －0029 | 150 | ＋•0066 | $+$ | －0344 |
| 163 | 16 | 9 | 142 | －－0206 | －． 0536 | 171 | ＋．0015 | $\cdot 0043$ | 151 | $\cdot 0225$ |  | －0426 |
| 164 | 13 | 15 | 143 | $\cdot 0282$ | －0498 | 23r®d Equation．Longitude． |  |  | 152 | －．0415 | － | －0105 |
| 165 | 5 | 14 | 144 | ＋－ 0574 | ＋． 0305 | Direct |  |  | 153 | －0397 |  | － 0225 |
| 166 | 8 | 16 | 145 | －0347 | －•0037 | 125 | －0．0302 | $+0.0728$ | 154 | ＋$\cdot 0016$ | $+$ | －0365 |
| 167 | 14 | 7 | 146 | －0058 | －0342 | 126 | － 0470 | ． 0834 | 155 | －．0190 |  | －0061 |
| 168 | 24 | 10 | 147 | －． 0291 | －0613 | 127 | － 0222 | ． 0635 | 156 | ＋－0191 |  | － 0281 |
| 169 | 2 | 29 | 148 | ＋ 0416 | $+.0136$ | 128 | － 0608 | －OJ 38 | 157 | －－ 0324 | － | $\cdot 0189$ |
| 170 | ＋ 12 | 2 | 149 | － 00050 | －$\cdot 0446$ | 129 | － 0048 | －0353 | 158 | ＋．0146 | $+$ | － 0240 |
| 171 | I J | 20 | 150 | ＋－ 0444 | ＋$\cdot 0097$ | 130 | － 1125 | $\cdot 0017$ | 159 | －$\cdot 0273$ | － | －0079 |
| 172 | 13 | 18 | 151 | －0243 | － 00009 | 131 | ＋．0175 | － 0756 | 160 | ＋－0133 | ＋ | － 0231 |
| 22nd Equation．Latitude． |  |  | 152 | －0049 | －0318 | 132 | －．0413 | －$\cdot 0065$ | 161 | －．0187 | － | $\cdot 0078$ |
| Direct |  |  | 152 | $\cdot 0029$ | － 0175 | 133 | $\cdot 0165$ | ＋$\cdot 0306$ | 162 | ＋$\cdot 0086$ | ＋ | － 0157 |
| 125 | －0．0497 | $-0.0563$ | 154 | －0426 | －0050 | 134 | $\cdot 0560$ | －．0144 | 163 | － 0076 |  | $\cdot 0162$ |
| 126 | $+.0604$ | ＋ 0.0404 | 155 | －－ 0159 | －046I | 135 | －0630 | ＋$\cdot 0040$ | 164 | －． 0146 | － | $\cdot 0065$ |


|  | Coefficients of $y$ and $z$ |  |  | Coefficients of $y$ and $z$ |  |  | Coefficients of $y$ and $z$ |  |  | Coefficients of $y$ and $z$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | b | c |  | $b$ | c |  | $\square$ | c |  | b | c |
| 23rd Equation-(Continued). |  |  | 24th Equation-(Continued). |  |  | 24th Equation-(Continued). |  |  | 24th Equation-(Continued). |  |  |
| 165 | +0.0110 | $+0.0150$ | 131 | + I•0074 | + 1.0308 | 146 | - I•0260 | - I•0086 | 161 | -1•0078 | - I•0032 |
| 166 | - . 0106 | - . 0049 | 132 | -1.0168 | - I•0029 | 147 | 1-0109 | $0 \cdot 9969$ | 162 | +1.0036 | + 1•0066 |
| 167 | + - 0089 | + . 0104 | 133 | +0.9936 | + 1.0125 | 148 | + I•0064 | + I•0159 | 163 | 1-0032 | 1-0069 |
| 168 | - -0097 | - .0056 | 134 | -1.0228 | - 1•0060 | 149 | -1.0186 | - 1-0024 | 164 | -1•0062 | - 1•0023 |
| 169 | + - 0067 | + . 0069 | 135 | 1.0256 | $0 \cdot 9986$ | 150 | +1.0028 | + I.0141 | 165 | +1.0047 | + 1•0064 |
| 170 | - -0035 | - -0035 | 136 | +1.0117 | + I.0280 | 151 | 1-0092 | 1-0174 | 166 | -1•0044 | - I•0020 |
| 171 | + $\cdot 0048$ | + .0038 | 137 | -1.0218 | -0.9954 | 152 | -1.0170 | - I•0043 | 167 | +1.0037 | + 1-0043 |
| 24th | Equation. | Azimuth. | 138 | +1.0017 | + I.0140 | 153 | 1-0163 | 1-0092 | 168 | - I•0040 | - I•0023 |
|  | Direct |  | 139 | 1-0059 | 1-0261 | 154 | + I•0008 | + 1.0151 | 169 | +1.0027 | + 1.0029 |
| 125 | -1.0122 | -0.9705 | 140 | -1.0245 | - 1.0102 | 155 | -1.0079 | -0.9977 | 170 | -1•0023 | - I•0015 |
| 126 | +0.9810 | + 1.0340 | 141 | +1.0026 | + 1.0215 | 156 | + I $\cdot 0080$ | +1.0117 | 171 | +1.0020 | $+1.0016$ |
| 127 | -1•0091 | -0.9745 | 142 | -1.0188 | - 1.0006 | 157 | - 1-0135 | - 1•0079 | 172 | -1.0000 | -1•0000 |
| 128 | +0.9758 | + I•0058 | 143 | 1-0146 | 1•0027 | 158 | +1.0060 | + I.0100 |  |  |  |
| 129 | -9984 | 1•0145 | 144 | +1•0011 | + 1.0133 | 159 | -1.0115 | - 1.0032 |  |  |  |
| 130 | - I•0456 | -0.9995 | 145 | 1.0112 | 1-0285 | 160 | +1.0055 | + 1•0096 |  |  |  |

## 13.

## The Weights of the Angles.

The last Section has furnished us with the coefficients of the unknown quantities, 344 in number, which enter the 24 circuit equations; the absolute terms of the same equations are shewn in Section 10. The next step, therefore, in order to obtain the most probable system of values of the unknown quantities which satisfies these equations, is to ascertain the weights of the angles, for employment in the expression for the minimum-see page 38 -which is to govern the solution of the equations. This is done-for reasons which have been set forth at length in Section 5 of Chapter VII, Volume II-by multiplying the preliminary weights, viz., those obtained from the evidence afforded by the actual measures of each angle-by certain factors or moduli which are required to reduce them all to a common and absolute unit of accuracy. Each group of angles, measured with the same instrument
and under similar circumstances, has a constant value of the modulus, $\rho^{\prime}$, obtained as shewn in Section 2 of the preceding chapter.

Disparity of circumstance necessarily occurs whenever there are very marked variations in the general elevation of the observing and signal stations above the level of the ground; for on this condition freedom from grazing rays-and their concomitant lateral refractionsgreatly depends. Disparity also occurs when the system of operation is varied, even without a change of instrument; for although there is a standing rule, to which no exception has ever been permitted, that the measurement of every angle must rest on readings taken at equidistant points of the azimuthal circle; yet the number of points read has varied with the number of microscopes attached to the theodolite, and with the number of changes of zero which were effected in each instance: again the number of standard measures on each zero has been sometimes 2, sometimes 3. Now it has been found that the value of $\rho^{\prime 2}$ is frequently more influenced by changes of circumstance than by change of instrument; and consequently considerable circumspection is necessary before applying a value of this factor to any observations other than those of the group for which it was determined, even when made with the same instrument; for though this factor is partly dependent on the instrument, it is also dependent, and probably-in the case of all the best instruments, viz., the 36 -inch and 24 -inch theodolites-to a greater extent, on various extraneous influences; and of these there can be little doubt that the most important is lateral refraction, which is liable to be greater in the plains than in the hills, and much greater in tracts of country which are covered with dense forest and jungle, than in tracts which are open and cultivated.

It has already been stated, at page 13, that the trigonometrical figures which are ordinarily employed in the operations of this Survey have too few angles and geometrical conditions to permit of a reliable value of the modulus being usually determinable from the evidence of a single figure. In order therefore to obtain a fairly exact value, it was necessary to group together the several figures of which the angles have been measured with the same instrument and as nearly as possible under similar circumstances, to determine an average. value of the Absolute Weights of all the observed angles from the geometrical errors exhibited in the several figures, and then to find the ratio of that average to the average of the Preliminary Weights of the same angles. This ratio gives the value of the modulus $\rho^{\prime 2}$. The several figures appertaining to the South-West Quadrilateral have been collected into 8 groups, for each of which a separate value of $\rho^{\prime 2}$ has been determined. The values of the weights of the angles which are obtained by multiplying the preliminary weights by $\rho^{\prime 2}$ are considered to be absolute and final; thus, with these values, independent measures of the same angles, made with different instruments, may be legitimately combined together; moreover the several angles of portions of the triangulation, which have been measured with different instruments, or under different circumstances, may also be combined together in the final reduction, with due regard to the relative accuracy of each angle.

The details on which the determinations of $\rho^{\prime 2}$ have been based will now be given. The symbols $e_{1}, e_{2}$ and $e_{3}$ will be here employed, as in Section 2 of the preceding chapter, to indicate the several values of the e.m.s., which are respectively deduced from the preliminary weights, the triangular errors, and the geometrical errors of the angles of the polygonal figures. The values of $e_{1}, e_{2}$ and $e_{3}$ will be given for each group for comparison, and because $e_{1}$ is always the numerator of $\rho^{\prime}$, while either $e_{2}, e_{3}$, or a combined value of them, has been taken as the denominator of $\rho^{\prime}$.

Putting $w$ for the preliminary weight of any angle, $w_{0}$ for the average preliminary weight-or the unit of weight-of the whole of the angles, $t$ in number, which are contained
in any figure, $n$ for the number of geometrical equations of condition presented by the figure and $\frac{1}{w}=u$, we have

$$
\begin{gathered}
e_{1}^{2}=\frac{[u]}{t}=u_{0} ; \quad e_{3}^{2}=\left[\frac{x^{2}}{u}\right] \frac{u_{0}}{n} \text { or } \frac{\left[w x^{2}\right]}{n} \times u_{0} ; \\
e_{2}^{2}=\frac{\text { sum of squares of triangular errors }}{\text { number of triangles } \times 3}
\end{gathered}
$$

Then, when we accept $e_{3}$ as the most probable value of the e.m. s., we have

$$
\rho^{\prime 2}= \begin{cases}\frac{n}{\left[w x^{2}\right]} & \text { for a single polygonal figure } \\ \frac{[n]}{\left[\left[w x^{2}\right]\right]} & \text { for a group of figures }\end{cases}
$$

The value of the quantity [ $w x^{2}$ ] for each polygonal figure is given at the end of the reduction of the figure, among the numerical details of the Series to which it appertains.

The following table gives the data from which the values of $e_{1}, e_{2}$ and $e_{3}$ were determined for each group of figures, also the approximate values of $e_{3}$ which are given by each figure.

Data for the Calculation of $\rho^{\prime}$.

| Group |  | $\begin{gathered} \text { Hills } \\ \text { or } \\ \text { Plains } \end{gathered}$ | Data for $e_{1}$ |  | Data for $e_{2}$ |  | Data for $e_{3}$ |  |  |  | $\begin{array}{\|c} \text { Approxi. } \\ \text { mate Single } \\ \text { Values } \\ \text { of } e_{3} \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{gathered} \text { Number of } \\ \Delta n g l e s \\ t \end{gathered}$ | Sum of Preliminary Reciprocal Weights [u] |  | Sum of Squares of Triangular Errors | Number of Geometrical Equations <br> $n$ | Average of Preliminary Reciprocal Weights $u_{0}$ | [20x ${ }^{2}$ ] | $\left[u x^{2}\right] \times u_{0}$ |  |
| I | G Fig. 1 | H | 8 | 13.54 | 3 | 31-12 | 4 | $1 \cdot 69$ | 5•94 | - $10 \cdot 04$ | $\pm 1 \cdot 58$ |
|  | " 2 | " | 15 | 23.70 | 5 | 4.14 | 7 | 1-58 | 4.42 | 6.98 | $1 \cdot 00$ |
|  | " 3 | " | 27 | 36.62 | 9 | $5{ }^{-01}$ | 13 | $1 \cdot 36$ | $17 \cdot 89$ | 24•33 | $1 \cdot 37$ |
|  | \# 4 | " | 18 | 22.68 | 6 | 46-01 | 8 | $1 \cdot 26$ | 14.24 | $17 \cdot 94$ | $1 \cdot 50$ |
|  | \# 5 | " | 8 | 15.06 | 3 | $6 \cdot 82$ | 4 | 1-88 | 9-01 | $16 \cdot 94$ | $2 \cdot 06$ |
|  | \% 6 | " | 8 | 1I•8I | 3 | $0 \cdot 19$ | 4 | 1.48 | 0.24 | $0 \cdot 36$ | $0 \cdot 30$ |
|  | 7 | " | 20 | $26 \cdot 51$ | 7 | 60•70 | 10 | I•33 | $16 \cdot 64$ | $22 \cdot 13$ | $1 \cdot 49$ |
| Totals |  |  | 104 | $149 \cdot 92$ | 36 | 199*99 | 50 |  |  | 98•72 |  |
| II | G Fig. 8 | H | 27 | 45*33 | 9 | $34 \cdot 58$ | 13 | 1-68 | 7*53 | $12 \cdot 65$ | $\pm 0 \cdot 99$ |
| III | G Fig. 9 | H | 8 | $17 \times 93$ | 3 | $16 \cdot 90$ | 4 | 2.24 | 7-28 | $16 \cdot 31$ | $\pm 2.02$ |
|  | H , 14 | " | 53 | 140. 20 | 18 | $166 \cdot 25$ | 29 | $2 \cdot 65$ | 46.71 | 123.78 | $2 \cdot 07$ |
| Totals |  |  | 61 | 158•13 | 21 | $183 \cdot 15$ | 33 |  |  | $140 \cdot 09$ |  |

Data for the Calculation of $\rho^{\prime}$-(Continued).

| Group |  | $\left\lvert\, \begin{aligned} & \text { Hills } \\ & \text { Her } \\ & \text { Plains } \end{aligned}\right.$ | Data for $e_{1}$ |  | Data for $e_{2}$ |  | Data for $e_{3}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{gathered} \text { Number of } \\ \text { Angles } \\ t \end{gathered}$ | Sum of Preliminary Reciprocal Weights [u] |  | 8um of 8quares of Triangular Errors | Number of Geometrical Equations $n$ | Average of <br> Preliminary <br> Reciprocal Weights $u_{0}$ | [ $20 x^{2}$ ] | $\left[w x^{2}\right] \times u_{0}$ |  |
| IV | H <br> Triangles <br> 41-53 | H | 39 | 29*94 | 13 | 30.23 | 9 | 1-03 | 5•OI | 5•16 | $\pm 0.76$ |
|  | Fig. 10 | " | 19 | 19.48 | 6 | 11.58 |  |  |  |  |  |
|  | \% 11 | " | 8 | $6 \cdot 54$ | 3 | 0.97 | 4 | 0.82 | $0 \cdot 36$ | $0 \cdot 30$ | $\cdot 27$ |
|  | " 12 | " | 11 | . $9 \cdot 62$ | 3 | 0.71 | 5 | 0.87 | 1.84 | 1.60 | $\cdot 57$ |
|  | $\begin{array}{\|c} \text { Triangles } \\ 62-63 \end{array}$ | " | 6 | $5 \cdot \mathrm{OI}$ | 2 | 0.48 | 4 | 112 | $0 \cdot 83$ | $0 \cdot 93$ | $\cdot 48$ |
|  | Fig. 13 | " | 8 | $8 \cdot 95$ | 3 | $4 \cdot 41$ |  |  |  |  |  |
|  | $\begin{gathered} \text { Triangles } \\ 65-67 \end{gathered}$ | „ | 9 | $9 \cdot 64$ | 3 | 4•54 |  |  |  |  |  |
|  | $K$ |  |  |  |  |  |  | $0 \cdot 70$ | $4 \cdot 97$ | 3.48 | $\cdot 76$ |
|  | 31-33 | " | 9 | $7 \cdot 56$ | 3 | 1-99 | - |  |  |  |  |
|  | Fig. 26 | " | 14 | $9 \cdot 80$ | 4 | $7 \cdot 61$ | 6 |  |  |  |  |
|  | $\begin{gathered} \text { Triangles } \\ 37-40 \end{gathered}$ | " | 12 | 7•94 | 4 | 5.40 |  |  |  |  |  |
| Totals |  |  | 135 | 114.48 | 44 | $67 \cdot 92$ | 28 |  |  | 11•47 |  |
| V | $\begin{array}{r} \text { Y Fig. } 15 \\ \text { „ } \\ \hline \end{array} 16$ | $H$$H \& P$$\#$$P$ | 18 | 16•09 | 6 | $6 \cdot 50$ | 8 | $0 \cdot 89$ | 10.90 | 9*70 | $\pm 1 \cdot 10$ |
|  |  |  | 18 | $20 \cdot 36$ | 6 | $9 \cdot 03$ | 8 | 1-13 | $7 \cdot 63$ | $8 \cdot 62$ | 1.04 |
|  |  |  | 18 | 19.87 | 6 | 4.71 | 8 | I'10 | $3 \cdot 00$ | $3 \cdot 30$ | 0.64 |
|  |  |  | 3 | $1 \cdot 85$ | 1 | 1.44 |  |  |  |  |  |
| Totals |  |  | 57 | 58•17 | 19 | 21.68 | 24 |  |  | $21 \cdot 62$ |  |
| VI | $\checkmark$ Fig. 18 | H | 14 | 11•17 | 5 | 8•28 | 8 | $0 \cdot 80$ | 4-02 | 3-22 | $\pm 0.63$ |
|  | , 19 | " | 8 | 5.91 | 3 | 6•19 | 4 | -74 | $6 \cdot 60$ | 4-88 | '1.10 |
|  | \% 20 | $\mathrm{H} \& \mathrm{P}$ | 15 | 14.58 | 5 | $3 \cdot 80$ | 7 | -97 | 1.44 | 1.40 | $0 \cdot 45$ |
|  | , 21 | " | 8 | 5.58 | 3 | $14^{\circ} 80$ | 4 | $\cdot 70$ | $5 \cdot 16$ | 3.61 | $0 \cdot 95$ |
|  | , 22 | ״ | 18 | 11.24 | 6 | $43 \cdot 50$ | 8 | -62 | $30 \cdot 01$ | 18.61 | $1 \cdot 53$ |
|  | , 23 | " | 32 | $16 \cdot 97$ | 11 | 29.26 | 16 | $\cdot 53$ | 31-59 | 16•74 | $1 \cdot 02$ |
| Totals |  |  | 95 | $65 * 45$ | 33 | 105•83 | 47 |  |  | $48 \cdot 46$ |  |

Data for the Calculation of $\rho^{\prime}$-(Continued).

| Group |  | $\begin{gathered} \text { Hills } \\ \text { or } \\ \text { Plains } \end{gathered}$ | Data for $e_{1}$ |  | Data for $e_{2}$ |  | Data for $e_{3}$ |  |  |  | $\begin{array}{\|c\|} \hline \text { Approxi- } \\ \text { mate Single } \\ \text { Valuese } \\ \text { of } e_{3} \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{gathered} \text { Number of } \\ \text { Angles } \\ \boldsymbol{t} \end{gathered}$ |  | Number of Triangles | Sum of Squares of Triangular Errors | Number of Geometrical Equations <br> 10 | Average of Preliminary Reciprocoal Weights $u_{0}$ | [ $\left.20 x^{2}\right]$ | $\left[20 x^{2}\right] \times u_{0}$ |  |
| VII | K <br> Triangles 78-85 <br> Fig. 27 <br> Triangles 103-118 | H \& P <br> " <br> " | $\begin{array}{r} 24 \\ 15 \\ 48 \end{array}$ | $\begin{aligned} & 18 \cdot 49 \\ & 13 \cdot 40 \\ & 39 \cdot 44 \end{aligned}$ | 8 <br> 5 $16$ | $\begin{gathered} 4 \cdot 30 \\ 11 \cdot 80 \\ 57 \cdot 39 \end{gathered}$ | 7 | , 0.89 | 7•59 | $6 \cdot 76$ | $\pm 0.98$ |
| Totals |  |  | 87 | 71•33 | 29 | 73.49 | 7 |  |  | 6•76 |  |
| VIII | L Fig. 28 <br> „ 29 <br> , 30 <br> , 31 <br> „ 32 <br> , 33 <br> , 34 <br> , 35 <br> „ 36 <br> „ 37 <br> , 38 <br> „ 39 <br> „ 40 | $H$ $\prime \prime$ $\prime \prime$ $\prime$ $\prime \prime$ $\prime \prime$ $\prime \prime$ $H \& P$ $\prime$ $P$ $H \& P$ $"$ $\prime$ | 8 <br> 15 <br> 15 <br> 8 <br> 8 <br> 8 <br> 23 <br> 15 <br> 8 <br> 15 <br> 30 <br> 15 <br> 15 | $\begin{array}{r} 7 \cdot 77 \\ 12 \cdot 42 \\ 11 \cdot 92 \\ 7 \cdot 18 \\ 6 \cdot 63 \\ 5 \cdot 77 \\ 18 \cdot 25 \\ 9 \cdot 59 \\ 6 \cdot 38 \\ 11 \cdot 32 \\ 21 \cdot 03 \\ 11 \cdot 83 \\ 13 \cdot 13 \end{array}$ | $\begin{gathered} 3 \\ 5 \\ 5 \\ 3 \\ 3 \\ 3 \\ 8 \\ 5 \\ 3 \\ 5 \\ 10 \\ 5 \\ 5 \end{gathered}$ | $\begin{array}{r} 13.07 \\ 16 \cdot 15 \\ 8 \cdot 94 \\ 19 \cdot 35 \\ 3.87 \\ 4.66 \\ 36 \cdot 01 \\ 47.05 \\ 3.08 \\ 6.35 \\ 17.46 \\ 11.08 \\ 6.03 \end{array}$ | 4 <br> 9 <br> 7 <br> 4 <br> 4 <br> 4 <br> II <br> 7 <br> 4 <br> 7 <br> 14 <br> 7 <br> 7 | $\begin{gathered} 0 \cdot 97 \\ \cdot 83 \\ \cdot 79 \\ \cdot 90 \\ \cdot 83 \\ \cdot 72 \\ \cdot 79 \\ \cdot 64 \\ \cdot 80 \\ \cdot 80 \\ \cdot 75 \\ \cdot 70 \\ \cdot 79 \\ \cdot 88 \end{gathered}$ | $\begin{array}{r} 4 \cdot 33 \\ 24 \cdot 89 \\ 10 \cdot 25 \\ 7 \cdot 69 \\ 1 \cdot 16 \\ 1 \cdot 90 \\ 13 \cdot 54 \\ 35 \cdot 26 \\ 7 \cdot 51 \\ 8 \cdot 85 \\ 14 \cdot 24 \\ 6 \cdot 52 \\ 2 \cdot 16 \end{array}$ | $\begin{array}{r} 4 \cdot 20 \\ 20 \cdot 66 \\ 8 \cdot 10 \\ 6 \cdot 92 \\ 0 \cdot 96 \\ 1 \cdot 37 \\ 10 \cdot 70 \\ 22 \cdot 57 \\ 6 \cdot 01 \\ 6 \cdot 64 \\ 9 \cdot 97 \\ 5 \cdot 15 \\ 1 \cdot 99 \end{array}$ | $\pm 1.02$ <br> $1 \cdot 52$ <br> $1 \cdot 08$ <br> $1 \cdot 32$ <br> 0.49 <br> -. 59 <br> $0 \cdot 99$ <br> $1-80$ <br> $1 \cdot 23$ <br> 0.97 <br> 0.84 <br> 0.86 <br> $0 \cdot 53$ |
| Totals |  |  | 183 | 143.22 | 63 | 193'10 | 89 |  |  | 105 ${ }^{24}$ |  |

Synopsis of the Values of $\rho^{\prime \prime}$, and the Evidence for their Determination.


A few details of the preceding table require to be explained :-
Group I comprises 7 figures of which the angles were measured with the same instrument and under the same circumstances: therefore $\rho^{\prime}$ is taken $=\frac{e_{1}}{e_{3}}$.

Group II comprises 1 polygon of which the angles were measured partly by one instrument and partly by another. Prior to the reduction of the figure the weights of the angles were made absolute by the application of factors; $\frac{e_{1}}{e_{3}}$ should therefore be sensibly $=1$ and may be assumed $=1$.

Group III comprises a quadrilateral at the southern extremity of the Khanpisura Series and a large compound figure at the south extremity of the Singi Series. The same instrument was used but the measures were not made on the same number of zeros. It was thought advisable to combine the two figures to form one group as the quadrilateral could not stand alone and $\rho^{\prime}$ was taken $=\frac{e_{1}}{e_{3}}$.

Group IV embraces 25 single triangles and 5 figures including 22 triangles. The data therefore for determining $e_{2}$ are considerably in excess of those for $e_{3}$, but as there are sufficient data for a fair determination of $e_{3}, \rho^{\prime}$ is taken $=\frac{e_{1}}{e_{3}}$.

Group V includes 3 polygonal figures and 1 triangle. There is no apparent reason for departing from the rule, therefore $\rho^{\prime}$ is taken $=\frac{e_{1}}{e_{3}}$.

Group VI embraces 6 polygonal figures of which the angles were measured under the same circumstances, except that there were two observers. Here $\rho^{\prime}=\frac{e_{1}}{e_{3}}$.

Group VII comprises 24 triangles and only 1 polygonal figure. In this case $\rho^{\prime}$ is taken $=\frac{e_{1}}{e_{2}}$.

Group VIII is entirely composed of polygonal figures, and $\rho^{\prime}=\frac{e_{1}}{e_{3}}$.

## The Weights employed in the Simultaneous Reduction of the South-West Quadrilateral.

On dividing the several Preliminary Reciprocal Weights of the angles in each group by the corresponding value of the Factor $\rho^{\prime 2}$, as now set forth, we acquire the best values of the Final or Absolute Reciprocal Weights of the observed angles which appear to be obtainable. And had it been desirable, in the Simultaneous Reduction, to introduce the circuit errors of the whole of the angles of the polygonal figures and net-works, we should have wanted nothing more; for then the reciprocal weights to be employed would have been the absolute reciprocal weights of the observed angles. But this would have caused so large a number of equations to be presented for simultaneous treatment, that the solution would not have been manageable. Thus such portions only of the polygonal figures and net-works have been introduced into the Simultaneous Reduction as are necessary to complete the chains of single triangles, and the remaining were reserved for subsequent treatment, figure by figure.

This departure from rigorous accuracy in the treatment of the facts of observation, has necessitated a transition from the reciprocal weights of the observed angles to those of the corrected angles, for reasons which have been fully set forth at page 168 of Volume II. The transition is performed with all desirable exactitude, by multiplying the average absolute reciprocal weight of all the angles appertaining to any single triangle, polygonal figure, or net-work, by the factor $(t-n) \div t$-in which $t$ is the number of observed angles and $n$ the number of geometrical conditions for the figure-see Section 5 of Chapter XV, Volume II. Illustrations of the differences of this value of the factor and the value which obtains when the variations of weight are recognised, will be found at pages 220 and 241 of the same volume.

If we now put $u_{o}$ for the average value of the Preliminary Reciprocal Weights of the Observed Angles of a single triangle, or those of a polygonal figure, as formerly; also
$u_{c}$ for the average value of the Absolute Reciprocal Weights of the Corrected Angles of the same triangle or figure, we have

$$
u_{c}=\frac{u_{o}}{\rho^{\prime 2}} \times \frac{t-n}{t}
$$

It will be evident that $u_{c}$ corresponds to the $u$ of the formulx for the normal equations from which the values of the Indeterminate Factors are determined for the Simul. taneous Reduction; see Section 11 of Chapter II.

The following table gives the average values of $u_{c}$ for the angles of every circuit triangle and also the corresponding value of $\frac{u_{c}}{3}$ employed in the calculations. The subscripts to the $\rho$ 's denote the group to which each appertains.

The Absolute Reciprocal Weights of the Figurally Corrected Angles with the data for their determination.

| $\begin{gathered} \text { All Angles } \\ \text { in } \\ \text { Triangles } \end{gathered}$ |  | $u_{0}$ | $\rho^{\prime 8}$ | $\frac{t-n}{t}$ | $u_{c}=$ $w_{0} \cdot \frac{t-n}{p^{\prime 2} t}$ | $\frac{u_{c}}{3}$ | $\begin{gathered} \text { All Angles } \\ \text { in } \\ \text { Triangles } \end{gathered}$ | 策 | $u_{0}$ | $\rho^{\prime 2}$ | $\frac{t-n}{t}$ | $u_{c}=$ $\boldsymbol{u}_{0} \cdot \frac{t-n}{\rho^{\prime 2} t}$ | $\frac{u_{c}}{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1,2 | 1 | 1.69 | $\rho^{\prime 2}{ }_{1}, 0.7$ | $4 \div 8,0 \cdot 5$ | 1.21 | 0.4 | 43 |  | $0 \bigcirc 75$ | $\mathrm{P}^{\prime 2}, 2 \cdot 2$ | $2 \div 3,007$ | 0.24 | 0.1 |
| 3-5 | 2 | $1 \cdot 58$ | " | $8 \quad 15,0.5$ | 1•13 | $0 \cdot 4$ | 44 |  | 0.64 | " | $2 \quad 3,0.7$ | $0 \cdot 20$ | $0 \cdot 1$ |
| 6-11 | 3 | $1 \cdot 36$ | " | $14 \quad 27,0.5$ | $0 \cdot 97$ | $0 \cdot 3$ | 45 |  | 0•95 | " | $2 \quad 3,0.7$ | $0 \cdot 30$ | $0 \cdot 1$ |
| 12-15 | 4 | 1-26 | " | 10 18,0.6 | 1-08 | $0 \cdot 4$ | 46 |  | $0 \cdot 81$ | " | $2 \quad 3,0.7$ | 0.26 | $0 \cdot 1$ |
| 16,17 | 5 | 1-88 | " | $48,0.5$ | 1-34 | 0.5 | 47 |  | 0.83 | " | $2 \quad 3,0.7$ | 0.26 | $0 \cdot 1$ |
| 18,19 | 6 | $1 \cdot 48$ | " | $48,0.5$ | 1-06 | 0.4 | 48 |  | 0.63 | " | $2 \quad 3,0.7$ | $0 \cdot 20$ | $0 \cdot 1$ |
| 20-23 | 7 | $1 \cdot 33$ | " | $10 \quad 20,0.5$ | $0 \cdot 95$ | $0 \cdot 3$ | 49 |  | $0 \cdot 74$ | " | $2 \quad 3,0.7$ | 0.24 | $0 \cdot 1$ |
| 24-28 | 8 | 1.68 | $\rho^{\prime 2}{ }_{8}, 1 \cdot 0$ | 14 27,0.5 | $0 \cdot 84$ | $0 \cdot 3$ | 50 |  | $0 \cdot 76$ | " | $2 \quad 3,007$ | $0 \cdot 24$ | $0 \cdot 1$ |
| 29,30 | 9 | 2.24 | $\rho^{\prime \prime}{ }_{3}, 0.6$ | $4 \quad 8,0.5$ | 1.87 | 0.6 | 51 |  | 0.72 | " | $2 \quad 3,0.7$ | 0.23 | $0 \cdot 1$ |
| 31 |  | 0.89 | $p_{4}^{\prime 2}, 2.2$ | $2 \quad 3,0.7$ | $0 \cdot 28$ | $0 \cdot 1$ | 52 |  | $1 \cdot 0$ | " | $2 \quad 3,0.7$ | $0 \cdot 32$ | $0 \cdot 1$ |
| 32 |  | - 094 | " | $2 \quad 3,0.7$ | $0 \cdot 30$ | $0 \cdot 1$ | 53 |  | 0.88 | " | $2 \quad 3,0.7$ | 0.28 | $0 \cdot 1$ |
| 33 |  | 0.69 | " | $2 \quad 3,0 \% 7$ | 0.22 | $0 \cdot 1$ | 54-56 | 10 | 1.03 | " | 10 19,0.5 | 0.23 | $0 \cdot 1$ |
| 34-36 | 26 | $0 \cdot 70$ | " | 8. 14,0.6 | $0 \cdot 19$ | $0 \cdot 1$ | 57,58 | 11 | 0.82 | " | $48,0.5$ | $0 \cdot 19$ | $0 \cdot 1$ |
| 37 |  | 0.76 | " | $2 \quad 3,0.7$ | 0.24 | $0 \cdot 1$ | 59-61 | 12 | 0.87 | " | 6 11, 0.5 | $0 \cdot 20$ | $0 \cdot 1$ |
| 38 |  | 0.66 | " | $2 \quad 3,0.7$ | 0.21 | $0 \cdot 1$ | 62 |  | 0.87 | " | $2 \quad 3,0.7$ | $0 \cdot 28$ | $0 \cdot 1$ |
| 39 |  | $0 \cdot 49$ | " | $2 \quad 3,0.7$ | $0 \cdot 16$ | $0 \cdot 1$ | 63 |  | 0.80 | " | $2 \quad 3,0.7$ | 0.25 | $0 \cdot 1$ |
| 40 |  | 0.73 | " | $2 \quad 3,0.7$ | 0.23 | $0 \cdot 1$ | 64 | 13 | $1 \cdot 12$ | " | $48,0.5$ | 0.25 | $0 \cdot 1$ |
| 41 |  | 0.63 | " | $2 \quad 3,0.7$ | $0 \cdot 20$ | O'1 | 65 |  | $1 \cdot 15$ | " | $2 \quad 3,0.7$ | $0 \cdot 37$ | $0 \cdot 1$ |
| 42 |  | 0.66 | " | $2 \quad 3,0.7$ | 0.21 | $0 \cdot 1$ | 66 |  | 1.24 | " | $2 \quad 3,0 \cdot 7$ | $0 \cdot 39$ | $0 \cdot 1$ |

The Absolute Reciprocal Weights of the Figurally Corrected Angles with the data for their determination-(Continued).

| $\begin{aligned} & \text { All Angles } \\ & \text { in } \\ & \text { Triangles } \end{aligned}$ | 暏 | $u_{0}$ | $p^{28}$ | $\frac{t-n}{t}$ | $u_{c}=$ $w_{0} \cdot \frac{t-n}{\rho^{\prime 2} t}$ | $\frac{u_{c}}{\overline{3}}$ | $\begin{aligned} & \text { All Angles } \\ & \text { in } \\ & \text { Triangles } \end{aligned}$ | 㫛 | $u_{0}$ | $p^{\prime 8}$ | $\frac{t-n}{t}$ | $u_{c}=$ $u_{0} \cdot \frac{t-n}{\rho^{\prime 2} t}$ | $\frac{u_{c}}{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 67 |  | 0.82 | $\rho^{\prime 2}{ }_{4}, 2.2$ | $2 \div 3,0 \% 7$ | $0 \cdot 26$ | $0^{\circ} 1$ | 118 |  | 0.85 | $\rho^{\prime 2} 7,1 \times 0$ | $2+3,0 \cdot 7$ | 0.60 | $0 \cdot 2$ |
| 68-75 | 14 | $2 \cdot 65$ | $\rho^{12}{ }_{3}, 0.6$ | $24 \quad 53,0.5$ | 2.21 | $0 \cdot 7$ | 114 |  | 0.83 | " | $23,0 \cdot 7$ | 0. 58 | $0 \cdot 2$ |
| 76,77 | 10 | 1-03 | $\mathrm{P}^{18} \mathrm{~s}^{2 \cdot 2}$ | $10 \quad 19,0.5$ | $0 \cdot 33$ | $0^{\circ} \mathrm{I}$ | 115 |  | $0 \cdot 93$ | " | $2 \quad 3,0.7$ | 0.65 | $0^{\circ} 2$ |
| 78 |  | 1.06 | $\rho^{18} 7,1 \cdot 0$ | $2 \quad 3,0 \cdot 7$ | 0.74 | $0 \cdot 3$ | 116 |  | 0.68 | " | $2 \quad 3,0 \cdot 7$ | $0 \cdot 48$ | $0 \cdot 2$ |
| 79 |  | 0.89 | " | $2 \quad 3,0 \cdot 7$ | 0.62 | $0 \cdot 2$ | 117 |  | 0.97 | " | $2 \quad 3,0 \cdot 7$ | 0.68 | $0^{\circ} 2$ |
| 80 |  | -0.92 | " | $2 \quad 3,0.7$ | 0.64 | $0 \cdot 2$ | 118 |  | I'OI | " | $2 \quad 3,0 \circ 7$ | $0 \cdot 71$ | $0 \cdot 2$ |
| 81 |  | 0.63 | " | $2 \quad 3,0 \cdot 7$ | 0'44 | $0 \cdot 2$ | 119-122 | 23 | 0.53 | $\rho^{29}, 0.6$ | 16 32,0.5 | O^44 | 0.2 |
| 88 |  | $0 \cdot 57$ | " | $2.3,007$ | 0.40 | $0 \cdot 1$ | 123,124 | 22 | 0.62 | " | $10 \quad 18,0.6$ | 0.62 | $0^{\circ} 2$ |
| 83 |  | $0 \cdot 73$ | 3 | $2 \quad 3,0.7$ | 0.51 | $0 \cdot 2$ | 125,126 | 18 | 0.80 | 3 | 6 14,0.4 | $0 \cdot 53$ | $0 \cdot 2$ |
| 84 |  | 0.62 | " | $2 \quad 3,0.7$ | 0.43 | $0 \cdot 1$ | 127,128 | 19 | 0.74 | " | $4.8,0.5$ | 0.62 | $0 \cdot 2$ |
| 85 |  | 0.73 | " | 2 3,0.7 | $0 \cdot 51$ | $0 \cdot 2$ | 129-181 | 20 | $0 \cdot 97$ | 9 | $8 \quad 15,0.5$ | 0.81 | $0 \cdot 3$ |
| 86 | 27 | 0.89 | " | $8 \quad 15,0.5$ | 0.45 | 0*2 | 182,183 | 21 | $0 \cdot 70$ | " | $48,0.5$ | $0 \cdot 58$ | $0 \cdot 2$ |
| 87-90 | 15 | 0.89 | $P^{\prime 8}{ }_{5}, 1 \cdot 1$ | 10 18,0.6 | 0.49 | $0 \cdot 2$ | 184,185 | 22 | . 0.62 | " | $10 \quad 18,0.6$ | 0.62 | $0 \cdot 2$ |
| 91-94 | 16 | 1•13 | " | 10 18,0.6 | 0.62 | $0 \cdot 2$ | 186,187 | 28 | - 097 | $\rho^{\prime 2}{ }_{8}, 0.6$ | $48,0^{\circ} 5$ | 0.81 | $0 \cdot 3$ |
| 95-98 | 17 | 1.10 | " | $10 \quad 18,0.6$ | 0.60 | $0 \cdot 2$ | 138,189 | 29 | 0.83 | " | $6 \quad 15,0.4$ | O. 55 | 0.2 |
| 99 |  | 0.62 | 3 | $2 \quad 3,0.7$ | $0 \cdot 39$ | 0'1 | 140-142 | 30 | 0'79 | " | $8 \quad 15,0.5$ | 0.66 | $0 \cdot 2$ |
| 100-102 | 27 | 0.89 | $\rho^{18} 7,1 \times 0$ | $8 \quad 15,0 \cdot 5$ | 0.45 | $0 \cdot 2$ | 143,144 | 81 | - ${ }^{\circ} 90$ | " | $48,0.5$ | $0 \cdot 75$ | $0 \cdot 3$ |
| 103 |  | $0 \cdot 59$ | " | $2 \quad 3,0.7$ | $0 \cdot 41$ | O'1 | 145,146 | 82 | 0.83 | " | $48,0.5$ | 0.69 | 0.2 |
| 104 |  | $0 \cdot 63$ | " | $2 \quad 3,0 \cdot 7$ | O'44 | $0 \cdot 2$ | 147,148 | 33 | $0 \cdot 72$ | " | $4 \quad 8,0.5$ | 0.60 | $0 \cdot 2$ |
| 105 |  | 0.62 | " | $2 \quad 3,0 \% 7$ | $0 \cdot 43$ | $0 \cdot 1$ | 149-152 | 34 | 0.79 | " | 12 23, ${ }^{\circ} 5$ | 0.66 | $0 \cdot 2$ |
| 106 |  | 0.67 | " | $2 \quad 3,0.7$ | 0.47 | $0 \cdot 2$ | 153-155 | 35 | 0.64 | 3 | $8 \quad 15,0 \cdot 5$ | $0 \cdot 53$ | $0 \cdot 2$ |
| 107 |  | $0 \cdot 90$ | " | $2 \quad 3,0.7$ | 0.63 | $0 \cdot 2$ | 156,157 | 36 | 0.80 | " | $48,0 \cdot 5$ | 0.67 | $0 \cdot 2$ |
| 108 |  | $0 \cdot 70$ | " | $2 \quad 3,0.7$ | 0.49 | $0 \cdot 2$ | 158-160 | 37 | $0 \cdot 75$ | " | $8 \quad 15,0 \cdot 5$ | 0.63 | $0 \cdot 2$ |
| 109 |  | 0.68 | " | $2 \quad 3,0.7$ | 0.48 | $0 \cdot 2$ | 161-166 | 38 | 0'70 | " | 16 30, 0.5 | 0.58 | $0^{\circ} 2$ |
| 110 |  | 114 | * | $2 \quad 3,0 \cdot 7$ | 0.80 | $0 \cdot 3$ | 167-169 | 39 | 0•79 | " | 8 15,0.5 | 0.66 | '0*2 |
| 111 |  | 0.85 | " | $2 \quad 3,0 \cdot 7$ | 0.60 | $0 \cdot 2$ | 170-172 | 40 | 0.88 | " | 8 15,0.5 | $0 \cdot 73$ | $0^{\circ} 2$ |
| 112 |  | 1.09 | " | 2 3,0.7 | 0.76 | $0 \cdot 3$ |  |  |  |  | - |  |  |

## 14.

## The Coefficients of the Indeterminate Factors in the Values of the Unknown Quantities.

On reference to page 17 it will be seen that the general expression for the error $x_{p}$ of any angle $X_{p}$ appertaining to a trigonometrical figure, is

$$
x_{p}=u_{p}\left(a_{p} \lambda_{a}+b_{p} \lambda_{b}+\ldots+n_{p} \lambda_{n}\right) ;
$$

so that the coefficients of $\lambda_{a}, \lambda_{b}, \ldots \lambda_{n}$, the indeterminate factors, are products of the reciprocal weight of the angle by the coefficients of the $x_{p}$ in the several absolute geometrical equations to which the indeterminate factors are respectively related. But one of the three unknown quantities appertaining to every triangle having been eliminated, as a preliminary to the Simultaneous Reduction of the South-West Quadrilateral, the coefficients of the indeterminate factors take a more complex form, which is given on page 38. The expressions are

$$
\begin{aligned}
& y_{p}={ }_{1} \mathbb{B}_{p} \mathbf{\Lambda} \text { + }{ }_{2} \mathbb{B}_{p} \Lambda+\ldots+{ }_{n} \mathbb{B}_{p} \Lambda ; \\
& z_{p}={ }_{1} \mathbb{C}_{p 1} \Lambda+{ }_{2} \mathbb{C}_{p_{2}} \Lambda+\ldots+{ }_{n} \mathbb{C}_{p} \Lambda ;
\end{aligned}
$$

where

$$
\begin{array}{ll}
{ }_{1} \mathbb{B}_{p}=\frac{u_{p}}{3}\left(2_{1} \mathfrak{H}_{p}-{ }_{1} \mathfrak{r}_{p}\right) ; & { }_{2} \mathbb{B}_{p}=\frac{u_{p}}{3}\left({ }_{2} \mathfrak{H}_{p}-{ }_{2} \mathfrak{l}_{p}\right) ; \& c . ; \\
{ }_{1} \mathbb{C}_{p}=\frac{u_{p}}{3}\left({ }_{1} \mathfrak{l}_{p}-{ }_{1} \mathfrak{H}_{p}\right) ; & { }_{2} \mathbb{C}_{p}=\frac{u_{p}}{3}\left({ }_{2} \mathfrak{l}_{p}-{ }_{2} \mathfrak{H}_{p}\right) ; \& c . ;
\end{array}
$$

the left-hand subscripts indicating the number of any one of the equations into which the errors $y$ and $z$ of any, the $p$ th, triangle happen to enter.

The coefficients $\mathfrak{H}_{p}$ and $\mathfrak{c}_{p}$ of $y_{p}$ and $z_{p}$, in each equation into which these unknown quantities enter, are given in the table in Section 12; the value of $\frac{u}{3}$ for every triangle will be found in the table on pages 86 and 87 . From these data $\mathfrak{B}_{p}$ and $\mathbb{C}_{p}$ were obtained and entered in the following table.

## Examples.

$$
\begin{aligned}
{ }_{9} \mathbf{B}_{63} & =\frac{u_{63}}{3}\left(2 \times{ }_{9} \mathfrak{t}_{63}-{ }_{9} \mathfrak{t}_{63}\right) \\
& =\cdot 1(2 \times 7+7)=+2 \cdot 1 ; \\
{ }_{11} \mathbb{C}_{73} & =\frac{u_{73}}{3}\left(2 \times{ }_{11} \mathfrak{r}_{73}-{ }_{11} \mathfrak{t}_{73}\right) \\
& =\cdot 7(2 \times \cdot 0121-\cdot 0108)=+\cdot 0094
\end{aligned}
$$



|  | 3 | $\mathfrak{C}$ |  | 3 | $\mathfrak{d}$ | 㜢 | 16 | $\mathscr{T}$ |  | 3 | $\mathfrak{C}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4th Equation-(Continued). |  |  | 5th Equation-(Continued)'. |  |  | 6th Equation-(Continued). |  |  | 7th Equation-(Continued). |  |  |
| 22 | -0.2980 | $-0.2961$ | 3 | - 16.0 | + 20.0 | 49 | $\|-0.0014\|$ | +0.0013 | 42 | -0.0033 | -0.0020 |
| 23 | + 2954 | + 2996 | 4 | 12.4 | 17.6 | 50 | -0007 | -0014 | 43 | + $\cdot 0029$ | + 0021 |
| 24 | - 2986 | - $\cdot 2969$ | 5 | $10 \cdot 4$ | 14.8 | 51 | -0014 | -0013 | 44 | - .0026 | - .0016 |
| 25 | + 2959 | + 2998 | 6 | 12.9 | $7 \cdot 8$ | 52 | -0003 | -0009 | 45 | -0026 | -0016 |
| 26 | - 2999 | - $\cdot 2970$ | 7 | $6 \cdot 6$ | 3.3 | 53 | -0001 | -0006 | 46 | + 0012 | + $\cdot 0018$ |
| 27. | + $\cdot 2964$ | + 3010 | 8 | 12.0 | $7 \cdot 8$ |  | Left-hand B | Branch | 47 | -0013 | -0020 |
| 28 | - -3009 | - 2980 | 9 | $6 \cdot 3$ | 9.9 | 1 | +0.0128 | -0.0442 | 48 | - -0019 | - .0004 |
| 29 | +.5974 | +. 6047 | 10 | $16 \cdot 2$ | 19.8 | 2 | -0249 | -0003 | 49 | + -0012 | + .0012 |
| 30 | - . 6000 | - 6000 | 11 | 1.5 | 11.1 | 3 | -0216 | - 0087 | 50 | - -0016 | - .0002 |
| 5th Equation. Linear |  |  | 31 | $3 \cdot 1$ | $2 \cdot 0$ | 4 | - . 0006 | -0230 | 51 | + $\cdot 0008$ | + $\cdot 0007$ |
| Right-hand Branch |  |  | 32 | $2 \cdot 5$ | $3 \cdot 8$ | 5 | +.0140 | -0009 | 52 | -.0008 | -0002 |
| 41 | + 4.7 | - 4.9 | 33 | $6 \cdot 2$ | $5 \cdot 2$ | 6 | - $\cdot 0018$ | -0118 | 53 | + -0010 | -0000 |
| 42 | $3 \cdot 1$ | $2 \cdot 9$ | 34 | $4 \cdot 2$ | $2 \cdot 1$ | 7 | + .0088 | + .0055 |  | eft-hand B | ranch |
| 43 | $2 \cdot 7$ | 3.0 | 35 | $4 \cdot 1$ | 3.7 | 8 | - .0038 | - .0109 | 1 | +0.0295 | -0.0226 |
| 44 | 4.4 | 3.4 | 36 | 3.3 | $6 \cdot 9$ | 9 | + $\cdot 0087$ | + -0055 | 2 | -0130 | -0182 |
| 45 | $4 \cdot 6$ | 3.2 | 37 | 2.7 | 2.4 | 10 | -0107 | -0035 | 3 | -0088 | -0286 |
| 46 | $4 \cdot 1$ | $3 \cdot 1$ | 38 | $3 \cdot 2$ | $2 \cdot 2$ | 11 | - .0146 | -0053 | 4 | -0226 | - 0154 |
| 47 | 3.1 | 4.4 | 39 | 2.5 | 3.2 | 31 | -0022 | - .0020 | 5 | -0049 | -0203 |
| 48 | $2 \cdot 3$ | $3 \cdot 1$ | 40 | $5 \cdot 8$ | 3.5 | 32 | +.0026 | + .0013 | 6 | -0210 | $\cdot 0074$ |
| 49 | $2 \cdot 8$ | 2.6 | 6th | wation. | Latitude. | 33 | --0016 | - $\cdot 0015$ | 7 | $\cdot 0051$ | -0061 |
| 50 | $3 \cdot 1$ | 2.6 |  | ight-hand | Branch | 34 | + .0021 | + .0008 | 8 | -0191 | -0084 |
| 51 | $4 \cdot 6$ | $4 \cdot 1$ | 41 | -0.0063 | +0.0068 | 35 | - 0010 | - -0013 | 9 | -0066 | -0141 |
| 52 | $3 \cdot 1$ | 4.7 | 42 | $\cdot 0031$ | -0036 | 36 | +.0013 | -0000 | 10 | -0193 | -0268 |
| 53 | 3.5 | $1 \cdot 9$ | 43 | -0027 | -0036 | 37 | - .0014 | $\cdot{ }^{-004}$ | 11 | -00+7 | -0156 |
| 54 | 2.5 | 1.4 | 44 | $\cdot 0037$ | -0032 | 38 | + 0006 | + .0004 | 31 | -0033 | -0023 |
| 55 | $0 \cdot 0$ | $5 \cdot 1$ | 45 | -0038 | -0031 |  | - . 010 | -0003 | 32 | -0022 | -0045 |
|  | t-hand B | ranch | 46 | -0030 | -0020 | 7th | quation. | Longitude. | 33 | -0049 | -0042 |
| 1 | - 18.4 | + $32 \cdot 0$ | 47 | -0023 | -0028 |  | Right-hand | Branch | 34 | -0022 | -0018 |
| 2 | $20 \cdot 0$ | 10.0 | 48 | -0007 | $\cdot 0022$ | 41 | $\mid+0.0034$ | +0.0029 | 35 | -0025 | -0021 |


|  | 3 | $\mathfrak{C}$ |  | 3 | $\mathfrak{C}$ | 㜢 | 16 | $\mathfrak{C}$ |  | 3 | $\mathfrak{d r}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7th Equation-(Continued). |  |  | 8th Equation-(Continuad). |  |  | 9th Equation-(Continued). |  |  | 10th Equation-(Continued). |  |  |
| 36 | +0.0012 | -0.0035 | 8 | -0.2925 | -0.3033 | 54 | + 2.5 | - 14 | 46 | -0.0167 | +0.0116 |
| 37 | -0008 | $\cdot 0015$ | 9 | + 3026 | + $\cdot 2945$ | 55 | 2.7 | 3.9 | 47 | -0127 | -0168 |
| 38 | -0007 | $\cdot 0006$ | 10 | $\cdot 3075$ | - 2895 | 56 | $4 \cdot 1$ | $1 \cdot 9$ | 48 | $\cdot 0078$ | -0127 |
| 39 | -0000 | -0012 | 11 | - - 5981 | -2939 | 57 | $1 \cdot 9$ | $4 \cdot 4$ | 49 | -0109 | -0094 |
| 8th Equation. |  | Azimuth. | 31 | -0988 | - $\cdot 1009$ | 58 | 3.7 | 3.2 | 50 | -0104 | -0102 |
| Right-hand Branch |  |  | 32 | + $\cdot 1008$ | + .0983 | 59 | $2 \cdot 8$ | $2 \cdot 0$ | 51 | -0168 | -0143 |
| 41 -0.0986 |  | -0.0988 | 33 | - -098I | - $\cdot 1016$ | 60. | $5 \%$ | $7 \cdot 2$ | 52 | -0100 | -0166 |
| 42 | + $\cdot 0987$ | + -0992 | 34 | + 1009 | + •0993 | 61 | $1 \cdot 7$ | $2 \cdot 5$ | 53 | -0119 | -0064 |
| 43 | - -0988 | - -0992 | 35 | - -0990 | - •1009 | 62 | $2 \cdot 6$ | $4 \cdot 3$ | 54 | -0077 | -0049 |
| 44 | + -0990 | + -0994 | 36 | + ${ }^{1005}$ | + -0986 | 63 | $2 \cdot 1$ | $2 \cdot 1$ | 55 | -0088 | -0128 |
| 45 | -0990 | -0993 | 37 | - -0997. | - 1006 | 64 | $2 \cdot 6$ | $1 \cdot 3$ | 56. | -0123 | -0061 |
| 46 | - -0995 | - -0992 | 38 | + $\cdot 1003$ | + -0998 | 65 | 2.4 | $4 \cdot 2$ | 57 | -0058 | -0138 |
| 47 | -0995 | -0992 | 39 | $-1000$ | - •1005 | 66 | 3.2 | 3.1 | 58 | -0106 | -0096 |
| 48 | + -0992 | + -0999 | 40 | + • 1000 | + $\cdot 1000$ | 67 | $1 \cdot 6$ | $2 \cdot 6$ | 59 | -0079 | -0061 |
| 49 | - -0996 | - •0995 | 9th Equation. Linear. |  |  | 68 | $23^{\circ} \mathrm{t}$ | $16 \cdot 8$ | 60 | -0159 | -0203 |
| 50 | + -0994 | + -0999 | Direct |  |  | 69 | $19 \cdot 6$ | 18.2 | 61 | -0042 | $\cdot 0067$ |
| 51 | - -0997 | - -0997 | 41 | + 4.7 | - 4.9 | 70 | 25:9 | 32.9 | 62 | -0065 | $\cdot 0114$ |
| 52 | + •0997 | + • 1001 | 42 | $3 \cdot 1$ | 2.9 | 71 | $27 \cdot 3$ | 29.4 | 63 | -0045 | -0054 |
| 53 | - -0996 | - $\cdot 1000$ | 43 | $2 \cdot 7$ | 3.0 | 72 | $9 \cdot 8$ | 25.9 | 64 | -0057 | -0034 |
| 54 | + • 1000 | + $\cdot 1000$ | 44 | $4 \cdot 4$ | 3.4 | 73 | $44^{1}$ | $21 \cdot 0$ | 65 | -0050 | -0094 |
| 55 | - 2000 | - 1000 | 45 | $4 \cdot 6$ | 3.2 | 74 | 21.0 | $35 \cdot 7$ | 66 | -0058 | $\cdot 0069$ |
| Left-hand Branch |  |  | 46 | $4 \cdot 1$ | $3 \cdot 1$ | 75 | $16 \cdot 1$ | 13.3 | 67 | -0027 | -0047 |
| 1 | $-0 \cdot 3885$ | -0.4085 | 47 | $3 \cdot 1$ | 4.4 | 10th Equation. Latitude. |  |  | 68 | -0402 | $\cdot 0306$ |
| 2 | + ${ }^{4051}$ | + 3928 | 48 | $2 \cdot 3$ | 3.1 | Direct |  |  | 69 | -0246 | $\cdot 0287$ |
| 3 | $\cdot 4034$ | $\cdot 3887$ | 49 | $2 \cdot 8$ | $2 \cdot 6$ | 41 | -0.0220 | +0.0224 | 70 | -0346 | -0511 |
| 4 | - - 3911 | - 4061 | 50 | $3 \cdot 1$ | $2 \cdot 6$ | 42 | -0129 | -0135 | 71 | -0272 | -0279 |
| 5 | + ${ }^{4019}$ | + 3922 I | 51 | $4 \cdot 6$ | 4.1 | 43 | -0119 | -0130 | 72 | -0010 | -0354 |
| 6 | - $\cdot 2918$ | - 3029 | 52 | $3 \cdot 1$ | 4.7 | 44 | -0176 | -0147 | 73. | -0242 | -0111 |
| 7 | + 3020 | + $\cdot 2976$ | 53 | 3.5 | 1.9 | 45 | -0184 | -0139 | 74 | $\cdot 0038$ | -0223 |


|  | 33 | $\mathfrak{C}$ |  | ${ }^{6}$ | $\mathfrak{C}$ |  | 36 | $\mathfrak{C}$ | \|laty | 3 | $\mathfrak{C}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 11th | Equation. | Longitude. | 11th | Equation | -(Continued). | 12th | Equation- | -(Continued). | 13th | Equation | -(Continue) |
|  | Direc |  | 69 | + +0.02671 | +0.0183 | 62 | -0.0978 | -0.0982 | 100 | $1+0.4$ | - 8.0 |
| 41 | +0.0098 | +0.0112 | 70 | - . 0295 | - .0154 | 63 | + ${ }^{\circ} 0.980^{\circ}$ | + .0983 |  | eft-hand B | Branch |
| 42 | - .0112 | - . 0088 | 71 | + - 0135 | + -0169 | 64 | - -0980 | - -0983 | 41 | $-4.7$ | $+4.9$ |
| 43 | + -0097 | + -0100 | 72 | - -022I | -0002 | 65 | + -0,82 | +' 00984 | 42 | $3 \cdot 1$ | $2 \cdot 9$ |
| 44 | - -0108 | - . 0083 | 73 | + $\cdot 0067$ | -0094 | 66 | - -0, 080 | - -0988 | 43 | $2 \cdot 7$ | $3 \cdot 0$ |
| 45 | -0108 | -0083 | 74 | - -0172 | - 0101 | 67 | + -0,986 | + -0,987 | 44 | 4.4 | 3.4 |
| 46 | + $\cdot 0078$ | + •0098 | 12th | Equation. | Azimuth. | 68 | -6899 | -6906 | 45 | $4 \cdot 6$ | 3.2 |
| 47 | -0080 | -0101 |  | Direct |  | 69 | - - 6908 | - . 6937 | 46 | $4 \cdot 1$ | $3 \cdot 1$ |
| 48 | - -0097 | - .0072 | 41 | -0.0964 | -0.0958 | 70 | + $\cdot 6898$ | + 69948 | 47 | $3 \cdot 1$ | 4.4 |
| 49 | + . 0080 | + -0091 | 42 | + 0.098 | + -0968 | 71 | - 6954 | - . 6943 | 48 | $2 \cdot 3$ | 3.1 |
| 50 | - -0095 | - -0071 | 43 | - -0964 | - .0963 | 72 | + 6925 | + $\cdot 7003$ | 49 | $2 \cdot 8$ | $2 \cdot 6$ |
| 51 | +, $\cdot 0072$ | + •0088 | 44 | + -0959 | + -0970 | 73 | - -6976 | - •6970 | 50 | $3 \cdot 1$ | $2 \cdot 6$ |
| 52 | - .0087 | - .0062 | 45 | -0959 | - 0970 | 74 | + 6943 | + 7033 | 51 | $4 \cdot 6$ | $4^{\cdot 1}$ |
| 53 | + $\cdot 0076$ | + -0077 | 46 | - -0972 | - -0964 |  | - 7000 | - 7000 | 52 | $3 \cdot 1$ | $4 \cdot 7$ |
| 54 | - -0078 | - -0071 | 47 | -0971 | -0962 | 13 | Equation | inear. | 53 | 3.5 | $1 \cdot 9$ |
| 55 | + $\cdot 0074$ | + .0073 | 48 | + -0964 | + .0975 |  | ight-hand B | Branch | 54 | + 3.1 | 3.4 |
| 56 | - -0075 | - . 0067 | 49 | - -0971 | - .0967 | 87 | + 11.4 | - 7.2 | 76 | - 2.7 | $6 \cdot 6$ |
| 57 | + $\cdot 0071$ | + .0069 | 50 | +.0965 | + -0975 | 88 | $9 \cdot 6$ | $9 \cdot 0$ | 77 | 4.3 | $3 \cdot 8$ |
| 58 | - -0070 | - . 0063 | 51 | - . 0974 | - .0967 | 89 | $5 \cdot 6$ | $8 \cdot 8$ | 78 | 14.7 | $8 \cdot 7$ |
| 59 | + .0069 | + .0063 | 52 | + .0968 | + -0979 | 90 | $7 \cdot 8$ | $3 \cdot 6$ | 79 | 10.6 | $6 \cdot 2$ |
| 60 | - -0066 | - . 0060 | 53 | - -0973 | - -0972 | 91 | $9 \cdot 8$ | 12.4 | 80 | $8 \cdot 4$ | 9•0 |
| 61 | + $\cdot 0061$ | + .0055 | 54 | + $\cdot 0972$ | + .0975 | 92 | $7 \cdot 0$ | 5.0 | 81 | $7 \cdot 6$ | $8 \cdot 6$ |
| 62 | -0062 | -0052 | 55 | - -0974 | - .0973 | 93 | $7 \cdot 4$ | $5 \cdot 2$ | 82 | $3 \cdot 3$ | 3.6 |
| 63 | - -0058 | - . 0049 | 56 | + -0973 | + -0976 | 94 | $6 \cdot 2$ | $4 \cdot 6$ | 83 | $9 \cdot 2$ | $8 \cdot 8$ |
| 64 | +.0058 | + -0050 | 57 | - -0975 | - -0975 | 95 | $5 \cdot 4$ | $6 \cdot 6$ | 84 | $4 \cdot 6$ | 4.1 |
| 65 | - -0052 | - -0045 | 58 | + -0975 | + $\cdot 0978$ | 96 | $6 \cdot 2$ | $5 \cdot 2$ | 85 | 8.2 | $8 \cdot 6$ |
| 66 | + $\cdot \infty 5$ | + .0034 | 59 | - -0975 | - -0977 | 97 | $5 \cdot 6$ | $5 \cdot 2$ | 86 | $6 \cdot 0$ | 8.4 |
| 67 | - - 0042 | - •0038 | 60 | + 0976 | + -0979 | 98 | $8 \cdot 6$ | $6 \cdot 4$ |  |  |  |
| 68 | -0290 | . 0271 | 61 | - -0978 | - -098I | 99 | $3 \cdot 1$ | $2 \cdot 9$ |  |  |  |


|  | 36 | c |  | 38 | 1 |  | 36 | (1) | 最 | 38 | 14 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 14th Equation. Latitude. Right-hand Branch |  |  | 14th Equation-(Continued). |  |  | 15th Equation-(Continued). |  |  | 16th Equation-(Continued). |  |  |
|  |  |  |  |  |  | 45 | $\begin{array}{r} +0.0064 \\ .0026 \end{array}$ | -0.0014 | 95 | -0.1992 | -0.1995 |
| 87 | -0.0130 | + 0.0089 | 77 | + $\cdot 0014$ | + $\cdot 0007$ | 46 |  | -0043 | 96 | + -1995 | + $\cdot 1997$ |
| 88 | -0094 | -0088 | 78 | - -0040 | - $\cdot 0017$ | 47 | -0016 | $\cdot 0056$ | 97 | -1994 | -1997 |
| 89 | -0055 | - 0086 | 79 | + .0016 | + $\cdot 0012$ | 48 | -0037 | -0026 | 98 | - - 1996 | - -1999 |
| 90 | $\cdot 0051$ | -0031 | 80 | - $\cdot 0017$ | - $\cdot 0007$ | 49 | $\cdot 0015$ | -0033 | 99 | -0998 | $\cdot 1000$ |
| 91 | -0065 | -0094 | 81 | + .0010 | + .0008 | 50 | -0041 | -0023 | 100 | -4000 | + 2000 |
| 92 | -0033 | -0026 | 82 | - . 0007 | - .0001 | 51 | -0034 | -0040 |  | eft-hand | ranch |
| 93 | -0035 | -0027 | 83 | + .0006 | + .0004 | 52 | -0032 | -0045 | 41 | +0.1003 | $+0.0973$ |
| 94 | $\cdot 0018$ | -002I | 84. | - -0005 | -0002 | 53 | -0023 | $\cdot 0014$ | 42 | - -0977 | - - 1003 |
| 95 | -0017 | -0027 | 15th Equation. Longitude. |  |  | 54 | - $\cdot 0020$ | $\cdot 0024$ | 43 | + -0999 | + $\cdot 0982$ |
| 96 | -0012 | $\cdot 0015$ | Right-hand Branch |  |  | 76 | + $\cdot 0016$ | - 0046 | 44 | - - 0975 | - •1006 |
| 97 | $\cdot 0010$ | -0014 | $87\|-0.0064\|-0.0047$ |  |  | 77 | -0020 | - 0022 | 45 | - 0975 | $\cdot 1005$ |
| 98 | -0007 | -0009 | 88 | + .0046 | + .0043 | 78 | -0057 | -0044 | 46 | + 1010 | + .0983 |
| 99 | - 0002 | -0004 | 89 | - 0046 | -0043 | 79 | -0037 | -0024 | 47 | - 1006 | -0978 |
|  | t-hand | anch | 90 | - . 0042 | - .0029 | 80 | -0024 | -0031 | 48 | - -0985 | - $\cdot 1010$ |
| 41 | +0.0076 | -0.0047 | 91 | - 0045 | -0019 | 81 | $\cdot 0017$ | -0021 | 49 | + $\cdot 1006$ | $+\cdot 0987$ |
| 42 | -0011 | -0051 | 92 | + . 0025 | $+.0020$ | 82 | - 0005 | -0009 | 50 | - -0984 | - - 1009 |
| 43 | - 0041 | -0016 | 93 | -0025 | - 0020 | 83 | -0012 | $\cdot 0012$ | 51 | + 1014 | $+.0984$ |
| 44 | $\cdot 0015$ | - 0046 | 94 | - •0023 | - .0012 | 84 | - 0001 | -0004 | 52 | - -098 | - $\cdot 1018$ |
| 45 | -0017 | -0045 | 95 | + . 0020 | + $\cdot 0012$ | 16th Equation. Azimuth. |  |  | 53 | + $\cdot 1009$ | + $\cdot 0995$ |
| 46 | -0043 | + $\cdot 0001$ | 96 | -.0014 | - -0008 | Right-hand Branch |  |  | 54 | - . 2008 | -0991 |
| 47 | -0037 | - •0007 | 97 | $\cdot 0014$ | - 0007 | 87 | +0.1974 | +0.198I | 76 | -0994 | - $\cdot 1018$ |
| 48 | - .0012 | -0036 | 98 | + $\cdot 0010$ | + .0001 | 88 | - $\cdot 1981$ | - $\cdot 1983$ | 77 | + $\cdot 1008$ | + $\cdot 0992$ |
| 49 | + -0029 | + 0007 | 99 | -0004 | $\cdot 0001$ | 89 | - 1982 | $\cdot 1983$ | 78 | - $\cdot 2978$ | - 3017 |
| 50 | - -0013 | - .0028 | Left-hand Branch |  |  | 90 | + $\cdot 1983$ | + $\cdot 1988$ | 79 | + $\cdot 2014$ | + 1991 |
| 51 | + $\cdot 0027$ | + .0008 | 41 | +0.0009 | -0.0069 | 91 | $\cdot 1982$ | -1993 | 80 | - •1990 | - $\cdot 2012$ |
| 52 | - 00017 | - $\cdot 0022$ | 42 | -0058 | -0008 | 92 | - 1990 | - - 1992 | 81 | + $\cdot 2007$ | + $\cdot 1991$ |
| 53 | $+\cdot 0015$ | $+.0013$ | 43 | - •0003 | -0045 | 93 | - 1990 | -1992 | 82 | - . 0998 | - 1004 |
| 54 | -.0028 | -0013 | 44 | +.0062 | -0016 | 94 | + - 1991 | + $\cdot 1995$ | 83 | + $\cdot 2005$ | + $\cdot 1996$ |


|  | 36 | © |  | 36 | $\mathfrak{C}$ |  | 36 | $\mathfrak{C}$ | 免。 | 3 | $\mathbb{C}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 16th Equation-(Continued). |  |  | 17th Equation-(Continued). |  |  | 18th Equation-(Continued). |  |  | 18th Equation-(Continuod). |  |  |
| $\begin{array}{l\|l\|l} 84 & -0 \cdot 1000 \end{array}$ |  | $-0.1002$ | 99 | - 3.1 | + | $126$ | $-0.0121$ | +0.0154 | 106 | -0.0064 | -0.0033 |
| 85 | + 2000 | + 2000 | 100 | $7 \cdot 2$ | $7 \cdot 8$ | 127 | -0070 | -0118 | 107 | $\cdot 0061$ | -0031 |
| 86 | - 2000 | - 2000 | 101 | 12.0 | 12.6 | 128 | -0046 | -0035 | 108 | + $\cdot 0028$ | + .0052 |
| 17th Equat |  | Linear. | 102 | $5 \cdot 6$ | 7•0 | 129 | -0022 | -0045 | 109 | -0032 | -0051 |
| Right-hand Branch |  |  | 103 | $3 \cdot 5$ | $3 \cdot 1$ | 130 | -0086 | -0058 | 110 | - - 0087 | - . 019 |
| 125 | + 9.8 | - 13.6 | 104 | $5 \cdot 8$ | 5.6 | 131 | -0012 | -0036 | 111 | + •0027 | + $\cdot 0042$ |
| 126 | 14.0 | 15.4 | 105 | 2.2 | $2 \cdot 9$ | 132 | -0006 | -0014 | 112 | - . 0080 | - . 0015 |
| 127 | 8.2 | 13.4 | 106 | $8 \cdot 8$ | $6 \cdot 8$ | 133 | -0006 | -0006 | 113 | + $\cdot 0013$ | + . 0040 |
| 128 | 11.6 | 5.2 | 107 | $7 \cdot 2$ | $7 \cdot 2$ | 134 | -0002 | -0009 | 114 | - -0053 | - . 0003 |
| 129 | $7 \cdot 2$ | $6 \cdot 3$ | 108 | $8 \cdot 0$ | $7 \cdot 0$ |  | eft-hand | Branch | 115 | -0000 | + .0045 |
| 130 | 25.2 | $17 \cdot 1$ | 109 | $5 \cdot 6$ | $6 \cdot 4$ | 87 | +0.0036 | -0.0136 | 116 | -0045 | -0005 |
| 131 | $7 \cdot 8$ | 12.9 | 110 | 11.7 | 14.4 | 88 | -0135 | -0000 | 117 | + -0003 | -0027 |
| 132 | 4.4 | 4.6 | 111 | $5 \cdot 8$ | $5 \cdot 6$ | 89 | -0106 | + .0001 | 118 | - -0048 | -0027 |
| 133 | $7 \cdot 4$ | 4.0 | 112 | 11.1 | 12.3 | 90 | -.0033 | - . 0088 | 119 | -0024 | -0036 |
| 134 | $6 \cdot 0$ | $4 \cdot 8$ | 113 | $8 \cdot 8$ | $8 \cdot 0$ | 91 | -0024 | -0129 | 120 | -0011 | -0025 |
| 135 | 1.2 | 7.2 | 114 | 9.2 | $7 \cdot 6$ | 92 | + $\cdot 0082$ | + .005 ${ }^{\text {I }}$ | 121 | -0028 | -0025 |
|  | ft-hand B | ranch | 115 | $10 \cdot 0$ | 11.0 | 93 | -0082 | -0051 | 122 | -0016 | -0024 |
| 87 | - 114 | + 7.2 | 116 | $8 \cdot 0$ | $7 \cdot 0$ | 94 | - -0061 | - .0075 | 123 | -0012 | -0019 |
| 88 | $9 \cdot 6$ | 9.0 | 117 | $5 \cdot 6$ | $5 \cdot 2$ | 95 | + $\cdot 0069$ | + . 0055 | 19th | Equation. | Longitude. |
| 89 | $5 \cdot 6$ | 8.8 | 118 | 10.0 | 12.2 | 96 | - .0069 | - . 0068 |  | ight-hand | Branch |
| 90 | $7 \cdot 8$ | 3.6 | 119 | 11.8 | 10.4 | 97 | -0069 | -0067 | 125 | +0.0032 | +0.0083 |
| 91 | 9.8 | 12.4 | 120 | $7 \cdot 0$ | $6 \cdot 2$ | 98 | + $\cdot 0052$ | + .0071 | 126 | - - 0077 | - . 0005 |
| 92 | $7 \cdot 0$ | $5 \cdot 0$ | 121 | 8.2 | 9.2 | 99 | -0028 | -0035 | 127 | + -0043 | + .0035 |
| 93 | $7 \cdot 4$ | $5 \cdot 2$ | 122 | 11.6 | 11.8 | 100 | -0054 | -0073 | 128 | - -0051 | - . 0010 |
| 94 | 6.2 | $4 \cdot 6$ | 123 | $8 \cdot 8$ | 10.4 | 101 | - -0089 | - .0030 | 129 | -0052 | -0017 |
| 95 | $5 \cdot 4$ | 6.6 | 124 | 8.0 | $7 \cdot 0$ | 102 | + $\cdot 0046$ | + -0066 | 130 | + $\cdot 0021$ | + $\cdot 0025$ |
| 96 | $6 \cdot 2$ | $5 \cdot 2$ | 18th | uation. | Latitude. | 103 | -0022 | -0033 | 131 | - - 0024 | - . 0002 |
| 97 | $5 \cdot 6$ | 5.2 |  | ght-hand | Branch | 104 | - -0064 | - -0037 | 132 | + -0015 | + .0006 |
| 98 | $8 \cdot 6$ | 6.4 | 125 | -0.0124 | +0.0150 | 105 | + $\cdot 0023$ | + $\cdot 0028$ | 133 | --0009 | - - 0002 |


|  | 36 | $\mathfrak{C}$ |  | 36 | (1) |  | 36 | $\boldsymbol{T}$ |  | 31 | (1) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 19th | quation | Continued). | 19th | Equation | Continued). | 20th | Equation | Continuod). | $20 t$ | Equation | (Continued). |
| 1341 | +0.0011 | -0.0001 | 114 | +0.0046 | -0.0063 | 92 | +0. 2040 | +0.1963 | 121 | -0. 2002 | -0.2009 |
|  | $f t-h a n d$ B | ranch | 115 | -0065 | -0051 | 93 | - 2043 | $\cdot 1962$ | 122 | +. 2008 | + $\cdot 1998$ |
| 87 | +0.0245 | -0.0085 | 116 | -0022 | -0048 | ‘94 | - •1954 | - $\cdot 2029$ | 123 | - 2005 | - - 2001 |
| 88 | $\cdot 0125$ | -0183 | 117 | $\cdot 0032$ | -0011 | 95 | + $\cdot 2032$ | + $\cdot 1956$ | 124 | + $\cdot 2000$ | + $\cdot 2000$ |
| 89 | - 055 | - 0180 | 118 | -0020 | $\cdot 0059$ | 96 | - 1958 | - •2035 | 218 | Equation. | Linear. |
| 90 | -0162 | -0042 | 119 | -0036 | -0009 | 97 | - 1962 | - 2036 |  | Direc |  |
| 91 | -0199 | - 0201 | 120 | - 0026 | -0000 | 98 | $+\cdot 2057$ | + $\cdot 1961$ | 125 | $+\quad 9.8$ | - 13.6 |
| 92 | $\cdot 0103$ | -0093 | 121 | - •0007 | -0020 | 99 | -1021 | -0983 | 126 | $14^{\circ} 0$ | 15.4 |
| 93 | -0109 | -0097 | 122 | + -0c18 | -0003 | 100 | - 2048 | - 1952 | 127 | $8 \cdot 2$ | 13.4 |
| 94 | . 0116 | -0076 | 123 | -.0012 | -0001 | 101 | - •1931 | - ${ }^{\text {208 }}$ I | 128 | 11.6 | $5 \cdot 2$ |
| 95 | -0081 | -0111 | 20th | quation. | Azimuth. | 102 | + $\cdot 2034$ | + . 1964 | 129 | $7 \cdot 2$ | $6 \cdot 3$ |
| 96 | $\cdot 0107$ | -0090 |  | ht-hand | ranch | 103 | -1021 | -0984 | 130 | $25^{2} 2$ | 17.1 |
| 97 | -0097 | -0091 | 125 | -0. 1988 | -0.1965 | 104 | - •1974 | - $\cdot 2033$ | 131 | $7 \cdot 8$ | $12 \cdot 9$ |
| 98 | -0145 | -0098 | 126 | + $\cdot 1968$ | + •1999 | 105 | + •1012 | + . 0986 | 132 | 4.4 | $4 \cdot 6$ |
| 99 | -0053 | - 0044 | 127 | - $\cdot 1982$ | - $\cdot 1986$ | 106 | - •1963 | - $\cdot 2035$ | 133 | $7 \cdot 4$ | $4 \cdot 0$ |
| 100 | $\cdot 0122$ | -0121 | 128 | + 1979 | + $\cdot 1996$ | 107 | - 1970 | -2037 | 134 | 6•0 | $4 \cdot 8$ |
| 101 | -0175 | -0204 | 129 | - 2979 | - 2994 | 108 | + 2036 | + $\cdot 1974$ | 135 | $8 \cdot 8$ | $8 \cdot 6$ |
| 102 | -0086 | -0093 | 130 | - $\cdot 2993$ | - $\cdot 2989$ | 109 | - 2026 | -1977 | 136 | 5•7 | $10 \cdot 5$ |
| 103 | - 0053 | -0041 | 131 | + $\cdot 2990$ | + 3000 | 110 | - . 2953 | - 3061 | 137 | 12.6 | 14.4 |
| 104 | -0065 | -0084 | 132 | - - 1994 | - - 1998 | 111 | + $\cdot 2023$ | + $\cdot 1982$ | 138 | $5 \cdot 6$ | 3.4 |
| 105 | -0031 | -0036 | 133 | + - 1996 | + $\cdot 2000$ | 112 | - 2970 | - 3048 | 139 | $6 \cdot 6$ | $8 \cdot 4$ |
| 106 | - 0094 | -0090 | 134 | - •1996 | - 2000 | 113 | + $\cdot 2028$ | + $\cdot 1980$ | 140 | $7 \cdot 4$ | 4*0 |
| 107 | -0076. | -0095 | 135 | -4000 | $+2000$ | 114 | - •1981 | - $\cdot 2025$ | 141 | $7 \cdot 6$ | $7 \cdot 4$ |
| 108 | -0092 | -0066 |  | eft-hand B | ranch | 115 | + 2026 | $+1980$ | 142 | $7 \cdot 2$ | $8 \cdot 4$ |
| 109 | -0066 | -0060 | 87. | -0.1903 | -0.2033 | 116 | - 1991 | - $\cdot 2019$ | 143 | $6 \cdot 3$ | 9.0 |
| 110 | -0094 | -0157 | 88 | + $\cdot 2049$ | + $\cdot 1928$ | 117 | + 2013 | + 1996 | 144 | 11.4 | 57 |
| 111 | -0057 | -0043 | 89 | -2023 | - 1929 | 118 | - 1992 | - $\cdot 2023$ | 145 | $6 \cdot 0$ | $10 \cdot 2$ |
| 112 | -00\%4 | -0121 | 90 | - 1936 | - $\cdot 2016$ | 119 | + $\cdot 2014$ | + $\cdot 1996$ | 146 | 11.2 | $7 \bullet 4$ |
| 113 | -0069 | -0049 | 91 | -1921 | $\cdot 2079$ | 120 | -2010 | - 2000 | 147 | $4 \cdot 6$ | 10.4 |


|  | 36 | (1) |  | 31 | (1) |  | 36 | (1) |  | 31 | (1) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $218 t$ | Equation | (Continued). | 22nd | Equation | (Continued). | 22nd | Equation | (Continued). | 23r | Equation | (Continued). |
| 148 | + 6.8 | - $5^{2}$ | 127 | -0.0053 | -0.0155 | 156 | +0.0063 | -0.0029 | 136 | -0.0035 | $+0.0330$ |
| 149 | $9 \cdot 6$ | $10 \cdot 2$ | 128 | +.0204 | + .0058 | 157 | -0043 | $\cdot 0056$ | 137 | -0359 | -0235. |
| 150 | $10 \cdot 2$ | $7 \cdot 2$ | 129 | -0216 | -0101 | 158 | - 0068 | -0028 | 138 | -0053 | -0130 |
| 151 | $5 \cdot 2$ | $7 \cdot 4$ | 130 | -0111 | - $\cdot 0312$ | 159 | -0059 | -0095 | 139 | $\cdot 0074$ | -0231 |
| 152 | 11.4 | 10.2 | 131 | $\cdot 0233$ | + .0004 | 160 | -0059 | -0041 | 140 | -0192 | -002I |
| 153 | $7 \cdot 8$ | 4.2 | 132 | - .0041 | - . 0141 | 161 | -0016 | -0057 | 141 | -0082 | - 0199 |
| 154 | 15.4 | 13.4 | 133 | + -0188 | + $\cdot 0045$ | 162 | $\cdot 0051$ | -0017 | 142 | -0182 | -0088 |
| 155 | $6 \cdot 4$ | 14*0 | 134 | - -0014 | - -0149 | 163 | -0059 | $\cdot 0025$ | 143 | -0196 | -0069 |
| 156 | 4.4 | $5 \cdot 2$ | 135 | + -0021 | -0197 | 164 | -0025 | -0051 | 144 | -0084 | -0187 |
| 157 | $8 \cdot 6$ | 4*0 | 136 | -0208 | -0013 | 165 | -0033 | -0026 | 145 | -0031 | -0227 |
| 158 | $5 \cdot 8$ | $5 \cdot 6$ | 137 | -0025 | -. 0302 | 166 | - 0015 | -0039 | 146 | -0213 | -0043 |
| 159 | 11.2 | 10.4 | 138 | -0153 | + .0033 | 167 | -0033 | $\cdot 0022$ | 147 | $\cdot 0122$ | -0085 |
| 160 | $6 \cdot 2$ | $8 \cdot 2$ | 139 | - 0166 | - -0033 | 168 | -0030 | -0031 | 148 | -0014 | -0124 |
| 161 | $6 \cdot 2$ | $6 \cdot 4$ | 140 | $\cdot 0016$ | - 0120 | 169 | -0015 | -0033 | 149 | -0170 | -0068 |
| 162 | $6 \cdot 6$ | $5 \cdot 4$ | 141 | -0174 | -0027 | 170 | -0003 | -0010 | 150 | -0042 | -0124 |
| 163 | $8 \cdot 2$ | $6 \cdot 8$ | 142 | $\cdot 0025$ | -0173 | 171 | -0015 | - 0020 | 151 | + 0005 | -0125 |
| 164 | $8 \cdot 2$ | $8 \cdot 6$ | 143 | - . 0020 | $\cdot 0214$ | 23rd | quation. | Longitude. | 152 | - 0145 | -0041 |
| 165 | $4 \cdot 8$ | $6 \cdot 6$ | 144 | $+.0253$ | + $\cdot 0011$ |  | Direct |  | 153 | -0114 | - $\cdot 0011$ |
| 166 | $6 \cdot 4$ | 8.0 | 145 | -0146 | - $\cdot 0084$ | 125 | -0.0266 | +0.0352 | 154 | -0067 | + .0143 |
| 167 | $7 \cdot 0$ | $5 \cdot 6$ | 146 | -0092 | -0148 | 126 | -0355 | -0428 | $155^{\circ}$ | -0088 | -0062 |
| 168 | 11.6 | 8-8 | 147 | -0006 | -0187 | 127 | -0216 | -0298 | 156 | + $\cdot 0020$ | -0074 |
| 169 | $5 \cdot 0$ | 11.2 | 148 | -0139 | -0029 | 128 | -0271 | -0177 | 157 | - $\cdot 0092$ | - .0011 |
| 170 | $5 \cdot 2$ | $3 \cdot 2$ | 149 | -0069 | -0168 | 129 | -0135 | - 0226 | 158 | +.0010 | + $\cdot 0067$ |
| 171 | $8 \cdot 4$ | $10 \cdot 2$ | 150 | - 0158 | -0050 | 130 | -0680 | -0348 | 159 | - -0093 | -0023 |
| 172 | $8 \cdot 8$ | $9 \cdot 8$ | 151 | -0099 | -0052 | 131 | $\cdot 0122$ | -0401 | 160 | $+\cdot 0007$ | -0066 |
| 22nd | Equation. | Latitude. | 152 | $\cdot 0083$ | -0137 | 132 | - 0152 | -0057 | 161 | - -0059 | -0006 |
|  | Direct |  | 153 | $\cdot 0047$ | -0076 | 133 | $\cdot 0127$ | -0155 | 162 | + $\cdot 0003$ | - 0046 |
| 125 | -0.0086 | -0.0126 | 154 | -0180 | -0105 | 134 | -0195 | -0054 | 163 | - .0002 | -0050 |
| 126 | + -0161 | $+\cdot 0041$ | 155 | -0029 | - 0153 | 135 | $\cdot 0260$ | -0142 | 164 | $\cdot 0047$ | -0007 |


|  | 36 | (1) |  | 31 | (1) |  | 36 | $\boldsymbol{1}$ |  | 36 | (1) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 23rd | Equation- | Continued). | 24th | Equation | Continued). | 24th | Equation | (Continued). | 24th | Equation | Continued). |
| 165 | +0.0014 | $+0.0038$ | 131 | +0:2952 | $+0.3163$ | 146 | -0.2087 | - 0.1982 | 161 | -0.2025. | -0.1997 |
| 166 | - -0033 | -0002 | 132 | - $\cdot 2061$ | - - 1978 | 147 | - 2050 | $\cdot 1966$ | 162 | + ${ }^{2001}$ | + 2019 |
| 167 | $+.0015$ | -0024 | 133 | + •1949 | + $\cdot 2063$ | 148 | + - 1994 | + $\cdot 2051$ | 163 | - 1999 | - 2021 |
| 168 | - . 0028 | - .0003 | 134 | - $\cdot 2079$ | - •1978 | 149 | - 2070 | - - 1972 | 164 | - 2020 | - •1997 |
| 169 | +.0013 | $+.0014$ | 135 | $\cdot 2105$ | - 1943 | 150 | $+\cdot 1983$ | + 2051 | 165 | + 2006 | + 2016 |
| 170 | - -0015 | - .0003 | 136 | + $\cdot 2986$ | + 3133 | 151 | -2002 | -205I | 166 | - 2014 | - •1999 |
| 171 | +.0012 | + .0006 | 137 | - 3145 | - $\cdot 2907$ | 152 | - $\cdot 2059$ | - $\cdot 1983$ | 167 | + $\cdot 2006$ | +. 2010 |
| 24th | quation. | Azimuth. | 138 | + 1979 | + $\cdot 2053$ | 153 | -2047 | - 2004 | 168 | - 2011 | - 2001 |
|  | Direct |  | 139 | -1971 | - 2093 | 154 | + 1973 | + $\cdot 2059$ | 169 | + $\cdot 2005$ | + 2006 |
| 125 | -0.2108 | -0.1858 | 140 | - $\cdot 2078$ | - $\cdot 1992$ | 155 | - $\cdot 2036$ | - •1975 | 170 | - 2006 | - $\cdot 2001$ |
| 126 | + $\cdot 1856$ | $+\cdot 2174$ | 141 | + $\cdot 1967$ | + • 2081 | 156 | + $\cdot 2009$ | + $\cdot 2031$ | 171 | + $\cdot 2005$ | + $\cdot 2002$ |
| 127 | - $\cdot 2087$ | - $\cdot 1880$ | 142 | - 2074 | - $\cdot 1965$ | 157 | - . 2038 | - 2005 | 172 | - 2000 | - 2000 |
| 128 | + $\cdot 1892$ | $+\cdot 2072$ | 143 | -3080 | - 2972 | 158 | + 2004 | + $\cdot 2028$ |  |  |  |
| 129 | - 2947 | - 3092 | 144 | $+\cdot 2967$ | + 3077 | 159 | - . 2040 | - - 1990 |  |  |  |
| 130 | - 3275 | - . 2860 | 145 | - 1988 | $\cdot 2092$ | 160 | + $\cdot 2003$ | + $\cdot 2027$ |  |  |  |

The Equations between the Indeterminate Factors, and their Solution.
In the equations between the Indeterminate Factors, the coefficients of the factors are summations of terms of the form $(\mathfrak{b} 13+\mathfrak{r} \mathbb{C})$, such as are exhibited in the equations on page 38. The coefficient of the $m$ th $\Lambda$ in the $l$ th equation is equal to that of the $l$ th $\Lambda$ in the $m$ th equation, and may therefore be expressed either as

$$
{ }_{1}^{t}\left[{ }^{t} \mathfrak{H}_{p} \mathfrak{B}_{p}+{ }_{m} \mathfrak{C}_{p} \mathfrak{C}_{p}\right] \text {, or as }{ }_{1}^{t}\left[\mathfrak{H}_{p} \mathfrak{B}_{p}+\mathfrak{l \mathfrak { C } _ { p }} \mathbb{C}_{p}\right],
$$

in which expressions the summations are taken for all values of $p$, from 1 to $t$, corresponding to the numbers of the triangles whose angular errors enter into the $m$ th and the $l$ th equations, as the case may be.

The coefficients of the Indeterminate Factors, and the Absolute Terms, in each of the 24 equations presented for simultaneous solution, are here given in a tabular form. It will be observed that the coefficients of the factors appertaining to the linear equations are unduly large, and those of the latitude and longitude equations are unduly small, when the equations are compared inter se. This does not produce any effect on the final results if sufficient decimal places are kept; but a great saving of labour is effected if the coefficients are brought more nearly on a par, as the number of decimal places in the subsequent calculations need not be so large. The equalizing of the coefficients might have been effected at an earlier stage by multiplying the coefficients $\mathfrak{b}$ and $\mathfrak{c}$ of each equation by a suitable factor, and this was done in the reduction of the North-East Quadrilateral, the factors there chosen being 1 for azimuth equations, 15 for latitude and longitude equations, and - 03 for linear equations. But the same result may be arrived at with less labour by treating the equations between the Indeterminate Factors; and as the advantages derived from employing equalizing factors are confined to these equations, this affords an additional reason for introducing them here. The manner in which they should be introduced will appear from the following considerations:-

If we multiply the equations of condition on page 17 by the equalizing factors $f_{a}$, $f_{b}, \ldots f_{n}$ and put $\lambda_{a}^{\prime}, \lambda_{b}^{\prime}, \ldots \lambda_{n}^{\prime}$, for the Indeterminate Factors corresponding to the equalized equations, we eventually obtain the following groups of equations between the Indeterminate Factors:-

$$
\begin{aligned}
& f_{a} f_{a}[a a . u] \lambda_{a}^{\prime}+f_{a} f_{b}[a b . u] \lambda_{b}^{\prime}+\ldots+f_{a} f_{n}[a n . u] \lambda_{n}^{\prime}=f_{a} e_{a}, \\
& f_{a} f_{b}[a b . u] \lambda_{a}^{\prime}+f_{b} f_{b}[b b . u] \lambda_{b}^{\prime}+\ldots+f_{b} f_{n}[b n . u] \lambda_{n}^{\prime}=f_{b} e_{b} \text {, } \\
& f_{a} f_{n}[a n, u] \lambda_{a}^{\prime}+f_{b} f_{n}[b n . u] \lambda_{b}^{\prime}+\ldots+f_{n} f_{n}[n n . u] \lambda_{n}^{\prime}=f_{n} e_{n} .
\end{aligned}
$$

It will be seen that in these equations the introduction of equalizing factors has not affected the identity of the coefficients which are situated symmetrically on opposite sides of the diagonal, which is so valuable an aid in solving the equations. It will also be seen that the resulting values of the factors must be

$$
\lambda_{a}^{\prime}=\frac{\lambda_{a}}{f_{a}} ; \lambda_{b}^{\prime}=\frac{\lambda_{b}}{f_{b}} ; \cdot . \lambda_{n}^{\prime}=\frac{\lambda_{n}}{f_{n}} .
$$

In the solution of the equations appertaining to the South-West Quadrilateral, the factors chosen are not strictly equalizing, because this was not necessary, and the desired result was sufficiently nearly approached by employing $10^{-1}$ for linear equations, 10 for latitude and longitude equations and 1 for azimuth equations, while these factors were more easily introduced than others, the equations so modified are shewn in the second table in this section.

The table following the equations between the Indeterminate Factors, gives the first of each group of equations between certain of the Indeterminate Factors which remained after the other factors had been eliminated. These are the equations which were used in obtaining the numerical values of the factors by successive substitutions backwards from the last to the first.

|  | Themindeterminate Factors |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ${ }_{1} \mathrm{M}$ | ${ }_{3} \mathbf{\Lambda}$ | ${ }_{3} \mathbf{\Lambda}$ | ${ }_{4}{ }^{1}$ | ${ }_{5} \boldsymbol{\Lambda}$ | ${ }_{6} 1$ | ${ }_{7}{ }^{1}$ | ${ }_{8}$ ¢ | ${ }_{9} \Lambda$ | ${ }_{10}$ ^ | ${ }_{11} \boldsymbol{\Lambda}$ | ${ }_{12}$ ¢ | ${ }_{13}{ }^{\boldsymbol{\Lambda}}$ |
| 1 | +11578.2 | $-27 \cdot 1017$ | $-3.2545$ | $-14 \cdot 437$ | $-4732 \cdot 3$ | +3.0718 | +5.0921 | $-2.8150$ | ..... | $\ldots$ | ...... | $\ldots$ | $\cdots$ |
| 2 | - 27.1017 | +0.0883 | $-0.0022$ | +0.1740 | + 17.8177 | -0.0140 | -0.0081 | - -0.064 | ..... | $\ldots$ | ..... | ...... | ..... |
| 8 | - 3.2545 | - 0.0022 | +0.0751 | - 1.0643 | + 0.0696 | $+0.0147$ | -0.0090 | +0.6046 | ..... | ...... | ...... | $\ldots$ | ..... |
| 4 | - 14*4637 | $+0.1740$ | $-1 \cdot 0643$ | +21.4210 | + 16.8466 | -0.1805 | +0.0806 | - 7.0440 | ..... | ..... | ...... | ...... | ..... |
| 5 | -4732.3 | +17.8172 | +0.0696 | +16.8466 | + 72416 | -4.1169 | $-5 \cdot 8376$ | -6.0094 | +1256.9 | -4.887 | -0.7445 | + 51077 | -1105*0 |
| 6 | + 3.0718 | - 0.0140 | +0.0147 | - - 18805 | - 4.1169 | $+0 \cdot 008_{7}$ | +0.0009 | $+0.2136$ | - 0.7952 | + $0 \cdot 0034$ | +0.0001 | +0.0009 | + - 7992 |
| 7 | + 5.0921 | -0.0.88 | -0.0090 | + 0.0806 | - 5.8376 | +0.0009 | +0.0087 | -0.1412 | - 0.1216 | +0.0003 | +0.0039 | - - .0393 | + $0 \cdot 1216$ |
| 8 | - 2.8850 | -0.0641 | +0.6046 | - 7.0440 | - 6.0794 | +0.2136 | $-0.1412$ | +12.4861 | - 2.4515 | +0.0198 | -0.2523 | + $2 \cdot 7915$ | + 73515 |
| 9 | ..... | $\ldots$ | ..... | ..... | +1256.9 | -0.7952 | $-0.1216$ | - 2.4515 | + $7607 \cdot 2$ | -12.6860 | $-0.8305$ | $-54 \cdot 3239$ | -1105*. |
| . 10 | ..... | ..... | ...... | ..... | - 4.8871 | +0.0034 | +0.0003 | +0.0198 | - 12.6860 | +0.0329 | +0.0012 | +0.0675 | + 4.4206 |
| 11 | ..... | ..... | ...... | ..... | - 0.7445 | +0.0001 | +0.0039 | $-0.2523$ | - 0.8305 | +0.0012 | +0.0381 | -0.6072 | - 0.2018 |
| 12 | ...... | $\ldots$ | $\ldots$ | ..... | + 51077 | +0.0009 | -0.0393 | + $2 \cdot 7915$ | - $54 \cdot 3239$ | +0.0675 | -0.6072 | +16.1641 | $+\quad 7.2496$ |
| 13 | ...... | $\ldots$ | $\cdots$ | $\ldots$ | -1105* | +0.7952 | +0. 1216 | + 7.3515 | -1105* | +4.4206 | -0.2018 | + $7 \cdot 3496$ | +6276.6 |
| 14 | ..... | $\ldots .$. | $\ldots$ | $\ldots$ | + 0.6652 | -0.0007 | +0.0007 | - 0.0465 | + 0.6652 | -0.0030 | +0.0039 | - 0.0454 | - 2.2751 |
| 15 | ..... | $\ldots .$. | ...... | $\ldots$ | + 1.0945 | -0.0008 | -0.0009 | +0.0294 | + 1.0945 | - 0.0042 | -0.0033 | $+0.0285$ | - 2.1587 |
| 16 | $\ldots$ | ..... | ..... | ...... | - 1.2662 | -0.0002 | +0.0404 | - 2.6719 | - 1.2662 | -0.0075 | $+0.2380$ | - $2 \cdot 6008$ | + 1.0491 |
| 17 | ... | $\ldots$ | ...... | $\ldots$ | $\ldots$ | ...... | ...... | ..... | $\ldots$ | ...... | ...... | ..... | $-2486 \cdot 2$ |
| 18 | ... | $\ldots$ | ...... | ..... | ...... | $\ldots$ | ..... | $\ldots$ | ...... | ..... | $\ldots$ | ...... | + $0 \cdot 5261$ |
| 19 | ..... | ..... | ...... | ..... | ...... | ..... | ...... | $\ldots$ | ..... | $\ldots$ | $\ldots$ | ...... | + 4.3634 |
| 20 | ..... | ..... | ..... | ...... | ...... | ...... | ...... | ...... | ...... | ...... | ...... | ...... | - 1188827 |
| 21 | ..... | ..... | ..... | ..... | ..... | ..... | ..... | ..... | ..... | $\ldots$ | ...... | $\ldots$ | ..... |
| 22 | ..... | ..... | ..... | ..... | ..... | ..... | ..... | ...... | ..... | ..... | ..... | ... | $\ldots$ |
| 23 | ..... | ..... | ..... | ..... | ..... | ...... | ..... | ..... | ..... | ..... | ..... | $\ldots$ | $\ldots$ |
| 2 ¢ | ..... | ..... | ...... | ...... | ...... | ...... | ...... | ...... | ...... | ...... | ..... | ...... | ...... |

Natural Numbers, before the application of the Equalizing Factors.

AND THEIR Coffficients

| 14. | 151 | $16 \Lambda$ | $17 \Lambda$ | $18 \Lambda$ | ${ }_{19} \Lambda$ | $20 \Lambda$ | ${ }_{21} \boldsymbol{\Lambda}$ | ${ }_{22} \Lambda$ | ${ }_{23} \Lambda$ | ${ }_{24}$ வ | Absolute Terms |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ...... | ...... | ..... | *...* | '...... | ...... | ...... | ...... | ...... | ...... | ...... | $+189.8$ | 1 |
| *.... | - | ..... | ...... | ...... | ...... | ...... | *.... | .....• | ...... | -••• | - 0.637 | 2 |
| .0.... | ...... | ...... | ...... | ...... | ...... | ...... | -..... | ...... | ...... | ...... | - 0.571 | 3 |
| *.... | ...... | *.... | ...... | $\cdots \cdots$. | ...... | ...... | ...... | ...... | *..... | ...... | - 7.806 | 4 |
| $+0.6652$ | +1•0945 | - 1.2662 | *...." | ...... | ...... | ...... | ..... | *.... | ..... | ...... | $\bigcirc 212.5$ | 5 |
| -0.0007 | -0.0008 | -0.0012 | ...... | ...... | ...... | ...... | ..... | ...... | ...... | ...... | $+0.068$ | 6 |
| $+0.0007$ | -0.0009 | + 0.0404 | ...... | ...... | *..... | ...... | ...... | ...... | ...... | ...... | $+0.407$ | 7 |
| $-0.0465$ | +0.0294 | $-2.6719$ | *.... | ..... | *..." | *.... | *.... | .....• | ...... | *.... | - 7-113 | 8 |
| +0.6652 | +1.0945 | - 1.2662 | ...... | ...... | ...... | ...... | ..... | ...... | ...... | ..... | $+27.4$ | 9 |
| -0.0030 | -0.0042 | -0.0075 | - $\cdot$... | ...... | ...... | ..... | ...... | ...... | ...... | *.... | - 0.435 | 10 |
| +0.0039 | -0.0033 | $+0.2380$ | ..... | ...... | ...... | ..... | ..... | ...... | ..... | ...... | $+0.065$ | 11 |
| -0.0454 | +0.0285 | - 2.6008 | ...... | ...... | ...... | ...... | ...... | ...... | ...... | ...... | - 6.719 | 12 |
| $-2.3751$ | $-2 \cdot 1587$ | + 1.0491 | - 2486.2 | +0.5261 | +4.3634 | -11:8827 | ...... | ...... | ...... | ...... | - 185.9 | 13 |
| +0.0029 | +0.0003 | $+0.0627$ | + 1-5563 | -0.0008 | -0.0028 | $+0.0036$ | ...... | ...... | ...... | ...... | $+0.151$ | 14 |
| +0.0003 | +0.0033 | -0.0911 | $+0.2511$ | +0.0020 | -0.0012 | $+0.0636$ | ...... | ...... | ...... | ...... | - 0.013 | 15 |
| +0.0627 | -0.0911 | +11.9266 | + 1.2995 | -0.1648 | +0.0347 | - 5.1602 | ...... | ..... | ...... | ...... | + 2.957 | 16 |
| +1•5563 | +0.2511 | + 1•2995 | +12220.4 | -1•7543 | $-8 \cdot 8653$ | -0.4273 | $+3923.4$ | +3.4055 | $-9.7657$ | +6.1556 | - 62.3 | 17 |
| -0.0008 | +0.0020 | $-0.1648$ | - 1'7543 | +0.0112 | +0.0004 | +0.3075 | - 2.3093 | -0.0012 | +0.0060 | $+0.0034$ | $+0.139$ | 18 |
| -0.0028 | -0.0012 | $+0.0347$ | - 8.8653 | +0.0004 | +0.0137 | -0.0474 | - 0.5825 | -0.0028 | +0.0008 | $-0.0517$ | - 0.072 | 19 |
| +0.0036 | +0.0636 | $-5^{11602}$ | - 0.4273 | +0.3075 | -0.0474 | +19.9588 | - 4.9564 | +0.2183 | +0.1043 | $+4.8223$ | $+3.046$ | 20 |
| ..... | *.... | *.... | $+3923.4$ | $-2 \cdot 3093$ | $-0.5825$ | $-4.9564$ | +12685.2 | +11.0570 | $-18 \cdot 0321$ | $-9.4053$ | + 25711 | 21 |
| $\cdots$ | .....• | ...... | + 3.4055 | -0.0012 | -0.0028 | +0.2183 | + 11.0570 | $+0.0314$ | $-0.0046$ | + 0.5308 | $+0.060$ | 22 |
| *.... | ...... | ...... | - 977657 | +0.0060 | +0.0008 | +0.1043 | - 18.0321 | -0.0046 | + 0.0474 | $+0.4336$ | $-0.256$ | 23 |
| ...... | ...... | ...... | + 6.1556 | +0.0034 | -0.0517 | + 4.8223 | - 9*4053 | +0.5308 | $+0.4336$ | + 20.9492 | - 3.912 | 24 |

The Equations between the Indeterminate Factors expressed in

|  | THEINDETERMINATE FA |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ${ }_{1} \mathbf{\Lambda}$ | ${ }_{2} \Lambda$ | ${ }_{3} \mathbf{\Lambda}$ | ${ }_{4}$ ^ | ${ }_{5} \boldsymbol{\Lambda}$ | ${ }_{6} \Lambda$ | ${ }_{7} \boldsymbol{\Lambda}$ | $8 \Lambda$ | ${ }_{9} \mathbf{\Lambda}$ | $10 \Lambda$ | ${ }_{11} \boldsymbol{\Lambda}$ | ${ }_{12} \Lambda$ | ${ }_{13} \Lambda$ |
| 1 | +115:782 | -27.1017 | $-3.2545$ | - 1.4464 | $-47 \cdot 323$ | +3.0718 | +5.0921 | -0.2815 |  | ...... | ...... | ...... | ..... |
| 2 | $-27 \cdot 1017$ | + 8.832 | -0.219 | $+1 \cdot 7403$ | +17.8177 | -1.400 | -1.807 | $-0.6413$ | .... | ..... | ..... | ...... | ..... |
| 3 | - 3.2545 | $-0.219$ | + 7. 506 | -10.6432 | +0.0696 | +1.470 | -0.900 | $+6.0462$ | ..... | ..... | ..... | ..... | *...* |
| 4 | - 1.4464 | +1.7403 | $-10.6432$ | +21.4210 | + 1.6847 | -1.8053 | +0.8055 | - 7•0440 | ...... | ..... | ...... | ..... | *.... |
| 5 | - $47 \cdot 323$ | +17.8177 | + 0.0696 | + 1.6847 | +72.416 | -4.1169 | $-5.8376$ | $-0.6079$ | +12.569 | - 4.8871 | $-0.7445$ | $+0.5108$ | -11.050 |
| 6 | + 3.0718 | - 1.400 | $+1.470$ | - 1.8053 | $-4.1169$ | +0.871 | +0.085 | $+2 \cdot 1356$ | -0.7952 | + 0.336 | +0.014 | +0.0091 | +0.7952 |
| 7 | $+5 \cdot 0921$ | - 1.80\% | - 0.900 | $+0.8055$ | $-5.8376$ | +0.085 | $+0.870$ | - 1.4122 | -0.1216 | +0.031 | $+0.387$ | -0.3934 | +0.1216 |
| 8 | - 0.2815 | $-0.6413$ | +6.0462 | - 7.0440 | - 0.6079 | +2.1356 | -1.4122 | +12.4861 | -0.2451 | + 0.1978 | -2.5226 | +2.7915 | +0.735 |
| 9 | - $\cdot$. | ...... | ...... | ...... | +12.569 | -0.7952 | $-0.1216$ | -0.2451 | $+76 \cdot 072$ | -12.6860 | $-0.8305$ | - 504324 | -11.050 |
| 10 | ...... | ..... | ...... | ...... | $-4.8871$ | +0.336 | +0.031 | +0.1978 | -12.6860 | + 3.292 | +0.124 | $+0.6754$ | + 4.4206 |
| 11 | ..... | ...... | ..... | ... | -0.7445 | +0.014 | +0.387 | $-2 \cdot 5226$ | $-0.8305$ | $+0.124$ | +3.808 | -6.0719 | $-0.3018$ |
| 12 | ...... | ...* | ...... | ...... | $+0.5108$ | +0.0091 | $-0.3934$ | +2.7915 | - 5.4324 | +0.6\%54 | $-6.0719$ | +16.1641 | $+0.725^{\circ}$ |
| 13 | ...... | ...... | ...... | ...... | -11.050 | +0.7952 | +0.1216 | +0.7351 | -11.050 | + 4.4206 | -0.2018 | +0.7250 | +62.766 |
| 14 | ..... | ...... | ...... | ...... | +0.6652 | -0.070 | +0.066 | $-0.4652$ | $+0.6652$ | - 0.304 | +0.395 | -0.4535 | -2.2751 |
| 15 | ...... | ...... | ...... | ...... | + 1.0945 | -0.075 | -0.088 | +0.2940 | + 1•0945 | -0.421 | -0.327 | $+0.2852$ | - 2.158\% |
| 16 | ...... | ...... | ...... | ... | -0.1266 | -0.0116 | +0.4042 | $-2.6719$ | -0.1266 | -0.0752 | +2.3800 | $-2 \cdot 6008$ | $+0.1049$ |
| 17 | *.... | ...... | ...... | ...... | ...... | ...... | ...... | ... | ...... | $\ldots$ | ..... | ...... | -24.863 |
| 18 | ...... | ...... | ...... | ...... | ...... | $\cdots$ | ...... | ...... | ...... | $\ldots$ | ...... | ...... | + 0.526ı |
| 19 | ...... | ..... | ...... | ...... | ..... | ..... | ...... | ..... | ..... | ..... | ...... | ...... | $+4.3634$ |
| 20 | *.... | ...... | ..... | ..... | ...... | ..... | ...... | ..... | ...... | ..... | ...... | *.... | $-1 \cdot 1883$ |
| 21 | ..... | ...... | ...... | ....." | ...... | $\ldots$ | ...... | ...... | ...... | ...... | ..... | ...... | .....* |
| 22 | ..... | ...... | ...... | ...... | ...... | ..... | ...... | .....* | ...... | ...... | ...... | ...... | ...... |
| 28 | ...... | ...... | ...... | ...... | ...... | ...... | $\ldots$ | ...... | ...... | ...... | ...... | *.... | ...... |
| 24 | ...... | ...... | ..... | *.... | ..... | ...... | ..... | ..... | ...... | ...... | ..... | ...... | ....0* |

Natural Numbers, after the application of the Equalizing Factors.

AND THEIR COEFPICIENTS


The Equations between the Indeterminate

|  | THE |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ${ }_{1} \Lambda$ | ${ }_{2} \mathbf{\Lambda}$ | $3^{\Lambda}$ | $4 \Lambda$ | ${ }_{5} \mathbf{\Lambda}$ | $6 \Lambda$ | ${ }_{7} \boldsymbol{\Lambda}$ | $8 \Lambda$ | 9 ¢ | $10 \Lambda$ | ${ }_{11} \boldsymbol{\Lambda}$ | ${ }_{12} \Lambda$ | ${ }_{13} \Lambda$ |
| 1 | +115:782 | -27.1017 | $-3.2545$ | - 1.4464 | $-47 \cdot 323$ | +3.0718 | +5.0921 | $-0.2815$ | ...... | ...... | ...... | ...... | ...... |
| 2 |  | + $2 \cdot \mathbf{4 8 8 2}$ | -0.9808 | $+1.4017$ | $+6 \cdot 7406$ | -0.6810 | $-0.6151$ | $-0.7072$ | ...... | ...... | ...... | ...... | ...... |
| 3 |  |  | +7.0279 | -10.1314 | + 1 3964 | +1•2879 | -0.9994 | + 5.7595 | ...... | ..... | ..... | ..... | ..... |
| 4 |  | . |  | $+6 \cdot 0079$ | -0.6907 | +0.4733 | -0.2251 | +1•6538 | ...... | ..... | ...... | ..... | ...... |
| 5 |  |  |  |  | +34*4565 | -1•2181 | -1.9173 | +0.2385 | +12.569 | $-4.8871$ | -0.7445 | $+0.5108$ | -11.050 |
| 6 |  |  |  |  |  | +0.2867 | $-0.0854$ | +0.7721 | -0.3509 | $+0.1632$ | -0.0123 | +0.0272 | $+0.4046$ |
| 7 |  |  |  |  |  |  | +0.2113 | -0.4503 | $+0.4733$ | -0.1923 | +0.3419 | $-0.3569$ | $-0.3728$ |
| 8 |  |  |  |  |  |  |  | +4.0686 | + 1.6215 | -0.6177 | -1•7557 | +1.9541 | - 1.0725 |
| $\cdot 9$ |  |  |  |  |  |  |  |  | +69.3513 | -10.0267 | -0.6401 | $-5 \cdot 5648$ | - 5.2615 |
| 10 |  |  |  |  |  |  |  |  |  | +0.7875 | -0.0225 | -0.1004 | $+1 \cdot 3602$ |
| 11 |  |  |  |  |  |  |  |  |  |  | +2.4741 | $-4 \cdot 69.33$ | -0.2925 |
| 12 |  |  |  |  |  |  |  |  |  |  |  | + 5.2502 | -0.0679 |
| 13 |  |  |  |  |  |  |  |  |  |  |  |  | +54.9268 |
| 14 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 15 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 16 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 17 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 18 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 19 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 20 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 21 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 22 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 23 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 24 | . |  |  |  |  |  |  |  |  |  |  |  |  |

Factors after the Successive Eliminations.

PICIENTA, AFTER THE SUCCESSIVE ELIMINATIONS

| ICIE | N T 8 , | AFTE | R T H | S U C | CESS | VE E | LIMIN | A TIO | S |  |  | 发 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 14 | ${ }_{15}{ }^{\text {® }}$ | $16 \Lambda$ | ${ }_{17} \boldsymbol{\Lambda}$ | $18 \Lambda$ | ${ }_{19} \Lambda$ | $20 \Lambda$ | ${ }_{21} \Lambda$ | ${ }_{22} \boldsymbol{\Lambda}$ | ${ }_{23}{ }^{\Lambda}$ | ${ }_{24} \Lambda$ | Absolute Terms |  |
| ...... | ...... | ...... | ...... | ...... | ...... | ...... | ...... | ...... | ...... | ...... | + 18.98 | 1 |
| .....• | ...... | ....... ${ }^{\text {. }}$ | ...... | ...... | ...... | ...... | ...... | ...... | ...... | ...... | - 1.9273 | 2 |
| *.... | *.... | *.... | -....• • | ...... | ...... | ..... | ...... | ...... | ...... | *..... | - 5.9362 | 8 |
| $\ldots$ | ...... | ...... | *.... | ...... | ..... | ...... | ...... | *.... | ...... | ...... | $-15.0408$ | 4 |
| +0.6652 | +1.0945 | -0.1266 | *.... | . $\quad$... | ..... | *.... | $\ldots . .$. | *.... | ...... | ...... | - 8.8211 | 5 |
| -0.0465 | $-0.0363$ | -0.0161 | ...... | ...... | ...... ${ }^{\text {. }}$ | ..... | *.... | ..... | ...... | ...... | + 1.6099 | 6 |
| +0.0891 | -0.0379 | +0.3924 | ...... | ...... | ...... | ...... | ...... | ...... | ...... | *.... | + 1.3398 | 7 |
| -0.1547 | +0.3034 | -1'7914 | ...... | -..... | ...... | ...... | ...... | ...... | ...... | ...... | -. 0.0286 | 8 |
| +0.2277 | +0.6148 | -0.2652 | ..... | ...... | ...... | *.... | ...... | ...... | ...... | ..... | $+4.9384$ | 9 |
| -0.0927 | -0.1446 | -0.0372 | ..... | ..... | ...... | ..... | *..... | ...... | ...... | *.... | $-4.5885$ | 10 |
| +0.1959 | -0.1112 | +0.9652 | ...... | ...... | ...... | ..... | *.... | ...... | *.... | *.... | - 1.7374 | 11 |
| +0.1439 | -0.1173 | +0.7308 | *.... | *..... | ...... | ...... | ...... | *.... | *.... | - * ${ }^{\text {a }}$ | - 7'9486 | 12 |
| -1.6773 | -1.4616 | +0.4749 | - 24.862 | +0.5261 | $+4.3634$ | $-1 \cdot 1883$ | '...... | ...... | $\cdots$ | ...... | -13.3425 | 13 |
| +0.1460 | -0.0181 | +0.3073 | $+0.7971$ | -0.0619 | -0.1468 | $-0.0003$ | ...... | ...... | ...... | ...... | $+0.7670$ | 14 |
|  | +0.1784 | $-0.5990$ | -0.3117 | +0.2023 | -0.0231 | $+0.6044$ | ...... | ...... | ...... | ...... | - 0.8055 | 15 |
|  |  | $+7 \cdot 2646$ | - 233793 | $-0.8434$ | +0. 5406 | $-3 \cdot 1200$ | ...... | ...... | ...... | ...... | - 2.1029 | 16 |
|  |  |  | +105.2748 | -1.1010 | -5.952I | -0.5449 | $+39.234$ | +3.4055 | $-9.7657$ | $+0.6156$ | $-18 \cdot 5427$ | 17 |
|  |  |  |  | +0.7460 | -0.0422 | + 2.0332 | - 1.8990 | -0.0794 | $+0.4969$ | $+0.0402$ | $+2.3183$ | 18 |
|  |  |  |  |  | +0.4887 | +0.0147 | $+1 \cdot 5283$ | -0.0960 | $-0.4440$ | -0.4795 | $+0.2461$ | 19 |
|  |  |  |  |  |  | +31.0009 | $+4.8372$ | + $2 \cdot \mathbf{4 2 0 3}$ | $-0.3488$ | +4.7303 | $-1.8372$ | 20 |
|  |  |  |  |  |  |  | +100.4897 | $+8.8217$ | $-11 \cdot 5858$ | -1.648ı | $+38 \cdot 5603$ | 21 |
|  |  |  |  |  |  |  |  | +1.6905 | + +0.9194 | + 4.302. | - 1.4860 | 22 |
|  |  |  |  |  |  |  |  |  | +.1.2518 | + 1.5511 | - 0.4051 | 23 |
|  |  |  |  |  |  |  |  |  |  | $+5 \cdot 5401$ | + 2.0192 | 24 |

The following table gives the values of the factors to four places of decimals as deduced from the solution of the equations, and also as multiplied by the equalizing factors to give the quantities to be employed in obtaining the values of $y$ and $z$ (see page 99).

The Numerical Values of the Indeterminate Factors.

| Factors | Value as deduced | Value ase emploged | Factors | Value as deduped | Value es employed |
| :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }_{1}$ \} | +0.0338 | + 0.0034 | ${ }_{13} \mathrm{~A}$ | -0.4224 | - 0.0422 |
| ${ }_{2} \mathbf{\Lambda}$ | + 2.4819 | + 24.8190 | ${ }_{14}{ }^{\text {A }}$ | + 6.5184 | + 65.1840 |
| ${ }_{3} \boldsymbol{\Lambda}$ | -6.4490 | - 64.4900 | ${ }_{15} \Lambda$ | -9.7600 | - 97.6000 |
| ${ }_{4}{ }^{\text {A }}$ | - 3.1401 | 3.1401 | ${ }_{16} \Lambda$ | +0.1793 | + 0.1793 |
| ${ }_{5} \boldsymbol{\Lambda}$ | -0.4027 | 0.0403 | ${ }_{17} \mathrm{~A}$ | -0.3915 | -0.0391 |
| ${ }_{6} \Lambda$ | +11.4203 | + 114.2030 | ${ }_{88} \Lambda$ | + 5.0746 | + 50.7460 |
| ${ }_{7}{ }^{1}$ | +0.4635 | + 4.6350 | ${ }_{19} \Lambda$ | - 1.4278 | - 14.2780 |
| $8 \boldsymbol{8}$ | - 1.0608 | 1-0608 | ${ }_{20}$ ^ | -0.2291 | - 0.2291 |
| ${ }_{9} \boldsymbol{\Lambda}$ | - 1.0434 | - $\cdot 1043$ | ${ }_{21} \mathrm{~A}$ | +0.4219 | + 0.0422 |
| ${ }_{10} \Lambda$ | -6.5168 | - 65.1680 | ${ }_{22} \mathrm{~A}$ | - 1•3850 | - 13.8500 |
| ${ }_{11} \mathrm{\Lambda}$ | - 5.4591 | 54.5910 | ${ }_{23}{ }^{\text {n }}$ | -0.7752 | -7.7520 |
| ${ }_{12} \boldsymbol{\Lambda}$ | - 1.9411 | 1:9411 | ${ }_{24} \Lambda$ | +0.3645 | + 0.3645 |

## 16.

## The Angular Errors $x, y$ and $z$.

The values of the $\Lambda s$ having been obtained the next step was the deduction of the errors $x, y$ and $z$. The formulæ for this purpose are, as indicated in Section 11 of Chapter II,

$$
\begin{aligned}
& y_{p}={ }_{1} \mathbb{B}_{1_{1}} \Lambda+{ }_{2} \mathbb{B}_{p} \boldsymbol{\Lambda}+\cdots \cdot \cdot+{ }_{24} \mathbb{B}_{p}{ }_{24} \Lambda, \\
& z_{p}={ }_{1} \mathbb{C}_{p_{1}} \Lambda+{ }_{2} \mathbb{C}_{p_{2}} \Lambda+\cdots \cdot+{ }_{24} \mathbb{C}_{p}{ }_{24} \Lambda .
\end{aligned}
$$

The error $x_{p}$ was simply determined by finding the value of its equivalent, $-\left(y_{p}+z_{p}\right)$.
The numerical values of the angular errors were first computed to four places of decimals, employing the $\Lambda s$ to four places. These values were then inserted in the equations between $y$ and $z$, symbolized in Section 11, Chapter II. The angular errors were then contracted to three places of decimals and the equations again tested. Finally they were contracted to two places of decimals, the number employed in the linear and geodetic calculations, and were inserted in these, and certain small residual errors in the closing of chains were found to exist: these were eliminated by 'arbitrary corrections.' The residuals which presented themselves prior to the introduction of the arbitrary corrections will be found in a note on the reduction of this quadrilateral at the end of these chapters.

The following table shews :-
(1). The errors as computed and reduced to two places of decimals,
(2). The arbitrary corrections,
(3). The totals of (1) and (2), giving the values of $x, y$ and $z$ which, with changed sign, were introduced into the linear and geodetic calculations.

|  | $x$ |  |  | $y$ |  |  | $z$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 |
| 1 | -0.47 | $-0.02$ | -0.49 | $+2.45$ | + 0.02 | +2.47 | - 1•98 | ... | - 1:98 |
| 2 | + 65 | + . 02 | + 67 | + 0.61 | ... | + 0.61 | - 1•26 | -0.02 | - 1.28 |
| 8 | + 1.52 | ... | + 1-52 | + $3^{6}$ | ... | + $\cdot 36$ | - 1.88 | ... | - 1.88 |
| 4 | -0.48 | - . 02 | -0.50 | + 1.28 | + . 02 | + 1.30 | - 0.80 | ... | - 0.80 |
| 5 | + 1.16 | ... | + 1.16 | -0.11 | ... | -0.11 | - 1.05 | ... | - 1.05 |
| 6 | - 0.54 | - . 02 | -0.56 | + 82 | + .02 | + $\cdot 84$ | - 0.28 | ... | - 0.28 |
| 7 | + 30 | + $\cdot 02$ | + 32 | - . 04 | ... | - . 04 | - . 26 | - . 02 | - $\cdot 28$ |
| 8 | - 29 | . 04 | - 33 | + $\cdot 58$ | + . 02 | + . 60 | - . 29 | + . 02 | - $\cdot 27$ |
| 9 | + $\cdot 16$ | ... | + $\cdot 16$ | + . 09 | ... | + .09 | - . 25 | ... | - . 25 |
| 10 | + $\cdot 16$ | ... | + $\cdot 16$ | + 30 | ... | + 30 | - $\cdot 46$ | ... | - $\cdot 46$ |
| 11 | + $\cdot 22$ | ... | + $\cdot 22$ | - $\cdot 87$ | ... | - $\cdot 87$ | + 65 | ... | + 65 |
| 12 | + $\cdot 88$ | ... | + $\cdot 88$ | - 1.45 | ... | - 1.45 | + .57 | ... | + 57 |
| 18 | - $\cdot 78$ | ... | - $\cdot 78$ | -0.05 | ... | - 0.05 | + 83 | ... | + $\cdot 83$ |
| 14 | - -91 | ... | - 91 | $\cdot 22$ | ... | $\cdot 22$ | + 1.13 | ... | + 1.13 |
| 15 | + 38 | ... | + 38 | - .69 | ... | - . 69 | +0.31 | ... | +0.31 |
| 16 | + 01 | ... | + -0t | - . 59 | ... | - . 59 | + 58 | ... | + $\cdot 58$ |
| 17 | + $\cdot 01$ | + .02 | + .03 | - . 25 | ... | - . 25 | + $\cdot 24$ | - . 02 | + $\cdot 22$ |
| 18 | - $\cdot 12$ | - .01 | - $\cdot 13$ | - .09 | ... | - . 09 | + 21 | + - 01 | + $\cdot 22$ |
| 19 | - 32 | - . 02 | - 34 | - $\cdot 19$ | ... | - $\cdot 19$ | + $\cdot 51$ | + $\cdot 02$ | + $\cdot 53$ |
| 20 | + $\cdot 16$ | ... | + $\cdot 16$ | - $\cdot 13$ | - . 02 | - $\cdot 15$ | - . 03 | + . 02 | - - 01 |
| 21 | - . 57 | + . 02 | - $\cdot 55$ | + $\cdot 17$ | - . 02 | + $\cdot 15$ | + 40 | ... | + 40 |
| 22 | - . 67 | - . 02 | - 69 | + $\cdot 21$ | ... | + $\cdot 21$ | + $\cdot 46$ | + . 02 | + $\cdot 48$ - |
| 23 | + $\cdot 77$ | ... | + $\cdot 77$ | - $\cdot 26$ | - . 02 | - 28 | - . 51 | + . 02 | - $\cdot 49$ |
| 24 | - •99 | - . 02 | - 1-01 | + $\cdot 41$ | ... | + 41 | + 58 | + . 02 | + . 60 |
| 25 | + $1 \cdot 00$ | + 0.04 | + 1.04 | - $\cdot 29$ | - . 02 | - 31 | - $\cdot 71$ | - . 02 | - $\cdot 73$ |
| 26 | 21 | - . 04 | - 1.25 | + 64 | + $\cdot 02$ | + 66 | + $\cdot 57$ | + $\cdot 02$ | + $\cdot 59$ |
| 27 | + 1.21 | + $\cdot 04$ | +1.25 | - $\cdot 24$ | - - 02 | - . 26 | - $\cdot 97$ | - . 02 | - -99 |
| 28 | - 1.57 | ... | - 1.57 | +1.01 | - $\cdot 02$ | + 99 | + 56 | + .02 | + $5^{8}$ |
| 29 | + 3.88 | ... | + 3.88 | - 1•15 | - .02 | - 1•17 | - 2.73 | + .02 | - 2.71 |
| 80 | - 3.80 | ... | $-3.80$ | + 1.96 | - -05 | + 1.91 | + 1.84 | + .05 | + 1.89 |


|  | $x$ |  |  | $y$ |  |  | $z$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 |
|  | " | " | " | $\cdots$ | " | " | " | " | " |
| 31 | +0.22 | $+0.04$ | +.0.26 | -0.01 | -0.02 | -0.03 | $-0.21$ | $-0.02$ | $-0.23$ |
| 32 | - $\cdot 17$ | - 02 | - $\cdot 19$ | + 30 | + . 02 | $+32$ | - $\cdot 13$ | ... | $-13$ |
| 33 | $+\cdot 10$ | $+.02$ | $+\cdot 12$ | + $\cdot 19$ | ... | $+19$ | - $\cdot 29$ | - .02 | $-31$ |
| 34 | - $\cdot 20$ | - $\cdot 04$ | - $\cdot 24$ | $+31$ | + . 02 | + 33 | - •11 | + $\quad 02$ | - -09 |
| 35 | + .03 | + . 02 | + .05 | + $\cdot 17$ | - . 02 | $+15$ | - $\cdot 20$ | ... | - $\cdot 20$ |
| 36 | $+\quad .22$ | ... | $+\cdot 22$ | $+\cdot 18$ | ... | $+\cdot 18$ | - $\cdot 40$ | ... | - $\cdot 40$ |
| 37 | - 02 | + . 02 | - 0 | + . 06 | - . 02 | $+.04$ | - . 04 | '.. | -. 04 |
| 88 | + $\cdot 06$ | ... | + .06 | + .09 | *- | + 09 | - $\cdot 15$ | *. | - 15 |
| 39 | - $\cdot 10$ | .. | - $\cdot 10$ | + .09 | ... | + -09 | + - 01 | ... | + -01 |
| 40 | $+12$ | + - 01 | $+\cdot 13$ | $+\cdot 13$ | - -01 | + 12 | - $\cdot 25$ | ... | - $\cdot 25$ |
| 41 | - 33 | *. | - 33 | + $\cdot 43$ | - | $+\quad .43$ | - $\cdot 10$ | ... | - $\cdot 10$ |
| 42 | $+31$ | ... | $+3{ }^{1}$ | - . 04 | ... | - 04 | - $\cdot 27$ | ... | - ${ }^{27}$ |
| 43 | - $\cdot 26$ | - | - $\cdot 26$ | + $\cdot 28$ | - | + $\cdot 28$ | - 02 | ... | - . 02 |
| 44 | $+\quad .21$ | - | $+\cdot 21$ | + . 04 | - | $+.04$ | - $\cdot 25$ | ... | - $\cdot 25$ |
| 45 | + $\cdot 20$ | ... | + $\cdot 20$ | $+.05$ | $\cdots$ | + . 05 | - $\cdot 25$ | *. | - $\cdot 25$ |
| 46 | - $\cdot 24$ | - | - $\cdot 24$ | + $\cdot 24$ | $\cdots$ | + $\cdot 24$ | - 0 | -. | -00 |
| 47 | -. 15 | - | - $\cdot 15$ | $+\cdot 21$ | ... | $+\quad .21$ | - . 06 | -•• | - . 06 |
| 48 | + $\cdot 20$ | - | $+\quad .20$ | - . 04 | - | - . 04 | - •16 | $\cdots$ | - •16 |
| 49 | - $\cdot 18$ | - | $-18$ | $+\cdot 19$ | -•• | + 19 | - $\cdot 01$ | ... | - - 01 |
| 50 | + 112 | ... | $+12$ | -00 | ... | -00 | - $\cdot 12$ | ... | - 12 |
| 51 | - $\cdot 14$ | ... | - $\cdot 14$ | + $\cdot 23$ | $\cdots$ | + $\cdot 23$ | - 009 | ... | - -09 |
| - 52 | + 14 | - | + $\cdot 14$ | $+.04$ | $\cdots$ | $\pm .04$ | - $\cdot 18$ | ... | - $\cdot 18$ |
| 53 | - $\cdot 14$ | ... | - $\cdot 14$ | $+\cdot 18$ | $\cdots$ | + $\cdot 18$ | - 04 | - | - 04 |
| 54 | - $\cdot 29$ | ... | - $\cdot 29$ | $+12$ | - | + 12 | + 17 | - | $+17$ |
| 55 | + $\cdot 25$ | - ${ }^{\circ}$ | $+\quad .25$ | + $\cdot 29$ | $\cdots$ | + $\cdot 29$ | - $\cdot 54$ | $\cdots$ | - $\cdot 54$ |
| 56 | - •57 | *. | - • 57 | + $\cdot 59$ | $\cdots$ | + $\cdot 59$ | - $0^{02}$ | ... | - 02 |
| 57 | + 65 | - | + $\cdot 65$ | - 0.02 | ... | - 02 | - . 63 | ... | - . 63 |
| 58 | - 36 | -. | - 36 | + $\cdot 50$ | $\cdots$ | $+\quad .50$ | - $\cdot 14$ | ... | - $\cdot 14$ |
| 59 | $+30$ | *. | $+30$ | + . 04 | ... | + $\cdot 04$ | - 34 | $\cdots$ | - 34 |
| 60 | - •18 | ... | - •18 | $+\cdot 61$ | ... | + 61 | - $\cdot 43$ | $\ldots$ | - $\cdot 43$ |


|  | $\boldsymbol{x}$ |  |  | $y$ |  |  | $z$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 8 |
|  | " | $\cdots$ | " | i | * | " | " | " | 11 |
| 61 | +0.34 | .. | +0.34 | -0.05 | ... | $-0.05$ | -0.29 | ... | -0.29 |
| 62 | + $\cdot 39$ | $\cdots$ | + 39 | -00 | ... | - 0 | - •39 | ... | - 39 |
| 63 | - $\cdot 14$ | ... | - $\cdot 14$ | + $\cdot 20$ | ... | $+\cdot 20$ | - .06 | ... | - .06 |
| 64 | + $\cdot 20$ | ... | + $\cdot 20$ | - -03 | ... | - . 03 | - $\cdot 17$ | ... | $-17$ |
| 65 | - .05 | .. | - . 05 | $+\cdot 17$ | .. | $+17$ | - $\cdot 12$ | ... | - $\cdot 12$ |
| 66 | $+\quad \cdot 19$ | ... | $+\quad .19$ | - . 07 | $\cdots$ | - . 07 | - $\cdot 12$ | ... | - $\cdot 12$ |
| 67 | - . 03 | ... | - . 03 | + . 05 | - | $+.05$ | - . 02 | -•• | - $\cdot 02$ |
| 68 | - 35 | ... | - 35 | $+\quad .45$ | ... | $+\quad .45$ | - •10 | - | - •10 |
| 69 | $+\cdot 18$ | ... | + $\cdot 18$ | - $\cdot 56$ | ... | - $\cdot 56$ | $+\quad 38$ | ... | $+38$ |
| 70 | + $\cdot 59$ | ... | + $\cdot 59$ | - •18 | ... | $-\quad .18$ | - $\cdot \mathbf{4 1}$ | .. | - $\cdot 41$ |
| 71 | - 1.21 | ... | -1.21 | - $\cdot 46$ | ... | - $\cdot 46$ | + 1.67 | ... | $+1.67$ |
| 72 | $+2.07$ | $\cdots$ | $+2.07$ | - I•10 | ... | - 1.10 | -0.97 | ... | $-0.97$ |
| 73 | -0.27 | -0.01 | $-0.28$ | -2.04 | +0.01 | $-2.03$ | $+2 \cdot 31$ | . ${ }^{\prime}$ | $+2 \cdot 31$ |
| 74 | +1.99 | $+.02$ | $+2.01$ | $-2 \cdot 35$ | ... | $-2 \cdot 35$ | $+0: 36$ | -0.02 | $+0.34$ |
| 75 | $-2.43$ | ... | $-2.43$ | $-0.32$ | ... | $-0.32$ | $+2.75$ | .. | $+2.75$ |
| 76 | + 0.06 | ... | +0.06 | - $\cdot 16$ | ... | - $\cdot 16$ | $+0.10$ | ... | $+0.10$ |
| 77 | - $\cdot 22$ | ... | - $\cdot 22$ | $+\cdot 10$ | ... | $+\cdot 10$ | $+\cdot 12$ | ... | $+12$ |
| 78 | + $\cdot 35$ | ... | $+35$ | - $\cdot 25$ | ... | - $\cdot 25$ | - 10 | .. | - •10 |
| 79 | - 32 | $\ldots$ | - $\cdot 32$ | + $\cdot 23$ | ... | $+\quad .23$ | + . 09 | .. | + .09 |
| 80 | $+\cdot 19$ | ... | + $\cdot 19$ | - . 03 | ... | - . 03 | - $\cdot 16$ | ... | - •16 |
| 81 | - $\cdot 19$ | .. | $-\quad \cdot 19$ | + $\cdot 26$ | .. | + $\cdot 26$ | - . 07 | ... | - . 07 |
| 82 | + .06 | ... | + . 06 | + . 03 | ... | + -03 | - •09 | ... | - .09 |
| 83 | - $\cdot 16$ | ... | - $\cdot 16$ | $+35$ | ... | $+35$ | - $\cdot 19$ | .. | - •19 |
| 84 | $+\cdot 01$ | ... | + . 01 | $+\cdot 13$ | ... | $+\cdot 13$ | - $\cdot 14$ | ... | $-14$ |
| 85 | - . 05 | ... | - .05 | $+38$ | $+\cdot \mathrm{OI}$ | $+39$ | - 33 | - - 01 | - 34 |
| 86 | + .03 | + . 02 | + . 05 | + $\cdot 29$ | ... | + 29 | - 32 | - . 02 | - 34 |
| 87 | - $\cdot 22$ | ... | - $\cdot 22$ | - 35 | ... | - 35 | + $\cdot 57$ | ... | + $\cdot 57$ |
| 88 | $+31$ | ... | $+\cdot 31$ | - $\cdot 67$ | ... | - .67 | + 36 | - | + 36 |
| 89 | $+10$ | ... | $+\cdot 10$ | - $\cdot 45$ | ... | - 45 | $+35$ | ... | $+35$ |
| 90 | + . 08 | ... | + .08 | - $\cdot 27$ | ... | - $\cdot 27$ | + $\cdot 19$ | ... | $+\quad 19$ |


|  | $x$ |  |  | $y$ |  |  | $z$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 8 | 1 | 2 | 3 | 1 | 2 | 3 |
|  | " | " | " | " | " | " | " | " | " |
| 91 | $-0.21$ | ... | -0.21 | $-0.34$ | $\ldots$ | -0.34 | + 0. 55 | ... | + 0.55 |
| 92 | - -01 | ... | - -or | - 29 | ... | - . 29 | + 30 | ... | +. 30 |
| 93 | + -01 | ... | + -01 | - 32 | ... | - 32 | $+3{ }^{1}$ | ... | + $3 \mathrm{3I}$ |
| 94 | + $\cdot 23$ | ... | + $\cdot 23$ | - 31 | ... | - 31 | + .08 | ... | + . 08 |
| 95 | - 27 | ... | - $\cdot 27$ | - $\cdot 17$ | ... | - $\cdot 17$ | + 44 | ... | + 44 |
| 96 | + 32 | ... | + 32 | - 38 | ... | - 38 | + .06 | ... | + . 06 |
| 97 | + 30 | ... | + 30 | - 35 | ... | - 35 | + .05 | ... | + . 05 |
| 98 | - 29 | ... | - 29 | - 20 | ... | - $\cdot 20$ | + $\cdot 49$ | ... | + 49 |
| 99 | - 19 | ... | - 19 | - . 04 | ... | - . 04 | + $\cdot 23$ | ... | + $\cdot 23$ |
| 100 | - 82 | ... | - .82 | + $\cdot 25$ | ... | + $\cdot 25$ | + $\cdot 57$ | ... | + $\cdot 57$ |
| 101 | + $\cdot 50$ | ... | + $\cdot 50$ | - $\cdot 19$ | ... | - $\cdot 19$ | - 31 | ... | - 3 3 |
| 102 | - 43 | ... | - 43 | + 28 | ... | + 28 | + $\cdot 15$ | ... | + $\cdot 15$ |
| 103 | - $\cdot 23$ | ... | - $\cdot 23$ | + ${ }^{15}$ | ... | + $\cdot 15$ | + . 08 | ... | + . . 08 |
| 104 | + 39 | ... | + 39 | - ${ }^{15}$ | ... | - $\cdot 15$ | - $\cdot 24$ | $\ldots$ | - 24 |
| 105 | - 20 | ... | - 20 | + $\cdot 14$ | ... | $+\cdot 14$ | + .06 | ... | + . 06 |
| 106 | + 33 | ... | + 33 | - . 07 | ... | - .07 | - . 26 | $\ldots$ | - . 26 |
| 107 | + 35 | $\ldots$ | + 35 | - . 09 | ... | - .09 | - . 26 | $\cdots$. | - . 26 |
| 108 | - 32 | $\ldots$ | - 32 | + $\cdot 28$ | ... | + $\cdot 28$ | + 0.04 | ... | + 04 |
| 109 | - 29 | $\ldots$ | - 29 | + $\cdot 24$ | $\ldots$ | + 24 | + .05 | ... | + .05 |
| 110 | + ${ }^{-42}$ | ... | + $\cdot 42$ | - . 05 | ... | - . 05 | - 37 | $\ldots$ | - 37 |
| 111 | - 25 | ... | - $\cdot 25$ | + $\cdot 24$ | ... | + 24 | + $\cdot 0 \mathrm{l}$ | ... | + -0ı |
| 112 | + 33 | ... | + 33 | - - 01 | ... | - - 01 | - 32 | $\cdots$ | - $3^{2}$ |
| 113 | - . 18 | ... | - $\cdot 18$ | + 27 | ... | + $\cdot 27$ | - . 09 | $\ldots$ | - . 09 |
| 114 | + $\cdot 11$ | ... | + 11 | + .07 | ... | + .07 | - $\cdot 18$ | ... | - $\cdot 18$ |
| 115 | - . 08 | ... | - . 08 | + 25 | $\ldots$ | + 25 | - $\cdot 17$ | ... | - $\cdot 17$ |
| 116 | + .03 | ... | + .03 | + $\cdot 10$ | ... | + $\cdot 10$ | - $\cdot 13$ | ... | - . 13 |
| 117 | - . 04 | ... | - . 04 | + $\cdot 14$ | ... | + 14 | - $\cdot 10$ | ... | - $\cdot 10$ |
| 118 | + .05 | $\ldots$ | + .05 | + $\cdot 16$ | ... | $+\cdot 16$ | - .21 | $\ldots$ | - 21 |
| 119 | + . 02 | $\cdots$ | + .02 | + $\cdot 24$ | $\ldots$ | + 24 | - 26 | ... | - $\cdot 26$ |
| 120 | + $\cdot 02$ | +0.01 | + .03 | + $\cdot 14$ | - 0.01 | + $\cdot 13$ | - . 16 | ... | - . 16 |


|  | $x$ |  |  | $y$ |  |  | $z$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 |
|  | " | " | " | " | * | " | " | " | " |
| 121 | -0.07 | -0.01 | -0.08 | +0:23 | ... | + 0:23 | $-0.16$ | +0.01 | -0.15 |
| 122 | + $\cdot 08$ | + - 01 | + . 09 | $+30$ | -0.01 | + $\cdot 29$ | - 38 | ... | $-38$ |
| 123 | - .09 | -. 01 | - •10 | $+35$ | ... | $+35$ | - . 26 | + . 01 | - $\cdot 25$ |
| 124 | + .05 | + .02 | + .07 | + $\cdot 27$ | - . 01 | + $\cdot 26$ | - 32 | - . 01 | - 33 |
| 125 | - $\cdot 13$ | ... | - $\cdot 13$ | - 35 | $\cdots$ | - 35 | + $\cdot 48$ | ... | + $\quad 48$ |
| 126 | - 0 | $\cdots$ | -00 | - 39 | ... | - 39 | + 39 | ... | + 39 |
| 127 | - $\cdot 29$ | ... | - $\cdot 29$ | - $\cdot 18$ | ... | - $\cdot 18$ | + $\cdot 47$ | $\cdots$ | + 47 |
| 128 | $+\quad .18$ | ... | $+\cdot 18$ | - $\cdot 17$ | $\cdots$ | - 17 | - . 01 | - | - .01 |
| 129 | $+\quad .21$ | $\cdots$ | + $\cdot 21$ | - $\cdot 17$ | $\cdots$ | - $\cdot 17$ | - - 04 | ... | - . 04 |
| 130 | - $\cdot 26$ | ... | - $\cdot 26$ | - $\cdot 07$ | . ${ }^{\text {a }}$ | - . 07 | + 33 | ... | + 33 |
| 131 | $+31$ | ... | $+31$ | - $\cdot 19$ | ... | - $\cdot 19$ | - $\cdot 12$ | $\cdots$ | - $\cdot 12$ |
| 132 | -. $\cdot 28$ | ... | - $\cdot 28$ | $+\cdot 11$ | $\ldots$ | + $\cdot 11$ | $+\cdot 17$ | ... | + $\cdot 17$ |
| 133 | + $\cdot 26$ | ... | + $\cdot 26$ | - -13 | $\ldots$ | - 13 | - $\cdot 13$ | ... | - •13 |
| 134 | - 30 | ... | - 30 | $+\cdot 13$ | ... | + $\cdot 13$ | $+\quad \cdot 17$ | ... | + $\cdot 17$ |
| 135 | - $\cdot 48$ | $\cdots$ | - $\cdot 48$ | + $\cdot 51$ | , ${ }^{\text {. }}$ | $+\cdot 51$ | - - 03 | ... | - $\cdot 03$ |
| 136 | + $\cdot 48$ | + 02 | + 50 | + -09 | - - 01 | + -08 | - $\cdot 57$ | - . 01 | - $\cdot 58$ |
| 137 | - $\cdot 18$ | - 02 | - $\cdot 20$ | + .66 | + - 01 | $+\quad .67$ | - $\cdot 48$ | + $\cdot 01$ | - $\cdot 47$ |
| 138 | + . 08 | ... | + .08 | $+\cdot 14$ | ... | $+\cdot 14$ | - $\cdot 22$ | ... | - $\cdot 22$ |
| 139 | + $\cdot 23$ | + 01 | + $\cdot 24$ | $+\cdot 18$ | ... | $+18$ | - 41 | - - 01 | - $\cdot 42$ |
| 140 | - $\cdot 27$ | - - 01 | - $\cdot 28$ | $+35$ | + 01 | $+37$ | - .09 | $\cdots$ | - 009 |
| 141 | $+\quad 14$ | + -01 | $+\cdot 15$ | $+\cdot 21$ | ... | $+\cdot 21$ | - 35 | - - 01 | - 36 |
| 142 | - . 08 | - - 01 | - -09 | + 33 | + - 01 | + 34 | - $\cdot 25$ | ... | - $\cdot 25$ |
| 143 | - . 08 | $\cdots$ | - .08 | + $\cdot 33$ | ... | + 33 | - . 25 | ... | - $\cdot 25$ |
| 144 | - . 01 | ... | - - 01 | + 30 | + $\quad$ OI | + 31 | - :29 | - - 01 | - 30 |
| 145 | + $\cdot 26$ | $+\cdot 01$ | $+\cdot 27$ | $+15$ | ... | $+\quad 15$ | - $\cdot 41$ | - - 01 | -. 42 |
| 146 | - $\cdot 22$ | - 02 | - $\cdot 24$ | + $\cdot 43$ | + - 01 | + $\cdot 44$ | - $\cdot 21$ | + .01 | - $\cdot 20$ |
| 147 | + $\cdot 11$ | + .01 | $+\cdot 12$ | + $\cdot 21$ | ... | $+\cdot 21$ | - 32 | - - 01 | - 33 |
| 148 | + .02 | ... | + . 02 | + $\cdot 18$ | $\ldots$ | $+\cdot 18$ | - $\cdot 20$ | ... | - $\cdot 20$ |
| 149 | - $\cdot 05$ | - - 01 | - .06 | $+37$ | + - 01 | + 38 | - 32 | ... | - 32 |
| 150 | - . 06 | ... | - . 06 | $+32$ | $\ldots$ | + 32 | - 26 | .. |  |


|  | $x$ |  |  | $y$ |  |  | $z$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 |
|  | " | " | " | " | " | " | " | " | " |
| 151 | + O.11 | ... | +0.11 | $+0.15$ | ... | +0.15 | -0.26 | ... | $-0.26$ |
| 152 | - .06 | ... | - .06 | + $\cdot 40$ | ... | + $\cdot 40$ | - 34 | $\ldots$ | - 34 |
| 153 | - $\cdot 14$ | ... | - . 14 | + 28 | ... | + $\cdot 28$ | - . 14 | ... | - $\cdot 14$ |
| 154 | - . 06 | - 0.01 | - .07 | + $\cdot 52$ | ... | + ${ }^{52}$ | - $\cdot 46$ | +0.01 | - $\cdot 45$ |
| 155 | + $\cdot 28$ | - - 0 I | + $\cdot 27$ | + $\cdot 22$ | ... | + $\cdot 22$ | - . 50 | + -01 | - $\cdot 49$ |
| . 156 | - 0 | ... | - 0 | + $\cdot 16$ | ... | + $\cdot 16$ | - . 16 | ... | - $\cdot 16$ |
| 157 | - . 14 | + - 01 | - $\cdot 13$ | + 30 | -0.01 | + 29 | - . 16 | ... | - $\cdot 16$ |
| 158 | - . 04 | ... | - . 04 | + $\cdot 22$ | ... | + $\cdot 22$ | - $\cdot 18$ | ... | - $\cdot 18$ |
| 159 | + -01 | + -0I | + . 02 | + 39 | - - 01 | + $3^{8}$ | - $\cdot 40$ | ... | - $\cdot 40$ |
| 160 | + 02 | - -01 | + -01 | + $\cdot 25$ | ... | + $\cdot 25$ | - $\cdot 27$ | + - 01 | - $\cdot 26$ |
| 161 | + .06 | $\ldots$ | + . 06 | + $\cdot 21$ | ... | + 21 | - 27 | ... | - 27 |
| 162 | - 11 | $\ldots$ | - $\cdot 11$ | + $\cdot 28$ | ... | + $\cdot 28$ | - $\cdot 17$ | ... | - $\cdot 17$ |
| 163 | - 12 | ... | - $\cdot 12$ | + 34 | ... | + 34 | - 22 | ... | - $\cdot 22$ |
| 164 | + .10 | $\ldots$ | + $\cdot 10$ | + $\cdot 27$ | ... | + $\cdot 27$ | - 37 | ... | - 37 |
| 165 | - . 02 | ... | - . 02 | + $\cdot 22$ | ... | + 22 | - . 20 | ... | - 20 |
| 166 | + $\cdot 16$ | $\ldots$ | + $\cdot 16$ | + $\cdot 20$ | ... | + $\cdot 20$ | - $3^{6}$ | ... | - $\cdot 36$ |
| 167 | - . 16 | $\ldots$ | - . 16 | $+3{ }^{1}$ | ... | + 31 | - ${ }^{15}$ | ... | - . 15 |
| 168 | - 0 | + - O | + - 01 | + 40 | - - 01 | + 39 | - 40 | ... | - $\cdot 40$ |
| 169 | + $\cdot 11$ | - .or | + 10 | + 2.25 | ... | + $\cdot 25$ | - $3^{6}$ | + 01 | - 35 |
| 170 | + . 04 | + -01 | + .05 | + ${ }^{15}$ | - - 01 | + $\cdot 14$ | - - 19 | ... | - $\cdot 19$ |
| 171 | - .07 | - 01 | - . 08 | + 40 | ... | + $\cdot 40$ | - 33 | + . 01 | - $\cdot 32$ |
| 172 | + 19 | + .or | + $\cdot 20$ | + $33^{\circ}$ | - - 01 | + 29 | - 49 | ... | - $\cdot 49$ |

## 17.

## The Final Results of the Simultaneous Reduction.

The values of the Angular Errors, given in Section 16, are-except in so far as they have been altered as shewn in that section-the results of the general solution of the problem that was presented by the South-West Quadrilateral. The errors were severally applied, with changed signs, to the values of the figurally corrected angles which are given in Section 8, and corresponding corrections were obtained to the logarithmic lengths of the sides of the circuit triangles which are given in that section. The corrections to the sides and angles were then introduced into the several geodetic calculations, from which the values of Latitude, Longitude and Azimuth, for the stations on the line of traverse, had been obtained, as given in Section 9.

After all the corrections had been applied, the residual differences between the computed and fixed values and between the linear and the geodetic values deduced for the circuits-at the junctions of their right and left-hand branches, respectively-were found to be very small. Thus the difference between the two logarithmic values of length, for any side of circuit-junction, in no case exceeds $\cdot 000,000,05$ and in one instance is nil to the 8th place of decimals, notwithstanding that logarithm tables to 7 places only had been used in the calculations; and the difference in latitude, longitude and azimuth, at the closing station of any circuit, never exceeds $0^{\prime \prime} \cdot 005$.

As regards the magnitudes of the angular errors which are given in Section 16, it will be seen that they are generally small. Their total number is 516 of which 103 are between $0^{\prime \prime} \cdot 0$ and $0^{\prime \prime} \cdot 1 ; 115$ between $0^{\prime \prime} \cdot 1$ and $0^{\prime \prime} \cdot 2 ; 109$ between $0^{\prime \prime} \cdot 2$ and $0^{\prime \prime} \cdot 3 ; 78$ between $0^{\prime \prime \prime} \cdot 3$ and $0^{\prime \prime} \cdot 4 ; 31$ between $0^{\prime \prime} \cdot 4$ and $\circ^{\prime \prime} \cdot 5 ; 23$ between $0^{\prime \prime} \cdot 5$ and $\circ^{\prime \prime} \cdot 6 ; 13$ between $0^{\prime \prime} \cdot 6$ and $\circ^{\prime \prime} \cdot 7$; 3 between $0^{\prime \prime} \cdot 7$ and $0^{\prime \prime} \cdot 8 ; 6$ between $0^{\prime \prime} \cdot 8$ and $0^{\prime \prime} \cdot 9 ; 4$ between $0^{\prime \prime} \cdot 9$ and $\mathrm{I}^{\prime \prime} \cdot 0 ; 20$ between $\mathbf{1}^{\prime \prime} \cdot \circ$ and $2^{\prime \prime} \cdot 0 ; 9$ between $2^{\prime \prime} \cdot \circ$ and $3^{\prime \prime} \cdot \circ$; and 2 between $3^{\prime \prime} \cdot \circ$ and $4^{\prime \prime \prime} \cdot \circ$.

The final values of the lengths and azimuths of the sides, and of the latitudes and longitudes of the stations at the junctions of the circuits,- as computed after all the angles had been given corrections corresponding to the errors tabulated in Section 16-are shewn below, in contrast with the two primary values which had been respectively given by the right and left-hand branches of the uncorrected circuits. It will be seen that in six cases the final value is intermediate between the two primary values, while in six cases it falls outside both of them.

Linear and Geodetic Values at the Sides and Stations of the Circuit-Junctions.

Logarithmic Length. Azimuth.
Circuit II.

Right branch
Left ,
Final
Circuif IV.
Right branch
Left ,
Final
Circtit $V$.
Right branch
Left „,
Final

Side Patángri-Bhor or XIII-XVII.

| $4.905,5434,3$ | 164727.336 |
| ---: | ---: |
| 646,8 | 34.449 |
| 378,8 | 29.94 |

Side Mirzápur-Wastrál or XVI-XVIII.

| $4 \cdot 749,2162,0$ | 91 | $429 \cdot 147$ |
| ---: | :--- | :--- |
| 347,9 |  | $26 \cdot 190$ |
| 281,3 |  |  |
|  |  | $30 \cdot 25$ |

Side Monába-Wándia or XII-XIV. | $4 \cdot 828,9265,7$ | 8025 |
| ---: | ---: |
| 327,9 | $16 \cdot 982$ |
| 333,4 |  |
|  |  |

Latitude.
Longitude.
Station Patángri or XIII.


Station Mirzápur or XVI.

| 225917.859 | $725^{2} 34 \cdot 695$ |
| :---: | :---: |
| $17 \cdot 708$ | 34*708 |
| 17•79 | 34*70 |

Station Monába or XII.

| $231635 \cdot 909$ | $705111 \cdot 778$ |
| ---: | ---: |
| $35 \cdot 770$ |  |
| $35 \cdot 86$ |  |
|  | $11 \cdot 850$ |
|  |  |
|  |  |

The amount of error which has devolved on each entire chain, or on each part of a chain, that enters into the several circuits (see page 42) is shewn in the following table, in which the number of triangles between the extreme sides is given for each linear and each azimuthal apportionment of error. The adopted side of junction in azimuth is KarsodIndráwan for $G_{1}, G_{2}$ and $K_{1}$, and Chalarwa-Sápakra for $J_{2}$ and $K_{3}$. The arc-length of each chain in latitude and longitude is also given, Karsod being adopted as the station of junction of chains $G_{1}, G_{8}$ and $K_{1}$, and Chalarwa as that of chains $J_{2}$ and $K_{3}$.

Apportionment of Error.

| Chain of Triangles | Linear |  | Azimuthal |  | Arc-length in |  | Errors in |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Error | Latitude | Longitude | Latitude | Longitude |
|  |  |  |  | " | - " | - " | " | " |
| $\mathrm{G}_{1}$ | 11 | $+51 \cdot 3$ | 11 | + 4.989 | I $3 \quad 35.43$ | $02756 \cdot 86$ | -0.158 | -0.030 |
| G8 | 20 | $-7 \cdot 5$ | 20 | -12.797 | $35650 \cdot 96$ | - 33 39•72 | -. 477 | -. 536 |
| $\mathrm{H}_{1}$ | 15 | +12.8 | 15 | - 2.602 | $13932 \cdot 29$ | - 3 39.11 | -. 033 | + .045 |
| $\mathrm{H}_{8}$ | 21 | $-6.5$ | 21 | $-4 \cdot 115$ | 355 29•81 | - 1339.22 | - $\cdot 404$ | +.021 |
| $\underline{ }$ | 14 | -27.4 | 14 | - 1.093 | 1 $2541 \cdot 98$ | - 20 4.84 | +-070 | -.004 |
| $J_{1}$ | 11 | $-15.6$ | 11 | - 2.719 | $12458 \cdot 33$ | 01559.25 | + -054 | $+.030$ |
| $\mathrm{J}_{2}$ | 6 | $-10.8$ | 6 | -0.378 | - 1915.04 | - 1429.33 | +.029 | $+.030$ |
| $K_{1}$ | 10 | $+10.4$ | 10 | -0.479 | $01430 \cdot 78$ | $1{ }^{1} 223 \cdot 18$ | + -061 | - 331 |
| Ks | 13 | + 2.6 | 13 | - 1.453 | - 72.09 | 1 l 1 14.82 | - .050 | -.037 |
| Ks | 19 | +15.4 | 19 | - 5.048 | $\bigcirc 156.98$ | $14653 \cdot 62$ | - $\cdot 125$ | + 133 |
| ${ }_{L}$ | 88 | +74.8 | 38 | - 1.191 | 13710.84 | $25512 \cdot 10$ | + $\cdot 004$ | - $\cdot 283$ |

## CHAPTER IV.

THE NON-CIBCUIT TRIANGLES.

## The final Figural Adjustments of the Non-Circuit Triangles.

The primary chains of triangles being composed of various compound trigonometrical figures, as well as single triangles, and only as many triangles of those figures having been introduced into the Simultaneous Reduction as were necessary for the construction of the circuits-for reasons already explained at page 30-it remained, on the completion of the said reduction, to bring the excluded or non-circuit triangles* of each figure into adjustment with the circuit triangles. This had to be done by the calculation of certain corrections to be applied to the excluded angles only, so as to produce consistency without disturbing the included angles, the values of which by the Simultaneous Reduction must necessarily be regarded as final.

The details of the corrections to the non-circuit angles form the subject of this chapter. They present themselves in groups which are referred to by the numbers of the figures to which they respectively appertain.

In explanation it is only necessary to say that, since the values of the angles entering the circuit triangles might not alter, each group of non-circuit triangles had to be adjusted so as to satisfy the following conditions, viz :-

1. That at any station falling within the circuit at which angles had been measured completely round the horizon, the sum of the non-circuit angles + the sum of the circuit angles should be equal to $360^{\circ}$.
2. That the ratios of sides common both to circuit and non-circuit triangles, must be the same by the latter as by the former.
3. That the algebraical sum of the corrections to the angles of each non-circuit triangle should $=0$.

These three conditions alone sufficed, in every case, to furnish the necessary equations of condition for reducing the angles.

The number of equations in each group ranges from 2 to 13 . When only two presented themselves the case was that of a triangle of which two sides and the included angle had been fixed by the Simultaneous Reduction, and the unknown quantities were the errors of the other two angles. Conditions 2 and 3 furnished the necessary equations; and being equal in number to the unknown quantities they have been solved algebraically as ordinary simultaneous equations.

[^15]In all other cases the unknown quantities are greater in number than the equations connecting them; the latter had therefore to be solved by the method of minimum squares, the weights of the angles in each group being considered equal.

The following table exhibits the number of groups of non-circuit triangles in each Series, classed according to the number of equations of condition which each furnishes.

| Sbitis |  |  | Equations of Condition |  |  |  |  |  |  |  |  | Total for each Series |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 2 | 8 | 4 | 6 | 7 | 8 | 10 | 12 | 13 | Groups | Triangles |
|  |  |  | Number of Groups |  |  |  |  |  |  |  |  |  |  |
| Khánpisura Meridional | ... | ... | 5 | ... | 3 | ... | $1$ | $1$ | -•• | ... | $\ldots$ | 10 | 18 |
| Singi $\quad$ " | ... | ... | 5 | 1 | ... | $\cdots$ | $\cdots$ | ... | 1 | 1 | ... | 8 | 17 |
| Abu " | ... | ... | ... | ... | 3 | $\cdots$ | ... | ... | ... | ... | $\ldots$ | 3 | 6 |
| Kattywar " | ... | ... | 2 | ... | 2 | ... | 1 | ... | ... | $\ldots$ | 1 | 6 | 16 |
| Guzerat Longitudinal | ... | ... | 1 | ... | 1 | ... | ... | ... | ... | ... | ... | 2 | 3 |
| Cutch Cosast ... | ... | ... | 5 | $\ldots$ | 5 | 1 | $\pm$ | 1 | ... | ... | ... | 13 | 26 |
|  | Totals | ... | 18 | $\pm$ | 14 | 1 | 3 | 2 | 1 | $\pm$ | 1 | 42 | 86 |

The 42 groups involve 258 angles, or nearly one-third of the whole of the angles contained in the South-West Quadrilateral; the magnitudes of the final corrections and the number of the corrections of each magnitude are as follows:-less than $0^{\prime \prime} \cdot 1,44$; between $O^{\prime \prime} \cdot 1$ and $o^{\prime \prime} \cdot 2$, 33 ; between $0^{\prime \prime} \cdot 2$ and $\circ^{\prime \prime} \cdot 3,29$; between $\circ^{\prime \prime} \cdot 3$ and $0^{\prime \prime} \cdot 4,26$; between $\circ^{\prime \prime} \cdot 4$ and $0^{\prime \prime} \cdot 5,25$; between $0^{\prime \prime} \cdot 5$ and $0^{\prime \prime} \cdot 6,17$; between $0^{\prime \prime} \cdot 6$ and $0^{\prime \prime} \cdot 7,6 ;$ between $0^{\prime \prime} \cdot 7$ and $0^{\prime \prime} \cdot 8$, 14; between $\circ^{\prime \prime} \cdot 8$ and $\circ^{\prime \prime} \cdot 9,10$; between $\circ^{\prime \prime} \cdot 9$ and $1^{\prime \prime} \cdot \circ$, 2; between $I^{\prime \prime} \cdot \circ$ and $2^{\prime \prime} \cdot \circ, 35$; between $2^{\prime \prime} \cdot \circ$ and $3^{\prime \prime} \cdot 0,10$; and 7 in excess of $3^{\prime \prime} \cdot \circ$.

In the pages of tabular matter which follow are given, separately for each Series, the data of the non-circuit triangles similar to those of the circuit triangles shewn on pages 53 to 59, and in the same terms with them; these are followed by the final figural adjustments of the groups. In connection with the sides and angles are shewn first the figure to which each non-circuit triangle belongs, secondly, the number of the triangle, and thirdly the figural numbers of the angles employed in the Preliminary Reductions and again made use of here, as shewn on the Plates at the end of the numerical details of each Series. In the column giving the serial number of the station, those stations of which the positions stand fixed by the Simultaneous Reduction are printed in Roman type, the rest in Italic type.

In the abstracts of the final adjustments, each group of triangles is designated by the Figure to which it appertains and by the numbers of the triangles it includes. The constants furnished by the Simultaneous Reduction are given, with a reference to the page from which they are taken; these are followed by the equations of condition which have to be satisfied, and where the method of minimum squares has been employed, by the equations between the Indeterminate Factors, and the values of these factors. Lastly are shewn the adopted angular errors. They are so designated because they differ occasionally, but only in the 3rd place of decimals, from those which actually resulted from the calculations, slight arbitrary corrections having been applied in order to make the logarithmic values of common sides agree where the number of places of decimals employed in the calculations had not sufficed to do so.

Two examples of the process of reduction will now be given.
Example 1.-Figure 2, a pentagon (see Reduction Chart and Khánpisura Meridional Series, Plate 1) of which the three triangles 3,4 and 5 were fixed by the Circuit chains; triangles 174 and 175 have now to be adjusted. The constants known are, sides I to III and III to $V$ and the angle contained between them as given on page 119 ; hence the equations to be satisfied are, 2 triangular, 1 central and 1 side. Stated symbolically. they are :-

Triangular $\left\{\begin{array}{l}\text {. . . . . . . . . . . . . . . . . . . . . . . . . } x_{13}+x_{14}+x_{15}=e_{1} \\ \text {. . . . . . . . . . . . . . . . . . . . . . . } x_{10}+x_{11}+x_{18}=e_{2}\end{array}\right.$
Central . . . . . . . . . . . . . . . . . . . . . . . . . . . . . $\mathrm{x}_{13}+\mathrm{x}_{10}=\mathrm{e}_{3}$
Side . . . . t.d. $\log . \sin 15 \times x_{16}-$ t.d. $\log . \sin 14 \times x_{14}+$ t.d. $\log . \sin 12 \times x_{18}-t . d . \log . \sin 11 \times x_{11}=e_{4}$ the 7th place of logs. being taken as unity.

The errors $e_{1}, e_{2}, e_{3}$ and $e_{4}$ are found as follows:-
$e_{1}$ and $e_{9}$ (the errors of triangles 174 and 175) are each $=0$;

Example 2.-Figure 8 is a double polygon (see Reduction Chart and Khánpisura Meridional Series, Plate 1). Triangles 6 to 11 were fixed by the Circuit chains; triangles 176 to 178 have now to be adjusted. The constants known and the symbolical expressions of the equations are given in full on pages 119 and 120 , and need not be repeated here. Stated generally, the equations to be satisfied are, 3 triangular, 2 central and 2 side. The absolute terms are found as follows, the variables in all cases being taken from this Chapter and the constants from the final results of the Simultaneous Reduction.

Triangular . . $e_{1}, e_{q}$ and $e_{3}$ (the errors of triangles 176 to 178) are each $=0$;
Central

```
\(e_{4}=\left\{\begin{array}{rlll}199^{\circ} & 44^{\prime} 16^{\prime \prime} \cdot 9^{2} \\ -199 & 44 & 17^{\circ} \cdot 56\end{array}\right\}\). . . Angles \(4+7\) of Triangles 176 and 177, p. 118,,\(~\left(360^{\circ}-\right.\) Angles \(1+13+10\) of Triangles 6 to 8, p. 56-a,
    \(=-\mathrm{on}^{\prime \cdot} \cdot 64\);
```

```
\(\mathbf{e}_{5}=\left\{\begin{array}{ccc}97^{\circ} 41^{\prime} & 2^{\prime \prime} \cdot 03 \\ -97 & 41 & 1\end{array} \cdot 21\right.\). . Angles \(9+16\) of Triangles 177 and 178, p. 118,
```

$\mathbf{e}_{5}=\left\{\begin{array}{ccc}97^{\circ} 41^{\prime} & 2^{\prime \prime} \cdot 03 \\ -97 & 41 & 1\end{array} \cdot 21\right.$. . Angles $9+16$ of Triangles 177 and 178, p. 118,
$=+o^{\prime \prime} \cdot 82$;

```
    \(=+o^{\prime \prime} \cdot 82\);
```

Side

$$
=10,000,000\{(5 \cdot 1363297,7-4 \cdot 9202612,2)-(5 \cdot 1363074,8-4 \cdot 9202418,1)\}
$$

$$
=+28 \cdot 8
$$

$$
\begin{aligned}
& =10,000,000\{(4 \cdot 9202612,2-5 \cdot 0920766,2)-(4 \cdot 9202418,1-5 \cdot 0920594,6)\} \\
& =+22.5 \text {; }
\end{aligned}
$$

$$
\begin{aligned}
& =+\mathbf{2 '}^{\prime \prime} \cdot 49 \text {; }
\end{aligned}
$$

$$
\begin{aligned}
& =10,000,000\left\{(5 \cdot 0905299,6-5 \cdot 0067045,5)-\left(5 \cdot 0905099,5-5^{\prime} \cdot 0066897,4\right)\right\} \\
& =+5^{\circ} \circ \text {. }
\end{aligned}
$$

Thus the whole of the principal triangulation of the South-West Quadrilateral has been made consistent, inter $s e$; so that if the co-ordinates of any one station are computed from the given co-ordinates of any other station, or the length and azimuth of any side from the corresponding values of any other side, the results will always be the same by whatever possible route they are calculated.

The values of the final angles corrected for figural and circuit or non-circuit erroras the case may be-are given for each Series among the details of the calculations of the


Khánpisura Meridional Series. Sides and Angles of the Non-Circuit Triangles.

|  |  |  | Serial Letter and Number of Station | Corrected <br> Plane Angle |  | Logarithm of Side-length in Feet |  |  |  | Serial Letter and Number of Station | Corrected Plane Angle |  | Logarithm of Side-length in Feet |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 173 | 3 $4+5$ 6 | $\begin{aligned} & \quad \text { XXIV* } \\ & \text { X XII* } \\ & \text { G I } \end{aligned}$ | $\left\lvert\, \begin{array}{ccc} 0 & 1 & \prime \prime \\ 43 & 51 & 11 \\ 109 & 52 & 18 \\ 26 & 10 \\ 26 & 16 & 30 \end{array}\right.$ | $\begin{array}{r} \cdot 45 \\ \cdot 46 \\ \cdot 45 \end{array}$ | $\begin{aligned} & 4 \cdot 9906136,0 \\ & 5 \cdot 1233363,5 \\ & 4 \cdot 7960898,2 \end{aligned}$ | 6 | 182 | 3 $4+5$ 6 |  | $\begin{array}{ccc} 0 . & \prime \prime \prime \\ 36 & 51 & 4 \cdot 56 \\ 97 & 16 & 56 \\ 45 & 51 & 58 \\ 45 & 768 \end{array}$ | $\begin{gathered} \prime \prime \\ 1 \cdot 85 \\ 1 \cdot 85 \\ 1 \cdot 85 \end{gathered}$ | $\begin{aligned} & 5 \cdot 1477822,3 \\ & 5 \cdot 3663018,3 \\ & 5 \cdot 2257725,2 \end{aligned}$ |
| 2 | 174 | $\begin{aligned} & 15 \\ & 13 \\ & 14 \end{aligned}$ | $\stackrel{\text { I }}{\text { II }}$ | 49 49 $10 \cdot 24$ <br> 92 12 47.37 <br> 37 58  | I-OI 1.OI 1-01 | $\begin{aligned} & 5 \cdot 1007820,3 \\ & 5 \cdot 2173556,6 \\ & 5 \cdot 0067045,5 \end{aligned}$ | 7 | 183 | 3 $2+20$ 19 | $\begin{aligned} & \text { XXII } \\ & \text { XXI } \\ & \text { XXIV } \end{aligned}$ | $\begin{array}{rrrr}38 & 35 & 8 \cdot 94 \\ 100 & 6 & 57 \cdot 71 \\ 41 & 17 & 53 \cdot 35\end{array}$ | 1.99 2.00 2.00 | 5.1926620,9 $5 \cdot 3908915,4$ $5^{22} \mathbf{2} 72251,9$ |
| " | 175 | $\begin{aligned} & 12 \\ & 10 \\ & 11 \end{aligned}$ | $\stackrel{\text { IV }}{\text { III }}$ | $\begin{array}{rrrr}47 & 4 & 33 \cdot 89 \\ 84 & 21 & 18.66 \\ 48 & 34 & 7.45\end{array}$ | 1.22 1.22 1.22 | $\begin{aligned} & 5 \cdot 0905299,6 \\ & 5 \cdot 2237543,7 \\ & 5 \cdot 1007820,3 \end{aligned}$ | " | 184 | 6 5 7 | XXII XXIII XXV | $445242 \cdot 41$ <br> 71 <br> 1724 <br> 63 | 2.68 2.69 2.69 | 5.2257966,1 <br> 5.3540817,0 <br> $5 \cdot 3296467,3$ |
| 3 | 176 | $\begin{aligned} & 4 \\ & 6 \end{aligned}$ | VI VII XI | $\left\lvert\, \begin{array}{rrrr} 16 & 59 & 22 \cdot 51 \\ 126 & 2 & 38 \cdot{ }^{2} \\ 36 & 57 & 59 \cdot 01 \end{array}\right.$ | $\begin{array}{r}\cdot 47 \\ \cdot \\ \cdot \\ \cdot \\ \hline\end{array}$ | $\begin{aligned} & 4^{\cdot 7786289,6} \\ & 5^{\circ} 2206668,7 \\ & 5^{\circ} 0920766,2 \end{aligned}$ | " | 185 | $\begin{gathered} 8 \\ 10 \end{gathered}$ | XXV XXIII XXYII | $\begin{array}{rrrr} 42 & 38 & 37 \cdot 79 \\ 87 & 7 & 1 & 25 \\ 50 & 14 & 20 \cdot 96 \end{array}$ | $\begin{aligned} & \mathrm{I} \cdot 96 \\ & \mathrm{I} \cdot 97 \\ & \mathrm{I} \cdot 96 \end{aligned}$ | $\begin{aligned} & 5 \cdot 1708981,0 \\ & 5 \cdot 3394780,1 \\ & 5 \cdot 2257966,1 \end{aligned}$ |
| " | 177 | $\begin{aligned} & 7 \\ & 8 \\ & 9 \end{aligned}$ | $\begin{aligned} & \text { VII } \\ & \text { II } \end{aligned}$ | $\begin{array}{lll} 73 & 41 & 37 \cdot 58 \\ 65 & 10 & 28 \cdot 67 \\ 40 & 58 & 53.75 \end{array}$ | $\begin{array}{r} 38 \\ \cdot 38 \\ \cdot 38 \end{array}$ | $\begin{aligned} & 4.9440159,0 \\ & 4.9202612,2 \\ & 4^{.} 786289,5 \end{aligned}$ | 8 | 186 | $\begin{aligned} & 15 \\ & 13 \\ & 14 \end{aligned}$ | XXVI <br> XXVIII <br> $X X I X$ | $\begin{array}{lll} 41 & 43 & 26 \cdot 27 \\ 80 & 23 & 0 \cdot 73 \\ 57 & 53 & 33 \end{array}$ | $\begin{array}{r} 1 \cdot 72 \\ \mathrm{x} \cdot 73 \\ \mathrm{x} \cdot 72 \end{array}$ | $\begin{aligned} & 5 \cdot 1203606,8 \\ & 5 \cdot 2910388,5 \\ & 5 \cdot 2250951,3 \end{aligned}$ |
| " | 178 | $\begin{aligned} & 17 \\ & 16 \\ & 18 \end{aligned}$ | $\begin{aligned} & X I \\ & I X \\ & \text { XIII } \end{aligned}$ | $\begin{array}{rrr} 83 & 38 & 7 \cdot 60 \\ 56 & 42 & 7 \cdot 11 \\ 39 & 39 & 45 \cdot 29 \end{array}$ | - 80 $\cdot 79$ $\cdot 79$ | 5.1363297,7 <br> 5.0611308,0 <br> 4.9440159,0 | " | 187 | $\begin{aligned} & 10 \\ & 12 \\ & 11 \end{aligned}$ | XXVIII |  | 1.42 1.41 1.41 | $\begin{aligned} & 5 \cdot 1911689,0 \\ & 5 \cdot 1676438,1 \\ & 5 \cdot 1203606,8 \end{aligned}$ |
| 4 | 179 | $\begin{aligned} & 18 \\ & 16 \\ & 17 \end{aligned}$ | XII XIV XV | $441632 \cdot 03$ <br> $564449 \cdot 09$ <br> $785838 \cdot 88$ | $\begin{aligned} & \mathrm{I} \cdot 34 \\ & \mathrm{I} \cdot 34 \\ & \mathrm{I} \cdot 35 \end{aligned}$ | $\begin{aligned} & 5^{\circ} 0806303,0 \\ & 5^{\prime} 1590462,7 \\ & 5^{\prime} \cdot 2286197,9 \end{aligned}$ | " | 188 | 27 25 26 | XXIX XXXI XXXII | $\begin{aligned} & 4739 \quad 9 \cdot 89 \\ & 8145 \\ & 503517 \cdot 58 \\ & 5035 \end{aligned}$ | 1.80 1.81 1.80 | $\begin{aligned} & 5 \cdot 1719015,9 \\ & 5 \cdot 2987047,7 \\ & 5 \cdot 1911689,0 \end{aligned}$ |
| " | 180 | $\begin{aligned} & 15 \\ & 13 \\ & 14 \end{aligned}$ | XV XIV XVII | $524742 \cdot 84$ 815946.64 451230.52 | 1.27 1.27 1.27 | $\begin{aligned} & 5 \cdot 1307454,5 \\ & 5.2253196,0 \\ & 5.0806303,0 \end{aligned}$ | " | 189 | 24 22 23 | XXXII XXXI XXXIII | $\begin{array}{llll} 51 & 39 & 23.75 \\ 90 & 38 & 19.36 \\ 37 & 42 & 16 & 89 \end{array}$ | 2.23 2.24 2.23 | $\begin{aligned} & 5 \cdot 2799257,8 \\ & 5 \cdot 3854129,0 \\ & 5 \cdot 1719015,9 \end{aligned}$ |
| 5 | 181 | $\begin{gathered} 4 \\ 2+8 \end{gathered}$ | $\begin{aligned} & \text { XVII } \\ & \text { XVIII } \\ & \text { XX } \end{aligned}$ | $\begin{aligned} & 392040 \cdot 22 \\ & 845743 \cdot 94 \\ & 554135 \cdot 84 \end{aligned}$ | $\begin{aligned} & 2 \cdot 17 \\ & 2 \cdot 18 \\ & 2 \cdot 17 \end{aligned}$ | $\begin{aligned} & 5 \cdot 1635695,7 \\ & 5 \cdot 3598118,9 \\ & 5 \cdot 2784898,6 \end{aligned}$ | 9 | 190 | $\begin{gathered} 3 \\ 4+5 \\ 6 \end{gathered}$ | $\begin{aligned} & \text { XXXIV } \\ & \text { XXXIII } \\ & \text { XXIII } \end{aligned}$ | $\left\|\begin{array}{rrr} 32 & 50 & 44 \cdot 68 \\ 102 & 23 & 38 \cdot 36 \\ 44 & 45 & 36 \cdot 96 \end{array}\right\|$ | $\begin{aligned} & 1.41 \\ & 1.41 \\ & 1.41 \end{aligned}$ | $\begin{aligned} & 5 \cdot 0745062,5 \\ & 5 \cdot 3299621,3 \\ & 5 \cdot 1878634,9 \end{aligned}$ |

[^16]
## Khanpisura Meridional Series. Final Figural Adjustments of the Non-Circuit Triangles.

Figure 1.

Triangle 173.
Constants (from page 55_G).
Sides.

| XXIV | to | XXI | Log. feet | $4^{\prime} \cdot \mathbf{7 9 6 0 8 9 8 , 2}$ |
| :--- | :--- | :--- | :---: | :---: |
| XXI | „ | I | , | $4^{\prime} 9906041,7$ |

Equations to be satisfied.
$\begin{aligned} x_{3} & +x_{6} \\ 22 x_{3} & =-12 \\ -42 x_{6} & =+94 \cdot 3\end{aligned}$

Figure 2.


Figure 3.

Triangles 176 to 178.
Constants (from page 56_G).

Sides.
 IX „ XIII

Log. feet

| " $\quad 4.9202418,1$ |
| :--- |
| $"$ |

Angles.

$$
\begin{array}{ccc}
199^{\circ} 44^{\prime} & 17^{\prime \prime} \cdot 5^{6} \\
97 & 41 & 1
\end{array} \cdot 21
$$

- In the tables of the equations between the factors the co-efficients of the terms below the diagonal are omitted for convenience, the co-efieient of the pth term in the $q^{t h}$ line being alwars the same as the co-efficient of the gth term in the pth line


## Khanpisura Meridional Series. Final Figural Adjustments of the Non-Circuit Iriangles.

Figure 3-(Continued).


Figure 4.

Triangles 179 and 180.
Constants (from page 57_G).

Sides.
$\begin{array}{lcl}\text { XII } & \text { to } & \text { XIV } \\ \text { XIV } & \text { „ } & \text { XVII }\end{array}$

Log. feet $5 \cdot \mathbf{2 2 8 5 9 9 4 , 3}$ „ $5 \cdot 1307296,3$

Equations to be satisfied.

Angle.

$$
138^{\circ} 44^{\prime} 36^{\prime \prime} \cdot 53
$$

Factors.


| Equations between the Factors |  |  |  |  |  | Values of the Factors | Adopted Errors |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. of$\mathbf{e}$ | Value of e | Co-efficients of |  |  |  |  |  |
|  |  | $\lambda_{1}$ | $\lambda_{2}$ | $\lambda_{8}$ | $\lambda_{3}$ |  |  |
| 1 | -00 |  | +3 | $\begin{aligned} & +1 \\ & +1 \\ & +2 \end{aligned}$ | + 17 | $\begin{aligned} & \lambda_{1}=-\cdot 1958 \\ & \lambda_{3}=-\cdot 4782 \\ & \lambda_{3}=+1 \cdot 2420 \\ & \lambda_{4}=-\cdot 0385 \end{aligned}$ | $\begin{aligned} & x_{13}=+" \cdot 76 x_{16}=+1^{11} \cdot 05 \\ & x_{14}=+\quad .33 x_{17}=-1 \cdot 05 \\ & x_{16}=-1 \cdot 09 x_{18}=-1 \cdot 00 \end{aligned}$ |
| 2 |  |  |  |  | - 5 |  |  |
| 8 | + I.81 |  |  |  | $\ldots$ |  |  |
| 4 | -45.4 |  | * |  | +1154 |  |  |

Khampisura Meridional Series. Final Figural Adjustments of the Non-Circuit Triangles.
Figure 5.

Triangle 181.
Constants (from page $57{ }_{\text {_G }}$ ).
Sides.


Figure 6.

Triangle 182.
Constants (from page 57_G).


Figure 7.

Triangle 183.
Constants (from pages 57_G and 58_G).
Sides.

Khanpisura Meridional Series. Final Figural Adjustments of the Non-Circuit Triangles.
Figure 7-(Continued).


Figure 8.

Triangles 186 to 189.
Constants (from pages 58_G and 59_G).
Sides.


Equations to be satisfied. . Factors.


Khánpisura Meridional Series. Final Figural Adjustments of the Non-Circuit Triangles.
Figure 9.

Triangle 190.
Sides. Constants (from page 59-G).
$\begin{array}{lcccc}\text { XXXIV } & \text { to } & \text { XXXIII } & \text { Log. feet } & 5 \cdot 1878534,6 \\ \text { XXXIII } & \text {, XXIII } & , & 5 \cdot 0745026,5\end{array}$
Equations to be satisfied.
Adopted Errors.

$$
\begin{array}{rll}
x_{8} & +x_{6} & =-5 \cdot 79
\end{array} \quad \begin{aligned}
& x_{3} \\
& 32 x_{3}
\end{aligned}-21 x_{6}=-3^{\prime \prime} \cdot 49
$$

Singi Meridional Series. Sides and Angles of the Non-Circuit Triangles.

| Numbiex Higure | ofsumal jo zequinN |  | Serial Letter and Number of Station | Corrected <br> Plane Angle |  | Logarithm of Side-length in Feet | exn8!ty jo xeqưnN |  |  | Serial Letter and Number of Station | Corrected <br> Plane Angle |  | Logarithm of Side-length in Feet |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10 | 191 |  | H XIII $\begin{gathered}\text { XIV } \\ \text { XVIII }\end{gathered}$ | - 11 | " |  | 14 | 200 |  | $\begin{aligned} & \text { HXXXIV } \\ & \text { XXXVI } \\ & \text { XXXIX } \end{aligned}$ | 01 | " | $\begin{aligned} & 5 \cdot 446 \mathrm{I} 945, \mathrm{I} \\ & 5^{\cdot} \cdot 27489885,2 \\ & 5^{\cdot} 3745744,2 \end{aligned}$ |
|  |  | 15 |  | $38 \quad 36 \quad 2 \cdot 27$ | - 44 | 4-8418842,1 |  |  | 19 |  | $\begin{array}{lll} 8 \mathrm{I} & 16 & 28 \cdot 48 \\ 41 & 46 & 46 \cdot 63 \\ 56 & 5644 \cdot 89 \end{array}$ | $\begin{aligned} & 3 \cdot 48 \\ & 3 \cdot 48 \\ & 3 \cdot 48 \end{aligned}$ |  |
|  |  | $13+14$ |  | 95 10 2.91 | $\cdot 44$ | 5.0450087,3 |  |  | 20 |  |  |  |  |
|  |  | 12 |  | $461354 \cdot 82$ | - 44 | 4.9054020,5 |  |  | 21 |  |  |  |  |
|  |  | 11 | XVIII | 6444 3I•79 | - 53 | 4.9971582,7 |  |  | 41 | $\boldsymbol{X X X V I}$ | 61 $3930 \cdot 20$ | 4 76 | 5'432 ${ }^{\text {1 }} 824,5$ |
|  | 192 | 9 | XIV | 76 1 13.43 | -53 | 5*0277419,0 | " | 201 | 40 | XXXIX | $525830 \cdot 42$ | 4.76 | 5.3898406,6 |
|  |  | 10 | XVI | 391414.78 | - 53 | 4.8418842,1 |  |  | 42 | $\boldsymbol{X L}$ | 65 21 59*38 | 4•77 | 5*4461945, |
| 11 | 193 | $\begin{gathered} 5 \\ 6+7 \\ 8 \end{gathered}$ | XVII XIX $X X$ | $\begin{array}{llrl} 48 & 19 & 59 \cdot 44 \\ 97 & 58 & 8 \cdot 74 \\ 33 & 41 & 51 & 8 \end{array}$ | $\begin{array}{r} \cdot 51 \\ \cdot 52 \\ \cdot 51 \end{array}$ | $\begin{aligned} & 4 \circ 9741294,7 \\ & 5 \circ \circ 965810,1 \\ & 4.8449407,5 \end{aligned}$ | " | 202 | 44 | $\boldsymbol{X} \boldsymbol{L}$ XXXIX XXX | $\begin{aligned} & 50 \text { II } 58 \cdot 19 \\ & 69 \\ & 6 \\ & 60 \\ & 60 \end{aligned} 3_{4} 27 \cdot 80$ | $\begin{aligned} & 4.75 \\ & 4.75 \\ & 4.75 \end{aligned}$ | $\begin{aligned} & 5 \cdot 3769762,8 \\ & 5 \cdot 4617829,8 \\ & 5 \cdot 4321824,5 \end{aligned}$ |
|  |  |  |  |  |  |  |  |  | 43 |  |  |  |  |
|  |  |  |  |  |  |  |  |  | 45 |  |  |  |  |
| 12 | 194 | $\begin{gathered} 11 \\ a \\ 10 \end{gathered}$ | $\begin{aligned} & \text { XIX } \\ & \text { XXI } \\ & \text { XXII } \end{aligned}$ | $\left\lvert\, \begin{array}{rrr} 38 & 20 & 58 \cdot 94 \\ 108 & 43 & 44 \cdot 46 \\ 32 & 55 & 16 \cdot 60 \end{array}\right.$ | $\begin{array}{r} \cdot 34 \\ \cdot 34 \\ \cdot 33 \end{array}$ | $\begin{aligned} & 4^{\cdot} 855228 \mathrm{I}, 4 \\ & 5 \cdot 0388864,8 \\ & 4 \cdot 797703 \mathrm{I}, 2 \end{aligned}$ | " | 203 | 27 | XXXV <br> XXXIV <br> $\boldsymbol{X X X V I I}$ | $\begin{array}{rrr}29 & 44 & 3 \cdot 29 \\ 48 & 1.4 & 8 \cdot 67 \\ 102 & 1 & 48 \cdot 04\end{array}$ | $\begin{aligned} & \mathrm{I} \cdot 79 \\ & \mathrm{I} \cdot 79 \\ & \mathrm{I} \cdot 80 \end{aligned}$ | $\begin{aligned} & 5 \cdot 0944628,2 \\ & 5 \cdot 2716763,5 \\ & 5 \cdot 3893565,6 \end{aligned}$ |
|  |  |  |  |  |  |  |  |  | 25 |  |  |  |  |
|  |  |  |  |  |  |  |  |  | 26 |  |  |  |  |
| 31 | 195 | $\begin{gathered} 2 \\ 7 \\ 1+8 \end{gathered}$ | $\begin{aligned} & \text { XXV } \\ & \text { XXVI } \\ & X X V I I \end{aligned}$ |  | $\begin{array}{r} 50 \\ \cdot 50 \\ \cdot 51 \end{array}$ | $\begin{aligned} & 4: 9799550,1 \\ & 4 \cdot 8818483,1 \\ & 5 \cdot 1717936,3 \end{aligned}$ | " | 204 | 22 | $\begin{aligned} & \text { XXXIV } \\ & \text { XXXVII } \\ & \text { XXXIX } \end{aligned}$ | $\begin{array}{rrr}50 & 38 & 32 \cdot 49 \\ 88 & 5 & 0.80 \\ 41 & 16 & 26.71\end{array}$ | $\begin{aligned} & \mathrm{I} \cdot 43 \\ & \mathrm{I} \cdot 43 \\ & \mathrm{I} \cdot 43 \end{aligned}$ | $\begin{aligned} & 5 \cdot 1634348,5 \\ & 5^{\cdot 27489885,2} \\ & 5^{\circ} 0944628,2 \end{aligned}$ |
|  |  |  |  |  |  |  |  |  | 24 |  |  |  |  |
|  |  |  |  |  |  |  |  |  | 23 |  |  |  |  |
|  |  | 8 | XXVII | 301424.09 | - 60 | 4.9511695,6 |  |  | $33+34$ | XXXIX | 594214.43 | 1.83 | 5.2241902,8 |
| \% | 196 | $6+7$ | XXVI | 11712 11.47 | -60 | 5•1981562,2 | " | 205 | 81 | XXXVII | $713838 \cdot 71$ | I.83 | 5.2652832,2 |
|  |  | 5 | XXIV | 32.33 24.44 | -60 | 4*9799549,9 |  |  | 85 | XXXVIII | $4839 \quad 6 \cdot 86$ | I.83 | 5'1634348,5 |
| 14 | 197 | 546 | $\begin{aligned} & \mathbf{X X X} \\ & \mathbf{X X X I} \\ & X X X I I I \end{aligned}$ | 535362 $45 \begin{array}{ll} & 31\end{array} \cdot 08$ | $\begin{aligned} & 1 \cdot 89 \\ & 1 \cdot 89 \\ & 1 \cdot 89 \end{aligned}$ | $\begin{aligned} & 5 \cdot 1930033,0 \\ & 5 \cdot 2348889,6 \\ & 5^{\prime} \cdot 2373027,2 \end{aligned}$ | " | 206 |  | $\begin{aligned} & X X X V I I \\ & X X X V I I I \\ & \text { XXXV } \end{aligned}$ | $\begin{array}{llll}98 & 14 & 24 \cdot 94 \\ 43 & 35 & 11 & 70 \\ 38 & 10 & 23 \cdot 36\end{array}$ | $\begin{aligned} & 2 \cdot 45 \\ & 2 \cdot 45 \\ & 2 \cdot 44 \end{aligned}$ | $\begin{aligned} & 5 \cdot 4286665,3 \\ & 5 \cdot 2716763,5 \\ & 5 \cdot 2241902,8 \end{aligned}$ |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 6 | 198 | 879 | $\begin{aligned} & X X X I I I \\ & X X X I \\ & X X X V I \end{aligned}$ | $\begin{array}{rrr}92 & 25 & 48 \cdot 85 \\ 48 & 19 & 0 \cdot 94 \\ 39 & 15 & 10 \cdot 21\end{array}$ | $\begin{aligned} & 2 \cdot 27 \\ & 2 \cdot 26 \\ & 2 \cdot 26 \end{aligned}$ | $\begin{aligned} & 5 \cdot 3913846,8 \\ & 5 \cdot 2649999,6 \\ & 5 \cdot 1930033,0 \end{aligned}$ | " | 207 | $\begin{gathered} 47 \\ 48+51 \\ 52 \end{gathered}$ | $\begin{aligned} & \text { XXXIX } \\ & \text { XXX* } \\ & \text { XXVI" } \end{aligned}$ | $\begin{array}{lrrr} 53 & 58 & 23 \cdot 50 \\ 78 & 7 & 36 \cdot 59 \\ 47 & 53 & 59^{\circ} & 91 \end{array}$ | $\begin{aligned} & 4 \cdot 78 \\ & 4 \cdot 78 \\ & 4 \cdot 78 \end{aligned}$ | $\begin{aligned} & 5 \cdot 4143966,0 \\ & 5 \cdot 4971942,9 \\ & 5 \cdot 3769762,8 \end{aligned}$ |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | 10 | XXXI | 60 $2245 \cdot 88$ | $3 \cdot 80$ | 5.3745744,2 |  |  |  |  |  |  |  |
| * | 199 | 11 | XXXVI | $554250 \cdot 50$ | $3 \cdot 80$ | 5.3539466,1 |  |  |  |  |  |  |  |
| $\because$ |  | 12 | XXXIV | 641423.62 | $3 \cdot 81$ | $5.3913846,8$ |  |  |  |  |  |  |  |

Norz.-In the column "Figural Number of Angle" the distinguishing symbol a is employed for angles which have not been measured and therefore had no number in the original figural reduction.

Singi Meridional Series. Final Figural Adjustments of the Non-Circuit Triangles.
Figure 10.

Triangle 191.
Sides. Constants (from page 54- ${ }_{H}$ ).


Figure 10-(Continued).

Triangle 192.
Constants (from pages $54 \boldsymbol{- H}_{\boldsymbol{H}}$ and $55_{Z_{H}}$ ).
Sides. $\quad$ Angle.


Figure 11.

Triangle 193.
Sides. Constants (from page 55-H).
$\begin{array}{lclcccc}\text { XVII } & \text { to XIX } & \text { log. feet } & 4 \cdot 8449312,2 & & \text { Angle. } \\ \text { XIX } & , ~ X X & " & 4^{\circ} 9741207,3 & 6+7 & 97^{\circ} 58^{\prime} 10^{\prime \prime} \cdot 25\end{array}$
Equations to be satisfied.
Adopted Errors.

$$
\begin{aligned}
x_{5} & +x_{8} \\
19 x_{5} & =+.99 \\
x_{8} & =-7 \cdot 9
\end{aligned} \quad \begin{aligned}
& x_{5} \\
& x_{8}
\end{aligned} \quad+{ }^{\prime \prime} \cdot 46
$$

Figure 12.

Triangle 194.
Constants (from page 55_ H $_{\boldsymbol{H}}$ ).
XIX to XXI log. feet $4 \cdot 7976934,8$
XXI
,, XXII
4•8552156,3
Equations to be satisfied.

$$
{ }_{27}^{x_{11}}+x_{18} \quad=\quad-\quad x_{12} \quad=57
$$

$$
\begin{aligned}
& x_{11}=-11.74 \\
& x_{12}=+.17
\end{aligned}
$$

Singi Meridional Series. Final Figural Adjustments of the Non-Circuit Triangles.
Figure 18.


Figure 14.

Triangles 197 to 202.
Constants (from pages 56 -H $_{H}$ and 57 - $_{\text {H }}$ ).

Sides.

| Xxx | to XXXI | Log. feet | 5-2372906,9 | 4+7+10 | $171^{\circ}$ |  | $\mathrm{ol}^{\prime \prime} \cdot 35$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| XXXI | XXXIV | " | $5 \cdot 3539327,9$ | 12+19 |  |  | $\begin{aligned} & 50 \cdot 35 \\ & 56 \cdot 67 \end{aligned}$ |
| XXXIV | , XXXIX | " | 5.2748801,2 | $21+40+43$ |  |  | $50 \cdot 5$ |
| XXXIX | , $\mathrm{XXX} \dagger$ | " | $5 \cdot 3769684, \mathrm{I}$ | $21+40+43$ |  |  |  |

Equations to be satisfied.
Factors.


Singi Meridional Series. Final Figural Adjustments of the Non-Circuit Triangles.
Figure 14-(Continued).


Figure 14-(Continued).

Triangles 203 to 206.
Constants (from page 56 _H $_{\boldsymbol{H}}$ ).

Sides.

| XXXV | to XXXIV | Log. feet | 5•3893465,9 |
| :---: | :---: | :---: | :---: |
| XXXIV | XXXIX | , | 5.2748801,2 |
| XXXIX | XXXVIII |  | 5.2652770,6 |

Angles. ${ }^{\text {' }}$

| $22+25$ | $98^{\circ}$ | $52^{\prime}$ | $45^{\prime \prime} \cdot 48$ |
| :--- | :--- | :--- | :--- |
| $23+33$ | 46 | 57 | $38 \cdot 65$ |
| $35+37$ | 92 | I4 | $20 \cdot 53$ |
| $27+39$ | 34 | 9 | 46 |

Equations to be satisfied.
Factors.

| $\mathrm{x}_{25}$ | $+\mathrm{x}_{26}$ | $+\mathrm{x}_{27}$ | ... | $=$ | $\mathrm{e}_{1}=$ |  | -00, | $\lambda_{1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{x}_{88}$ | $+\mathrm{x}_{23}$ | $+\mathrm{x}_{34}$ | ... | = | $\mathrm{e}_{8}=$ |  | -00, | $\lambda_{2}$ |
| $\mathrm{x}_{31}$ | $+\mathrm{x}_{33}$ | $+\mathrm{x}_{35}$ | ... | = | $\mathrm{e}_{3}=$ | $+$ | - 28, | $\lambda_{8}$ |
| $\mathrm{x}_{36}$ | $+\mathrm{x}_{37}$ | $+\mathrm{x}_{39}$ | ... | = | $\mathrm{e}_{4}=$ | + | 2.03, | $\lambda_{4}$ |
| $\mathrm{x}_{22}$ | $+\mathrm{x}_{\mathbf{8 5}}$ | ... | ... | $=$ | $e_{5}=$ | - | I•10, | $\lambda_{5}$ |
| ${ }^{23}$ | $+\mathrm{x}_{3}$ | ... | $\ldots$ | = | $\mathrm{e}_{6}=$ | - | -97, | $\lambda_{6}$ |
| $\mathrm{x}_{35}$ | $+\mathrm{x}_{37}$ | $\ldots$ | ... | = | $\mathrm{e}_{7}=$ | + | 2.31, | $\lambda_{7}$ |
| $\mathrm{x}_{27}$ | $+\mathrm{x}_{39}$ | ... | ... | = | $\mathrm{e}_{8}=$ | $+$ | 2.07, | $\lambda_{8}$ |
| $3^{6} \mathrm{x}_{27}$ | + $5{ }^{1}{ }^{\text {g }}$ | +ox ${ }_{24}$ | $-24{ }^{23}$ | $=$ | $\mathrm{e}_{9}=$ |  | 84.3, | $\lambda_{9}$ |
| $17 \mathrm{x}_{88}$ | $-0 \mathrm{x}_{24}$ | + $7 \mathrm{x}_{31}$ | $-19 \mathrm{x}_{85}$ | $=$ | $\mathrm{e}_{10}=$ |  | 22.4, | $\lambda_{10}$ |

Singi Meridional Series. Final Figural Adjustments of the Non-Circuit Triangles.
Figure 14-(Continued).

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|c|}{Equations between the Factors} \& \multicolumn{2}{|l|}{\multirow{3}{*}{Values of the Factors}} <br>
\hline \multirow[t]{2}{*}{No. of
$$
\mathbf{e}
$$} \& \multirow[t]{2}{*}{Value of e} \& \multicolumn{9}{|c|}{Co-efficients of} \& \& <br>
\hline \& \& $\lambda_{1} \quad \lambda_{2}$ \& $\lambda_{3}$ \& $\lambda_{4}$ \& $\lambda_{5}$ \& $\lambda_{8}$ \& $\dot{\lambda}_{7}$ \& $\lambda_{8}$ \& $\lambda_{9}$ \& $\lambda_{10}$ \& \& <br>
\hline 1
2
3
4
5
6
7
8
9
10 \&  \& +3 \& $\ldots$
$\cdots$
+3 \& $\ldots$
$\cdots$
$\cdots$
+3

$*$ \& +1
+1
$\ldots$
+2 \& $\ldots$
+1
+1
$\ldots$
$\cdots$ \& $\cdots$
$\cdots$
+1
+1
$\cdots$
$\cdots$

+ \& $$
\begin{gathered}
+1 \\
\cdots \\
\cdots \\
+1 \\
\cdots \\
\cdots \\
+\cdots
\end{gathered}
$$ \& \[

$$
\begin{aligned}
& +\begin{array}{c}
41 \\
-\quad 24 \\
\cdots \\
\cdots \\
\cdots \\
-\quad 24 \\
\cdots \\
+\quad 36 \\
+1897
\end{array}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
+\quad 17 \\
-\quad 12 \\
+\quad 17 \\
\cdots \quad 19 \\
\cdots \\
\cdots \quad{ }_{9} \\
+\quad
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& \lambda_{1}= \\
& \lambda_{2}= \\
& \lambda_{3}= \\
& \lambda_{4}= \\
& \lambda_{5}= \\
& \lambda_{6}= \\
& \lambda_{7}= \\
& \lambda_{8}= \\
& \lambda_{9}= \\
& \lambda_{10}=
\end{aligned}
$$

\] \& | $3 \cdot 1837$ $2 \cdot 8268$ |
| :--- |
| - 5730 |
| 3. 1015 |
| 3.5623 |
| -9514 |
| 4.5059 |
| $2 \cdot 7687$ |
| -4628 | <br>

\hline \multicolumn{3}{|r|}{$$
\begin{aligned}
& x_{28}=-1^{\prime \prime} \cdot 5^{6} \\
& x_{23}=-1 \cdot 27 \\
& x_{24}=+2 \cdot 83
\end{aligned}
$$} \& \multicolumn{4}{|r|}{\[

$$
\begin{aligned}
& x_{25}=+\cdots \cdot 46 \\
& x_{36}=-2 \cdot 12 \\
& x_{97}=+1 \cdot 66
\end{aligned}
$$

\]} \& \multicolumn{3}{|r|}{\[

$$
\begin{aligned}
& x_{31}=-3^{\prime \prime} \cdot 73 \\
& x_{33}=+30 \\
& x_{35}=+3 \cdot 71
\end{aligned}
$$

\]} \& \multicolumn{3}{|c|}{\[

$$
\begin{aligned}
& \mathrm{x}_{36}=+3^{\prime \prime} \cdot 02 \\
& \mathrm{x}_{37}=-\mathrm{I} \cdot 40 \\
& \mathrm{x}_{39}=+\cdot 4 \mathrm{I}
\end{aligned}
$$
\]} <br>

\hline
\end{tabular}

Figure 14-(Continued).

Triangle 207.
Constants (from page 57_H ).

Sides.
$\begin{array}{lllcc}\text { XXXIX } & \text { to } & \text { XXX } & \text { Log. feet } & 5 \cdot 3769684, \text { I } \\ \text { XXX } & \text { „ } & \text { XXVI } & , & 5 \cdot 4143939,5\end{array}$
Equations to be satisfied.

$$
\begin{array}{rlll}
x_{47} & +x_{58} & = & +2.09 \\
15 x_{47} & -19 x_{52} & = & -52.2
\end{array}
$$

## Angle.

$48+51$

$$
78^{\circ} 7^{\prime} 43^{\prime \prime} \cdot 46
$$

Adopted Errors.

$$
\begin{array}{ll}
x_{57} & =\quad-11 \cdot 37 \\
x_{52} & =+2 \cdot 46
\end{array}
$$

Abu Meridional Series. Sides and Angles of the Non-Circuit Triangles.


* This station appertains to the Karachi Longitudinal Series of the North-West Quadrilateral.

Abu Meridional Series. Final Figural Adjustments of the Non-Circuit Triangles.
Figure 15.

Triangles 208 and 209.
Constants (from page 27 _I $_{I}$ ).
Sides.
XLIII to I
I
Log. feet
5•1424568,8
„ 4.9171924,5
Angle.

Equations to be satisfied.
Factors.


## Abu Meridional Series. Final Figural Adjustments of the Non-Circuit Triangles.

Figure 16.

Triangles 210 and 211.
Constants (from page 28_I).

Sides.

$$
\begin{array}{lllcc}
\text { V } & \text { to } & \text { VI } & \text { Log. feet } & 5 \cdot 1398441,8 \\
\text { VI } & , & \text { X } & , \# & 4 \cdot 7658033, \text { I }
\end{array}
$$

Equations to be satisfied.

Angle.
$159^{\circ} 48^{\prime} 24^{\prime \prime} \cdot 35$
Factors.

| Equations between the Factors |  |  |  |  |  |  | V'alues of the Factors | Adopted Errors |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { No. of } \\ e \end{gathered}$ | Value of e | Co-efficients of |  |  |  |  |  |  |  |
|  |  | $\lambda_{1}$ | $\lambda_{3}$ | $\lambda_{3}$ |  | $\lambda_{4}$ |  |  |  |
| 1 2 3 4 | $\cdot 00$ $-\quad .00$ $-\quad .24$ -10.1 |  | $\cdots$ $*$ | +1 +1 +2 | + + + | $\begin{array}{r} 18 \\ 21 \\ \ldots \\ 2079 \end{array}$ | $\begin{aligned} & \lambda_{1}=+\cdot 1275 \\ & \lambda_{2}=+\cdot 1348 \\ & \lambda_{3}=-\cdot 2512 \\ & \lambda_{4}=-\cdot \cdot 073 \end{aligned}$ |  | $\begin{array}{ll} x_{4}=-" \cdot 12 & x_{7}=-" \cdot 12 \\ c_{5}=-\quad \cdot 11 & x_{8}=-\quad \cdot 7 \\ c_{6}=+\cdot 23 & x_{9}=+\quad \cdot 19 \end{array}$ |

Figure 17.


Kattywar Meridional Series. Sides and Angles of the Non-Circuit Triangles.

|  | Number of Triangle |  | Serial Letter and Number of Station | Corrected <br> Plane Angle |  | Logarithm of Side-length in Feet |  |  |  | Serial Letter and Number of Station | Corrected <br> Plane Angle |  | Logarithm of Side-length in Feet |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 18 | 214 |  |  | - 11 | " |  | 22 | 222 |  | $\begin{gathered} \text { J XIII } \\ \text { XII } \\ \text { XV } \end{gathered}$ | $\begin{array}{lll} 64 & 5 & 10 \cdot 99 \\ 63 & 43 & 47 \cdot 85 \\ 52 & 11 & 1 \cdot 16 \end{array}$ | " |  |
|  |  | 14 | LXVI* | $775751 \cdot 08$ | - 40 | 5*0212157,9 |  |  | 15 |  |  | -41 | 49089950,1 |
|  |  | 12 | LXIV* | $74 \begin{array}{llll}7 & 19 & 48\end{array}$ | - 40 | 5.0144207,8 |  |  | 13 |  |  | $\cdot 41$ | 4*9076718,7 |
|  |  | 13 | J $I I$ | 274220.05 | - 39 | 4.6982549,6 |  |  | 14 |  |  | -41 | 4.8526321,8 |
| " | 215 | $4+8$ | LXIV* | $71737 * 36$ | - 80 | 5*0795304,4 | 23 | 223 | $\begin{array}{r} 4+5 \\ 3 \\ 6 \end{array}$ | XVI | $\begin{array}{rrrr}92 & 8 & 3 I \cdot 92 \\ 38 & 48 & 16 \cdot 14 \\ 49 & 3 & 11 & 94\end{array}$ | $\cdot 24$$\cdot$$\cdot$$\cdot$ | $\begin{aligned} & 4.9007013,6 \\ & 4.6980402,1 \\ & 4.7791358,4 \end{aligned}$ |
|  |  | 11 | J $I I$ | $\begin{array}{ll}53 & 246 \cdot 12\end{array}$ | -79 | 50061419,8 |  |  |  | $\begin{aligned} & X V \\ & X I X \end{aligned}$ |  |  |  |
|  |  | 5 | I | $554936 \cdot 52$ | $\cdot 79$ | 5.0212158,2 |  |  |  |  |  |  |  |
| " | 216 | 106$7+9$ | II | 68 I 5 59'18 | $\cdot 76$ | 5.0759473,6 | " | 224 | 7$1+8$ | XV <br> $X I X$ <br> XVII | $\begin{array}{rrr} 46 & 44 & 25 \cdot 79 \\ 47 & 43 & 26 \cdot 44 \\ 85 & 32 & 7 \cdot 77 \end{array}$ | $\begin{array}{r} \cdot 27 \\ \cdot 27 \\ \cdot 27 \end{array}$ | $\begin{aligned} & 4.7643059,9 \\ & 4.7712018,5 \\ & 4.9007013,6 \end{aligned}$ |
|  |  |  | I | $421436 \cdot 65$ | - 76 | 49355231,0 |  |  |  |  |  |  |  |
|  |  |  | III | $692924 * 17$ | $\cdot 76$ | 5.0795304,4 |  |  |  |  |  |  |  |
| 19 | 217 | $\begin{gathered} 5 \\ 6+7 \\ 8 \end{gathered}$ | IIVV | $322849 \cdot 52$ | 1.85 | 5*0750493,1 | "' | 225 | $\begin{array}{r} 10 \\ 9 \\ 11 \end{array}$ | $\boldsymbol{X I X}$ <br> XVII <br> $X X I I$ | $\begin{aligned} & 57143 I^{\circ} 45 \\ & 752749^{\circ} 09 \\ & 4717739^{\circ} 46 \end{aligned}$ | $\begin{array}{r} 30 \\ -30 \\ -29 \end{array}$ | $\begin{aligned} & 4 \cdot 8228865,1 \\ & 4 \cdot 8839792,7 \\ & 4 \cdot 7643059,9 \end{aligned}$ |
|  |  |  |  | $833956 \cdot 35$ | 1.86 | 53424063,0 |  |  |  |  |  |  |  |
|  |  |  |  | $635114{ }^{\text {1 }} 13$ | -1.85 | $5 \cdot 2981842,2$ |  |  |  |  |  |  |  |
| 20 | 218 | 546 | $\begin{aligned} & \mathbf{V} \\ & \boldsymbol{V I} \end{aligned}$$V I I$ | 7140 9*91 | -64 | 5'0447410,2 | " | 226 | 12 | $\begin{aligned} & \text { XVII } \\ & X X I I \\ & \mathbf{X X} \end{aligned}$ | $\begin{array}{rrr}63 & 39 & 45^{\circ} 21 \\ 46 & 43 & 12.93 \\ 69 & 37 & 1.86\end{array}$ | $\begin{array}{r} \cdot 24 \\ \cdot 24 \\ \cdot 25 \end{array}$ | $\begin{aligned} & 4 \cdot 8033711,5 \\ & 4.7131082,8 \\ & 4 \cdot 8228865,1 \end{aligned}$ |
|  |  |  |  | 65 ○ $34^{\circ} 02$ | -64 | $5.0246660,0$ |  |  | 13 |  |  |  |  |
|  |  |  |  | 431916.07 | $\cdot 63$ | 4.9037358,4 |  |  | 14 |  |  |  |  |
| " | 219 | 879 | $\begin{aligned} & \text { VII } \\ & \text { VI } \\ & \text { IX } \end{aligned}$ | $365124 \cdot 82$ | $\begin{array}{r} 47 \\ \cdot 47 \\ \cdot 48 \end{array}$ | 4.8228584,0 | " | 227 | 22 | $\begin{aligned} & \dot{X} X I I \\ & \dot{X X} \\ & X X I V \end{aligned}$ | $\begin{array}{lll} 70 & 37 & 42 \cdot 18 \\ 57 & 9 & 43 \cdot 76 \\ 52 & 12 & 34 \cdot 06 \end{array}$ | $\begin{array}{r} 32 \\ \cdot 32 \\ \cdot 32 \end{array}$ | $\begin{aligned} & 4 \cdot 880293 \mathrm{I}, 8 \\ & 4.8299904, \mathrm{I} \\ & 4 \cdot 80337 \mathrm{II}, 5 \end{aligned}$ |
|  |  |  |  | $542127 \cdot 01$ |  | 49547522,2 |  |  | 21 |  |  |  |  |
|  |  |  |  | 8847 8•17 |  | 50447410,2 |  |  | 23 |  |  |  |  |
| 21 | 220 | $\begin{gathered} 4 \\ 2+3 \\ 1 \end{gathered}$ | $\begin{aligned} & \text { VIII } \\ & \text { IX } \\ & \text { XI } \end{aligned}$ | $\begin{array}{llll}35 & 13 & 49 \\ \end{array}$ | $\cdot 41$ | 4.7860095,0 | " | 228 | 25 | $X X I V$$X X$$X X I I I$ | $\begin{array}{rrr}56 & 24 & 51 \cdot 25 \\ 62 & 4 & 7 \cdot 02 \\ 61 & 31 & 1 \cdot 73\end{array}$ | $\cdot 38$$\cdot 38$$\cdot 38$ | $\begin{aligned} & 4 \cdot 8569997,5 \\ & 4 \cdot 8825352,2 \\ & 4 \cdot 880293 \mathrm{I}, 8 \end{aligned}$ |
|  |  |  |  | 9056 $2 \cdot 97$ | $\cdot 42$ | 5.0248754,8 |  |  | 24 |  |  |  |  |
|  |  |  |  | $5350 \quad 7 \times 09$ | - 41 | 4.93198II,2 |  |  | 26 |  |  |  |  |
| 22 | 221 | $\begin{aligned} & 18 \\ & 16 \\ & 17 \end{aligned}$ | X <br> XII <br> XIII | $7521 \quad 5054$ | $\cdot 25$ | 4.8526321,8 | " | 229 | 28 | $\begin{aligned} & X X I I I \\ & X X \\ & X X I \end{aligned}$ | $\begin{array}{lll} 68 & 50 & 38 \cdot 26 \\ 59 & 37 & 7 \cdot 52 \\ 51 & 32 & 14 \cdot 22 \end{array}$ | $\begin{array}{r} 42 \\ \cdot 42 \\ \cdot 42 \end{array}$ | $\begin{aligned} & 4 \cdot 9329266,9 \\ & 4 \cdot 8990801,6 \\ & 4 \cdot 8569997,5 \end{aligned}$ |
|  |  |  |  | $624627 \cdot 02$ | $\cdot 25$ | 4.8159875,8 |  |  | 27 |  |  |  |  |
|  |  |  |  | 415227.44 | $\cdot 24$ | 4.6914334,2 |  |  | 29 |  |  |  |  |

* These stations appertain to the Karáchi Longitudinal Series of the North-West Quadrilateral.

Nots.-Figures Nos. 24 and 25 form pendents and for reasons given in the footnote to page 115 are omitted.

Kattywar Meridional Series. Final Figural Adjustments of the Non-Circuit Triangles.
Figure 18.

Triangles 214 to 216.
Constants (from page 64_J).

Sides.


Figure 18-(Continued).
Kattywar Meridional Series. Final Figural Adjustments of the Non-Circuit Triangles.


Figure 19.

Triangle 217.
Constants (from page 65_J).

Sides.

| I | to | IV | Log. feet | $5 \cdot 2981896,5$ |
| :--- | :---: | :---: | :---: | :---: |
| IV | $\#$ | V | , | $5 \cdot 0750549$, I |

Equations to be satisfied.

$$
\begin{array}{rll}
x_{5} & +x_{8} & =-.65 \\
33 x_{5} & -10 x_{8} & =-1 \cdot 7
\end{array}
$$

Angle.

$$
6+7 \quad 83^{\circ} 39^{\prime} 57^{\prime \prime} \cdot 56
$$

$$
\begin{aligned}
& x_{5}=-w \cdot 19 \\
& x_{8}=-\cdot 46
\end{aligned}
$$

Figure 20.

Triangles 218 and 219.
Constants (from page 65_J).

Sides.

| V to | VI | Log. feet | $4 \cdot 9037409,7$ |
| :--- | :--- | :---: | :---: |
| VI „ IX | $\#$ | $4 \cdot 8228639,7$ |  |

Angle.

$$
119^{\circ} 22^{\prime} 1^{\prime \prime} \cdot 65^{\prime}
$$

## Kattywar Meridional Series. Final Figural Adjustments of the Non-Circuit Triangles.

Figure 20-(Continued).


Figure 21.

Triangle 220.
Constants (from page 65 - $_{J}$ ).
Sides.
$\begin{array}{lcccc}\text { VIII } & \text { to } & \text { IX } & \text { Log. feet } & 4.9319873,4 \\ \text { IX } & \# & \text { XI } & \# & 4.7860151,3\end{array}$
Equations to be satisfied.
Angle.

Adopted Errors.

$$
\begin{array}{rlll}
x_{1} & +x_{4} & =+41 & x_{1}=+!\cdot 14 \\
30 x_{4} & -15 x_{1} & =+5 \cdot 9 & x_{4}=+\cdot 27
\end{array}
$$

Figure 22.

Triangles 221 and 222.
Constants (from pages $65_{Z_{J}}$ and $66 Z_{J}$ ).

Sides.

| X | to | XII | Log. feet | 4.6914406, I |  |  | $13+16$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |$\quad 126^{\circ} 30^{\prime} 16^{\prime \prime} \cdot 03$

Equations to be satisfied.
Factors.

Kattywar Meridional Series. Final Figural Adjustments of the Non-Circuit Triangles.
Figure 22-(Continued).

| Equations between the Factors |  |  |  |  |  | Values of the Factors | Adopted Errors |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { No. of } \\ \mathrm{e} \end{gathered}$ | Value of e | Co-efficients of |  |  |  |  |  |  |  |
|  |  | $\lambda_{1}$ | $\lambda_{2}$ | $\lambda_{3}$ | $\lambda_{4}$ |  |  |  |  |
| 1 2 3 4 | $\cdot 00$ $-\quad .50$ -6.5 | $+3$ | $\cdots$ +3 $*$ | +1 +1 +2 | $\begin{aligned} & -\quad 5 \\ & -\quad 18 \\ & +989 \end{aligned}$ | $\begin{aligned} & \lambda_{1}=+\cdot 1092 \\ & \lambda_{3}=+\cdot 0902 \\ & \lambda_{3}=-\cdot 3497 \\ & \lambda_{4}=-\cdot 0044 \end{aligned}$ |  | 13 | $x_{16}=-1 / 26$ $x_{17}=+\cdot 19$ $x_{18}=+\cdot 07$ |

Figure 23.

Triangles 223 to 229.
Constants (from page 66_J).

Sides.

| XVI | to | XV | Log. feet | $4 \cdot 7791380,3$ |  |
| :--- | :---: | :--- | :---: | :---: | :---: |
| XV | $\#$ | XVII | $\#$ | $4.7712053,0$ | $2+3$ |
| XVII | $\#$ | XX | $\#$ | $4.7131122,3$ | $8+9+12$ |
| XX | $\#$ | XXI | $\#$, | $4.9329313,6$ | $14+21+24+27$ |

Equations to be satisfied.


Angles.
$\begin{array}{rrrr}85^{\circ} & 32^{\prime} & 42^{\prime \prime} \cdot 34 \\ 176 & 52 & 7 & \cdot 23 \\ 248 & 28 & 1 & \cdot 40\end{array}$
Factors.
$\lambda_{1}$
$\lambda_{8}$
$\lambda_{3}$
$\lambda_{4}$
$\lambda_{5}$
$\lambda_{6}$
$\lambda_{7}$
$\lambda_{8}$
$\lambda_{9}$
$\lambda_{10}$
$\lambda_{11}$
$\lambda_{18}$
$\lambda_{13}$


## Kattywar Meridional Series. Final Figural Adjustments of the Non-Circuit Triangles.

Figure 23-(Continued).

## Adopted Errors

| $\mathrm{x}_{8}=-11.03$ | $\mathrm{x}_{9}=-{ }^{*} .02$ | $\mathrm{x}_{21}=-{ }^{*} .02$ | $\mathrm{x}_{27}=-{ }^{\text {- }}$. or |
| :---: | :---: | :---: | :---: |
| $\mathrm{x}_{3}=+\cdot 12$ | $\mathrm{x}_{10}=-\cdot 21$ | $\mathrm{x}_{2 \mathrm{z}}=$ - .09 | $\mathrm{x}_{28}=-\cdot 11$ |
| $\mathrm{x}_{5}=$ - ${ }^{\text {d }}$ I | $\mathrm{x}_{11}=+\cdot 23$ | $\mathrm{x}_{23}=+\cdot \mathrm{II}$ | $\mathrm{x}_{99}=+\cdot 12$ |
| $\mathrm{x}_{6}=+\cdot 37$ | $x_{18}=-\cdot 06$ | $\mathrm{x}_{24}=+.02$ |  |
| $\mathrm{x}_{7}=-\cdot 29$ | $\mathrm{x}_{13}=-\cdot 08$ | $\mathrm{x}_{85}=-\cdot 12$ |  |
| $\mathrm{x}_{8}=+\cdot 03$ | $\mathrm{x}_{14}=+\cdot 14$ | $x_{26}=+\cdot 10$ |  |

Guzerat Longitudinal Series. Sides and Angles of the Non-Circuit Triangles.

|  |  |  | Serial Letter and Number of Station | Corrected Plane Angle |  | Logarithm of Side-length in Feet |  |  |  | Serial Letter and Number of Station | Corrected <br> Plane Angle |  | Logarithm of Side-length in Feet |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 26 | 252 | $\begin{aligned} & 14 \\ & 12 \\ & 18 \end{aligned}$ | $\underset{\underset{V}{\text { IV }}}{\text { II }}$ | $\begin{array}{ccc} \circ & \prime & \prime \prime \\ 82 & 39 & 37 \cdot 12 \\ 42 & 19 & 41 \cdot 69 \\ 55 & 0 & 41 \cdot 19 \end{array}$ | $\begin{aligned} & \prime \prime \\ & \cdot 39 \\ & \cdot 38 \\ & \cdot 38 \end{aligned}$ | $\begin{aligned} & 4: 9707015,8 \\ & 4 \cdot 8025330,3 \\ & 4.8877000,1 \end{aligned}$ | 27 | 254 | $\begin{aligned} & 15 \\ & 13 \\ & 14 \end{aligned} .$ | $\underset{\substack{\text { XVIII } \\ \text { XXII }}}{\text { XVII }}$ | $\begin{array}{cccc} \cdot 0 & 1 & \prime \prime \\ 47 & 46 & 4 \cdot 65 \\ 94 & 8 & 29 \cdot 45 \\ 38 & 5 & 25 \cdot 90 \end{array}$ | $\begin{aligned} & \prime \prime \\ & \cdot 23 \\ & \cdot 23 \\ & \cdot 22 \end{aligned}$ | $\begin{aligned} & 4 \cdot 7682632,5 \\ & 4 \cdot 8976443,6 \\ & 4 \cdot 6889987,4 \end{aligned}$ |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | 11 | $\nabla$ | $634456 \cdot 22$ | $\cdot 78$ |  |  |  |  |  |  |  |  |
|  | 253 | $\stackrel{a}{10}$ | IV | 6855 20.72 | $\cdot 79$ | 5.0741901,5 |  |  |  |  |  |  |  |
|  |  | 10 | VI | 471943.06 | $\cdot 78$ | 4.9707015,8 |  |  |  |  |  |  |  |

Notr.-In the column "Figural Number of Angle" the distinguishing symbol $a$ is employed for angles which have not been measured and therefore had no number in the original figural reduction.

Guzerat Longitudinal Series. Final Figural Adjustments of the Non-Circuit Triangles.
Figure 26.

Triangles 252 and 253.
Constants (from pages 49 _K $_{K}$ and 50 _$_{K}$ ).

Sides.
$\begin{array}{lll}\text { II } & \text { to } & \text { IV } \\ \text { IV } & \text { ! } & \text { VI }\end{array}$
Log. feet
" $4 \cdot 8876769,7$
$5 \cdot 0569650,9$

Equations to be satisfied.

| $\mathrm{x}_{12}$ | $+\mathrm{x}_{18}$ | $+\mathrm{x}_{14}$ | ... | ... | = | ${ }_{1}$ | $=$ |  | - 0 , | $\lambda_{1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $x_{8}$ | $+\mathrm{x}_{10}$ | $+\mathrm{x}_{11}$ | ... | ... | = | $\mathrm{e}_{8}$ | $=$ |  | -00, | $\lambda_{2}$ |
| $\mathrm{x}_{18}$ | $+\quad \mathrm{x}_{\text {a }}$ | $\ldots$ |  | ... | = | ${ }_{3}$ | = | - | -14, | $\lambda_{3}$ |
| $3^{14}$ | $-14{ }^{18}$ | $+10 x_{11}$ | $-19 \mathrm{x}_{10}$ | ... | = | $\mathrm{e}_{4}$ | = | + |  | $\lambda_{4}$ |

Guzerat Longitudinal Series. Final Figural Adjustments of the Non-Circuit Triangles.
Figure 26-(Continned).

| Equations between the Factors |  |  |  |  |  | Values of the Factors | Adopted Errors |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { No. of } \\ e \end{gathered}$ | Value of e | Co-efficients of |  |  |  |  |  |
|  |  | $\lambda_{1}$ | $\lambda_{2}$ | $\lambda_{3}$ | $\lambda_{4}$ |  |  |
| 1 2 3 4 | $\cdot 00$ $\cdot 00$ $-\quad 14$ $+33 \cdot 6$ | + 3 | $\cdots$ +3 | +1 +1 +2 | $\begin{array}{r}-\quad 11 \\ -\quad 9 \\ \hline \ldots 666\end{array}$ | $\begin{aligned} & \lambda_{1}=+\cdot 3587 \\ & \lambda_{2}=+\cdot 3183 \\ & \lambda_{3}=-\cdot 4085 \\ & \lambda_{4}=+\cdot 0607 \end{aligned}$ | $\begin{aligned} & x_{a}=-" .09 x_{1 s}=-" .05 \\ & \mathbf{x}_{10}=-\quad .82 \mathbf{x}_{13}=-\quad .48 \\ & x_{11}=+91 \\ & x_{14}=+\quad .53 \end{aligned}$ |

Figure 27.

Triangle 254.
Constants (from pages $51_{L_{K}}$ and $52_{Z_{K}}$ ).

Sides.
$\begin{array}{lcccc}\text { XVII } & \text { to XVIII } & \text { Log. feet } & 4 \cdot 6889921,8 \\ \text { XVIII } & \# & \text { XX } & \# & 4 \cdot 7682559,1\end{array}$
Equations to be satisfied.

$$
\begin{aligned}
x_{14} & +x_{15} \\
19 x_{15} & =27 x_{14}
\end{aligned} \quad=\quad+1 \cdot 01
$$

Angle.
$18 \quad 94^{\circ} 8^{\prime} \quad 30^{\prime \prime} \cdot 69$
Adopted Errors.

$$
\begin{aligned}
& x_{14}=+" \cdot 25 \\
& x_{16}=+\cdot 76
\end{aligned}
$$

Cutch Coast Series. Sides and Angles of the Non-Circuit Triangles.

|  |  |  | Serial Letter and Number of Station | Corrected Plane Angle |  | Logarithm of Side-length in Feet |  | Number of Triangle |  | Serial Letter and Number of Station | Corrected Plane Angle |  | Logarithm of Side-length in Feet |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 28 | 255 | $\begin{gathered} 8 \\ 4+5 \\ 6 \end{gathered}$ | $\begin{aligned} & \text { J XI } \\ & \text { XIV } \end{aligned}$ | $\begin{array}{r} 494027 \cdot 16 \\ \text { 1OI } 3046 \cdot 17 \\ 2848 \\ 46 \cdot 67 \end{array}$ | $\begin{aligned} & 11 \\ & \cdot 41 \\ & \cdot 42 \\ & \cdot 41 \end{aligned}$ | $\begin{aligned} & 4.9634748,5 \\ & 5.0724778,9 \\ & 4.7643087,1 \end{aligned}$ | 30 | 259 | 15 18 14 | $\underset{\underset{V I}{\mathbf{I}}}{\substack{\text { III }}}$ | $\begin{gathered} \circ \quad 1 \quad 11 \\ 474114 \cdot 65 \\ 944022 \cdot 23 \\ 373823 \cdot 12 \end{gathered}$ | $\begin{array}{r} \cdot 36 \\ \cdot 36 \\ \cdot 36 \end{array}$ | $\begin{aligned} & 4.8722255,7 \\ & 5 \cdot 0018513,8 \\ & 4.7891215,5 \end{aligned}$ |
| 2 | 256 | $\begin{aligned} & 5 \\ & 4 \\ & 6 \end{aligned}$ | $\underset{\mathrm{J}}{\mathrm{IIII}}$ | $\begin{array}{llll}59 & 7 & 55 \cdot 89 \\ 90 & 32 & 51 \\ 30 & 198 \\ 30 & 12.23\end{array}$ | $\begin{array}{r}\cdot 40 \\ \cdot 40 \\ \hline 40\end{array}$ | $\begin{aligned} & 4^{\circ} \cdot 9679249,1 \\ & 5^{\circ} \circ 342390,4 \\ & 4^{\circ} 7374039,7 \end{aligned}$ | " | 260 | $\begin{aligned} & 12 \\ & 10 \\ & 11 \end{aligned}$ | $\begin{aligned} & \text { VII } \\ & \text { VI } \\ & \text { VIII } \end{aligned}$ |  | 35 $\cdot 35$ $\cdot 35$ | $\begin{aligned} & 4: 8738906,9 \\ & 4.8227495,0 \\ & 4: 8722255,7 \end{aligned}$ |
| \# | 257 | $\begin{aligned} & 8 \\ & 7 \\ & 9 \end{aligned}$ | $\chi_{V}^{V I I I}$ | $\begin{array}{lll} 39 & 37 & 35 \cdot 32 \\ 66 & 3 & 33 \cdot 05 \\ 74 & 18 & 51.63 \end{array}$ | $\begin{array}{r} \cdot 41 \\ \cdot 41 \\ -42 \end{array}$ | $\begin{aligned} & 4 \cdot 7890780,3 \\ & 4.9453367,8 \\ & 4.9679249, \mathrm{I} \end{aligned}$ | 31 | 261 | 4 $2+3$ 1 | $\begin{aligned} & \text { VIIII } \\ & \text { IX } \\ & \text { XI } \end{aligned}$ | $\begin{array}{r} 355022 \cdot 04 \\ 93 \\ 903032 \cdot 71 \\ 5039 \quad 5 \cdot 25 \end{array}$ | $\begin{array}{r} \cdot 34 \\ -35 \\ -35 \end{array}$ | $\begin{aligned} & 4 \cdot 7606657,8 \\ & 4.9923119,2 \\ & 4 \cdot 88 \mathrm{I} 4768, \mathrm{I} \end{aligned}$ |
| 6 | 258 | $\begin{aligned} & 11 \\ & 10 \\ & 18 \end{aligned}$ | $\begin{aligned} & \boldsymbol{V} \\ & \text { III } \\ & \mathbf{I V} \end{aligned}$ | $\begin{array}{rrrr} 81 & 10 & 25 \cdot 29 \\ 51 & 45 & 10 \cdot 33 \\ 47 & 4 & 24 \cdot 38 \end{array}$ | $\begin{array}{r} 32 \\ -32 \\ -31 \end{array}$ | $\begin{aligned} & 4: 9192585,6 \\ & 4.8194943,0 \\ & 4: 7890780,3 \end{aligned}$ | 32 | 262 | $\begin{gathered} 8 \\ 4+5 \\ 6 \end{gathered}$ | $\begin{aligned} & \text { XI } \\ & \text { X } \\ & \text { XII } \end{aligned}$ | $\begin{array}{lll} 51 & 23 & 31 \cdot 41 \\ 96 & 2 & 54 \cdot 39 \\ 32 & 33 & 34 \cdot 20 \end{array}$ | $\begin{array}{r} \cdot 51 \\ \cdot 52 \\ \cdot 51 \end{array}$ | $\begin{aligned} & 4 \cdot 9886555,1 \\ & 5^{\circ} 0933388,3 \\ & 4^{\circ} 8266868,7 \end{aligned}$ |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Cutch Coast Series. Sides and Angles of the Non-Circuit Triangles-(Continued).

|  |  |  | Serial Letter and Number of Station | Corrected Plane Angle |  | Logarithm of Side-length in Feet |  | Number of Triangle |  | Serial Letter and Number of Station | Corrected <br> Plane Angle |  | Logarithm of Side-length in Feet |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 33 | 263 | 5 $6+7$ 8 | $\begin{gathered} \text { x XII } \\ \substack{\text { XIV } \\ \text { XV }} \end{gathered}$ | $\begin{gathered} \circ \quad \prime \quad \prime \prime \\ 514755 \cdot 10 \\ 853625 \cdot 77 \\ 423539 \cdot 13 \end{gathered}$ | $\begin{array}{r} 61 \\ -61 \\ -61 \\ \hline 60 \end{array}$ | $\begin{aligned} & 4^{\circ} 9761791,1 \\ & 5^{\circ} 0795660,3 \\ & 4^{\circ} 9113050,5 \end{aligned}$ | 37 | 272 | 8 7 |  | $\begin{gathered} \circ \quad, \quad \prime \prime \\ 572015 \cdot 62 \\ 694542 \cdot 88 \\ 525351 \times 50 \end{gathered}$ | $\begin{aligned} & \prime \prime \\ & \cdot 25 \\ & \cdot 25 \\ & \cdot 24 \end{aligned}$ | $\begin{aligned} & 4 \cdot 7723738,9 \\ & 4 \cdot 8194635,2 \\ & 4 \cdot 7488939,2 \end{aligned}$ |
| 34 | 264 | $\begin{aligned} & 23 \\ & 21 \\ & 22 \end{aligned}$ | XIV XVI $X V I I$ |  | $\begin{aligned} & 1 \cdot 04 \\ & 1 \cdot 05 \\ & 1 \cdot 05 \end{aligned}$ | $\begin{aligned} & 5 \cdot 0496239,2 \\ & 5 \cdot 1828789,5 \\ & 5 \cdot 077494,8 \end{aligned}$ | 38 | 273 | 18 16 17 | XXX XXXII XXXIII | $\begin{array}{rrr} 48 & 28 & 10 \cdot 58 \\ 61 & 9 & 58 \cdot 13 \\ 70 & 21 & 5 I \cdot 29 \end{array}$ | $\begin{aligned} & \cdot 19 \\ & \cdot 20 \\ & -20 \end{aligned}$ | $\begin{aligned} & 4 \cdot 6777207,3 \\ & 4 \cdot 7459834,9 \\ & 4.7774493,3 \end{aligned}$ |
| " | 265 | 20 18 19 | $\begin{aligned} & X V I I \\ & \text { XVI } \\ & X I X \end{aligned}$ | $\begin{array}{lllll}56 & 41 & 16.57 \\ 37 & 43 & 3.58 \\ 85 & 35 & 39.85\end{array}$ | $\begin{array}{r} 51 \\ \cdot \\ \cdot 51 \\ -51 \end{array}$ | $\begin{aligned} & 4.9729551,5 \\ & 4.8374978,7 \\ & 5^{\circ} 0496239,2 \end{aligned}$ | " | 274 | 13 15 14 | $\begin{aligned} & \text { XXXII } \\ & X X X I I I \\ & \mathbf{X X X V} \end{aligned}$ |  | - 21 $\cdot 21$ $\cdot 21$ | $\begin{aligned} & 4 \cdot 7955758,8 \\ & 4 \cdot 7714520,1 \\ & 4 \cdot 6777207,3 \end{aligned}$ |
| " | 266 | $\begin{gathered} 16+17 \\ 14 \\ 15 \end{gathered}$ | XIX $\mathbf{X V I}$ $\mathbf{X X}$ | 871323.68 <br> 294757.96 <br> 6258 | $\begin{array}{r} 39 \\ \cdot 38 \\ \cdot 39 \end{array}$ | $\begin{aligned} & 5 \cdot 0226516,6 \\ & 4.7194880,4 \\ & 4.9729551,5 \end{aligned}$ | " | 275 | 30 28 29 | XXXIII XXXV XXXVI | $\begin{array}{rlr} 44 & 34 & 2 \cdot 19 \\ 82 & 28 & 48 \cdot 44 \\ 52 & 57 & 9 \cdot 37 \end{array}$ | $\begin{array}{r} \cdot 26 \\ \cdot 27 \\ -27 \end{array}$ | $\begin{aligned} & 4: 7396782,9 \\ & 4: 8897469,2 \\ & 4: 7955758,8 \end{aligned}$ |
| " | 267 | $\begin{gathered} 17 \\ 10+14 \\ 11 \end{gathered}$ | XIX $\mathbf{X V I}$ $\mathbf{X X I}$ | $\begin{aligned} & 494547 \cdot 85 \\ & 744957 \cdot 27 \\ & 552414 \cdot 88 \end{aligned}$ | $\begin{array}{r} \cdot 62 \\ \cdot 63 \\ \cdot 62 \end{array}$ | $\begin{aligned} & 4.9402038,6 \\ & 5.0420634,9 \\ & 4^{4.9729551,5} \end{aligned}$ | " | 276 | 27 25 26 | XXXVI XXXV XXXVIII | $\begin{array}{lll} 69 & 37 & 18 \cdot 69 \\ 62 & 23 & 24.56 \\ 47 & 59 & 16 \cdot 75 \end{array}$ | $\begin{array}{r} \cdot 27 \\ -27 \\ -26 \end{array}$ | $\begin{aligned} & 4 \cdot 8406187,1 \\ & 4: 8161813,8 \\ & 4 \cdot 7396782,9 \end{aligned}$ |
| 35 | 268 | $\begin{aligned} & 15 \\ & 13 \\ & 14 \end{aligned}$ | XX <br> XXII <br> XXIII | $\begin{array}{lll} 87 & 39 & 57 \cdot 41 \\ 43 & 5 & 5 \cdot 69 \\ 49 & 1456 \cdot 90 \end{array}$ | $\cdot 22$ $\cdot$ $\cdot$ $\cdot$ $\cdot$ | 4.8612061,3 <br> 4.6960391, I <br> 4.7409809,0 | 39 | 277 | 5 4 4 | $\begin{aligned} & \text { XXXIXX } \\ & \text { XL } \\ & X L I \end{aligned}$ | 50 23 18.55 <br> 62 34 33 <br> 67 2 8 | $\cdot 21$ $\cdot$ $\cdot 22$ $\cdot 22$ | $\begin{aligned} & 4 \cdot 7078747,2 \\ & 4.7693948,3 \\ & 4^{\prime} 7853073,9 \end{aligned}$ |
| " | 269 | $\begin{aligned} & 12 \\ & 10 \\ & 11 \end{aligned}$ | XXIII XXII XXIV | $\begin{array}{rrr} 68 & 19 & 46 \cdot 34 \\ 42 & 38 & 8 \cdot 10 \\ 69 & 2 & 5 \cdot 56 \end{array}$ | $\begin{aligned} & \cdot 28 \\ & \cdot 28 \\ & \cdot 28 \end{aligned}$ | $\begin{aligned} & 4 \cdot 8591196,9 \\ & 4.7217552,1 \\ & 4 \cdot 8612061,3 \end{aligned}$ | " | 278 | 8 7 9 | XLI XL XLIII |  | $\begin{array}{r} \cdot 20 \\ \cdot 19 \\ \cdot 19 \end{array}$ | 4*7668409,4 <br> 4•7086604,1 <br> 4•7078747,2 |
| 36 | 270 | $\begin{gathered} 3 \\ 4+5 \\ 6 \end{gathered}$ | $\begin{aligned} & \text { XXV } \\ & \text { XXIV } \\ & \text { XXVI } \end{aligned}$ | $\begin{array}{rrr} 38 & 27 & 9 \cdot 95 \\ 81 & 29 & 20 \cdot 45 \\ 60 & 3 & 29 \cdot 60 \end{array}$ | $\begin{array}{r} 42 \\ -42 \\ -42 \end{array}$ | $\begin{aligned} & 4 \cdot 7929765,7 \\ & 4 \cdot 9944083,4 \\ & 4^{\prime} 9370626,2 \end{aligned}$ | 40 | 279 | 15 13 14 | $\begin{aligned} & \text { XLII } \\ & \text { XLIV } \\ & \text { XLV } \end{aligned}$ | $\begin{array}{rrr} 70 & 45 & 3 \cdot 68 \\ 67 & 33 & 55 \cdot 19 \\ 41 & 41 & 1 \cdot 13 \end{array}$ | $\begin{array}{r} \cdot 22 \\ \cdot 21 \\ \cdot 21 \end{array}$ | $\begin{aligned} & 4 \cdot 8106822,0 \\ & 4: 8014866,7 \\ & 4 \cdot 6584994,3 \end{aligned}$ |
| 37 | 271 | $\begin{aligned} & 5 \\ & 4 \\ & 6 \end{aligned}$ | XXVII <br> XXVIII <br> $\boldsymbol{X X I X}$ | $\begin{array}{rrrr} 56 & 43 & 12 \cdot 50 \\ 71 & 5 & 35 \cdot 68 \\ 52 & 11 & 11 & \cdot 82 \end{array}$ | $\begin{array}{r} 22 \\ \cdot 23 \\ \cdot 22 \end{array}$ | $\begin{aligned} & 4 \cdot 7488939,2 \\ & 4 \cdot 8026003,0 \\ & 4 \cdot 7243211,3 \end{aligned}$ | " | 280 | $\begin{aligned} & 12 \\ & 10 \\ & 11 \end{aligned}$ | $\begin{aligned} & \text { XLV } \\ & \text { XLIV } \\ & \text { cVII* } \end{aligned}$ | $\begin{array}{llr} 69 & 32 & 20 \cdot 25 \\ 76 & 35 & 9 \cdot 36 \\ 33 & 52 & 30 \cdot 39 \end{array}$ | $\begin{array}{r} 54 \\ \cdot 54 \\ \cdot 54 \end{array}$ | $\begin{aligned} & 5 \circ 0362252,5 \\ & 5 \cdot 525147,3 \\ & 4 \cdot 8106822,0 \end{aligned}$ |

* This station appertains to the Karáchi Longitudinal Series of the North-West Quadrilateral.


## Cutch Coast Series. Final Figural Adjustments of the Non-Circuit Triangles.

Figure 28.

## Triangle 255

Sides. Constants (from page 71 _ $_{L}$ ).
XI to XIV
Log. feet $4 \cdot 7643143,2$
XIV " I " $4 \cdot 9634788,3$
Equations to be satisfied.

$$
\begin{aligned}
x_{3} & +x_{6} \\
18 x_{3} & =-38 x_{6}
\end{aligned}=-1 \cdot 17
$$

Angle.

$$
101^{\circ} 30^{\prime} 45^{\prime \prime} \cdot 42
$$

Adopted Errors.
$\mathbf{x}_{3}=-{ }^{\prime \prime} .50$
$\mathbf{x}_{6}=-.67$

## Cutch Coast Series. Final Figural Adjustments of the Non-Circuit Triangles.

Figure 29.


Figure 30.

Triangles 259 and 260.

Constants (from page 72_L).

Sides.

| I | to | VI |
| :--- | :--- | :---: |
| VI | " | VIII |

Log. feet $4 \cdot 7891241,2$ , $4 \cdot 8738908,8$

Angle.
$147^{\circ} 33^{\prime} 31^{\prime \prime} \cdot 77$

Equations to be satisfied.

Factors.
$\lambda_{1}$
$\lambda_{2}$
$\lambda_{8}$
$\lambda_{4}$

Cutch Coast Series. Final Figural Adjustments of the Non-Circuit Triangles.
Figure 30-(Continued).

| Equations between the Factors |  |  |  |  |  |  | Values of the Factors |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. of$\mathbf{e}$ | Value of e | Co-efficients of |  |  |  |  |  | Adopted Errors |
|  |  | $\lambda_{1}$ | $\lambda_{2}$ | $\lambda_{3}$ |  | $\lambda_{4}$ |  |  |
| 1 | -00 |  |  |  | - |  |  |  |
| 2 | -00 | +3 | $\underline{\cdots}$ | +1 | - |  | $\lambda_{1}=+{ }^{1209}$ | $\mathrm{x}_{10}=-{ }^{\prime \prime} \cdot 22 \mathrm{x}_{18}=-{ }^{*} \cdot 18$ |
| 3 | - .40 |  |  | +2 |  |  | $\lambda_{3}=-3434$ | $x_{11}=-\cdot 09 x_{14}=-\cdot 35$ $x_{12}$ |
| 4 | $+23 \cdot 8$ |  | * |  |  |  | $\lambda_{4}=+{ }^{0193}$ | $\mathrm{x}_{12}=+\cdot 31 \mathrm{x}_{15}=+\cdot 53$ |

Figure 31.

Triangle 261.
Constants (from page 72_L ).
Sides.

| VII | to | IX | Log. feet | 4-8814766,5 | - $2+8$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| IX | " | XI | " | 4.7606648,4 |  |
|  | Equations to be satisfied. |  |  |  |  |

Angle.

Equations to be satisfied.
Adopted Errors.

Figure 32.

Triangle 262.
Constants (from pages $72_{L_{L}}$ and $73 ـ_{L}$ ).
Sides.
XI to X Log feet. $4 \cdot 8266856,7$ X " XII ,, $4.9886532,8$

Equations to be satisfied.
$\begin{aligned} x_{3} & +x_{6} \\ 17 x_{3} & -\quad-33 x_{6}\end{aligned} \quad=\quad+10 \cdot 31$
Adopted Errors.

Figure 33.

Triangle 263.
Constants (from page 73_L .
Sides.
$\begin{array}{lccccc}\text { XII } & \text { to } & \text { XIV } & \text { Log. feet } & 4.9113004,3 & \\ \text { XIV } & \# & \text { XV } & \# & 4.9761744,1 & 6+7\end{array}$
Angle.

Equations to be satisfied.

$$
\begin{aligned}
x_{6} & +x_{8} \\
16 x_{5} & =+31 \\
= & +\cdot 8
\end{aligned}
$$

Adopted Errors.

$$
\begin{aligned}
& x_{5}=+N_{20} \\
& x_{8}=+11
\end{aligned}
$$

## Cutch Coast Series. Final Figural Adjustments of the Non-Circuit Triangles.

Figure 34.


Figure 35.

Triangles 268 and 269.
Constants (from page 74_L).

Sides.
$\begin{array}{lllcc}\text { XX } & \text { to } & \text { XXII } & \text { Log. feet } & 4 \cdot 7409725,8 \\ \text { XXII } & \# & \text { XXIV } & , & 4 \cdot 8591061,5\end{array}$
Equations to be satisfied.


Factors.
$\lambda_{1}$
$\lambda_{2}$
$\lambda_{3}$
$\lambda_{4}$

Cutch Coast Series. Final Figural Adjustments of the Non-Circuit Triangles.
Figure 85-(Continued).

| Equations between the Factors |  |  |  |  |  | Values of the Factors | Adopted Errors |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. of e | Value of e | Co-efficients of |  |  |  |  |  |
|  |  | $\lambda_{1}$ | $\lambda 3$ | $\lambda_{3}$ | $\lambda_{4}$ |  |  |
| 1 2 8 4 | $\begin{array}{r}\cdot 00 \\ \cdot 00 \\ \hline+52 \cdot 2\end{array}$ | $+3$ | $\cdots$ +3 $*$ | +1 +1 +2 | $-\quad 18$ $+\quad 1$ $\ldots$ | $\begin{aligned} & \lambda_{1}=+1 \cdot 0371 \\ & \lambda_{2}=+\cdot 1536 \\ & \lambda_{3}=-6004 \\ & \lambda_{4}=+\cdot 1395 \end{aligned}$ | $\begin{aligned} & x_{10}=-\cdots \cdot 45 x_{13}=+\cdots \cdot 44 \\ & x_{11}=-1 \cdot 04 x_{14}=-1 \cdot 69 \\ & x_{12}=+1 \cdot 49 x_{15}=+1 \cdot 25 \end{aligned}$ |

Figure 36.

Triangle 270.
Constants (from page 74_L).
Sides.
XXV to XXIV Log. feet $4 \cdot 9370493,9$ XXIV „ XXVI $\quad 4 \cdot 7929633,1$
XXIV XXVI "
Equations to be satisfied.
Angle.

$$
4+5 \quad 8 I^{\circ} 29^{\prime} \quad 20^{\prime \prime} \cdot 58
$$

$\begin{array}{rlrll}x_{3} & + & x_{6} & = & -\cdot 29 \\ 27 x_{3} & -12 x_{6} & = & x_{8} & = \\ x_{6} & = & -08 \\ \end{array}$

Figure 37.


## Cutch Coast Meridional Series. Final Figural Adjustments of the Non-Circuit Triangles.

Figure 38.

Triangles 273 to 276.
Constants (from page 75_L).

Sides.


Equations to be satisfied.


| Equations between the Factors |  |  |  |  |  |  |  |  | Values of the Factors | Adopted Errors |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\left\lvert\, \begin{gathered} \text { No. of } \\ e \end{gathered}\right.$ | Value of e | Co-efficients of |  |  |  |  |  |  |  |  |  |
|  |  | $\lambda_{1} \quad \lambda_{2}$ | $\lambda_{3}$ | $\lambda_{4}$ | $\lambda_{5}$ | $\lambda_{6}$ | $\lambda_{7}$ | $\lambda_{8}$ |  |  |  |
| 1 | - 0 |  |  |  |  |  |  |  |  |  |  |
| 2 | - 0 | $+3$ | $\cdots$ |  | $+1$ |  | + 9 | - ${ }^{\cdots}$ | $\lambda_{1}=-{ }^{2} \times 2048$ | $\mathrm{x}_{13}=+$ " ${ }^{\text {22 }}$ | $\mathrm{x}_{25}=+1 / 3 \mathrm{l}$ |
| 3 | - 0 |  | $+3$ |  | $\ldots$ |  | ... | + 5 | $\lambda_{3}{ }^{\prime}=-{ }^{1} 538$ | $\mathrm{x}_{14}=+\cdot 3^{6}$ | $\mathrm{x}_{26}=-\cdot 33$ |
| 4 | $\cdot 00$ $+\quad .23$ |  |  | $+3$ | $\ldots$ |  | ... | - 11 | $\lambda_{4}=-\cdot 0850$ | $\mathrm{x}_{15}=+{ }^{14}$ | $\mathrm{x}_{27}=+{ }^{\text {d }}$-2 |
| 6 | $+\quad .23$ $+\quad .19$ |  |  |  |  |  | $\underline{\cdots}$ | $+8$ | $\lambda_{5}=+\cdot 2099$ $\lambda_{0}=+.3970$ | $x_{16}=+.01$ $x_{17}=-.45$ | $\mathrm{x}_{28}=+\cdot 24$ |
| 7 | + $+20 \cdot 19$ |  |  |  |  |  | $\begin{array}{r} \\ \hline\end{array}$ | - 121 | $\lambda_{6}=+\cdot 3970$ $\lambda_{7}=+\cdot 0337$ | $x_{17}=-\cdot 45$ $x_{18}=+.44$ | $\mathrm{x}_{39}=-\quad 36$ |
| 8 | +14.9 |  |  |  |  |  |  | - 121 +1307 | $\lambda_{7}=+\cdot 0337$ $\lambda_{8}=+\cdot 0129$ | $\mathrm{x}_{18}=+$ + 44 | $\mathrm{x}_{30}=+{ }^{\text {d }}$ |

Figure 39.

Triangles 277 and 278.
Constants (from page 76_L).
Sides.
Angle.

| XXXIX | to | XL | Log. feet | $4 \cdot 7852872,3$ |  |  |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| XL | , | XLIII | ,$\quad$ | $4.7668176,2$ | $4+7$ | $117^{\circ} 44^{\prime} 49^{\prime \prime} \cdot 26$ |

Equations to be satisfied.
Factors.


Cutch Coast Series. Final Figural Adjustments of the Non-Circuit Triangles.
Figure 39-(Continued).


Figure 40.


October, 1890.
W. H. COLE,

In charge of Computing Office.

## NOTE ON THE SIMULTANEOUS REDUCTION OF THE SOUTH-WEST QUADRILATERAL.

## On the Degree of Numerical Accuracy maintained in the Calculations.

In printing the details of the solution of the problem presented by the South-West Quadriateral, 4 places of decimals have been generally retained, except in the $\mu, \phi$ tables of Section 11 of Chapter III, where the former are integral quantities divided, for convenience, by $10^{7}$ and the latter are, in the case of latitude and longitude equations, generally preceded by one or more cyphers. But this uniformity could not be maintained in the actual reduction. When the scheme for the reduction of the triangulation of India had been worked out and that of the North-West Quadrilateral was taken in hand, Mr. Hennessey, who was then in charge of the Computing Office, investigated with great care the number of decimal places which should be retained at each stage of the calculations, in order to produce accuracy in the final results up to certain designated limits. In the second reduction that was undertaken, viz., the South-East Quadrilateral, the conclusions arrived at by Mr. Hennessey were generally accepted by Mr. Cole, under whom.the calculations were made, except where the employment of tabular log. differences in place of differentials rendered his rules inapplicable; and although the accuracy he sought in the final results may be considered by some as unnecessarily minute, it is attended with the advantage that, assuming the absence of arithmetical mistakes, angular corrections will be arrived at which fully satisfy the problem without any resort to arbitrary adjustment. In the next operation, viz., the reduction of the North-East Quadrilateral under Major Herschel, this officer decided to considerably reduce the number of decimal places employed, with the result that residual errors remained after the solution was complete, which entailed nearly as much labour in their dispersion as the original reduction. In the fourth reduction, viz., that of the Southern Trigon under Mr. Hennessey, fewer decimal places were employed than in the South-East Quadrilateral, and judging from the magnitude of the arbitrary corrections necessary to eliminate residual errors from the linear and geodetic calculations, the number seems to have been too few in some of the stages of the reduction. In the fifth reduction, viz., that of the South-West Quadrilateral under Mr. Cole, less refinement was required, as the instruments employed in the observation of the angles were not of so high a class as those used in the Southern Trigon or North-West and South-East Quadrilaterals, and the final values of the angles were only required to 2 places of decimals.

The calculation of the $\mu \mathrm{s}$ and $\phi \mathrm{s}$ was made in the North-West Quadrilateral from differentials, but in all subsequent calculations from tabular log. differences. The $\mu, \phi$. latter method is far more expeditious and the quantities would have been the same, but that the $\mu$ s of the North-West Quadrilateral were made to include the factor sin $1^{\prime \prime}$, which comes from the differentiation of the sines of the angles. In subsequent calculations this factor is included in the tabular log. differences of the sines of the angles and the $\mu \mathrm{s}$ are consequently large integral numbers. As, however, it is convenient to treat the tabular log. differences of sines in the side equations as integral numbers, in other words to multiply them by $10^{7}$, and the $\mu \mathrm{s}$ are factors of these differences, they have been divided by $10^{7}$, which has had the further advantage that the last figure of the $\mu \mathrm{s}$ could be dropped. The $\phi s$ were calculated to 6 places of decimals in the North-West and South-East Quadrilaterals, but to only 5 places in the Southern Trigon and South-West Quadrilateral : in the latter case they were only employed to 4 places in the subsequent calculations.

In the linear equations of the North-West Quadrilateral, the co-efficients $\boldsymbol{b}$ and $\mathfrak{c}$ were the natural
b, c. cotangents of the corresponding angles; these were employed to 5 places of decimals. In subsequent reductions the tabular log. differences for $1^{\prime \prime}$ of the sines of the corresponding angles have been employed, and these never exceeded 2 figures. A certain inconvenience has arisen from these being differences of 7 place logs., while the linear calculations have been extended to an 8th place by interpolation.

In the geodetic equations the different methods of calculating the co-efficients $b$ and $\mathbf{c}$ employed in the North-West Quadrilateral and subsequent reductions make no difference in the actual values arrived at; but in lieu of 6 places of decimals in the North-West Quadrilateral, 5 places were kept in the South-East Quadrilateral. In the Southern Trigon a further reduction was made to 4 places, which seems, from the magnitude of the arbitrary corrections afterwards required to the deduced values of $x, y$ and $z$, which were required to 3 places, to have been too great a reduction. 5 places of decimals, no doubt, ought to have been kept, seeing that the first place is frequently a cypher and sometimes the second also. In the South-West Quadrilateral, $x, y$ and $z$ were only required to 2 places, therefore taking $b$ and $c$ to 4 places was sufficient.

The circuit errors are linear and geodetic. In the North-West Quadrilateral the former were obtained

The Circuit Errors or Absolute Terms of the Equations. by multiplying the logarithmic discrepancy of the value of each closing side by cosec $\mathrm{I}^{\prime \prime} \div$ modulus, and the products were retained to 5 places of decimals. In the South-East Quadrilateral and subsequent calculations the logarithmic discrepancies alone formed the circuit errors, the 7th place of decimals of logs. being taken as unity. The geodetic errors in all quadrilaterals only presented themselves to 3 places of decimals.

The factor $\frac{1}{3 w}$ was calculated and employed to 2 places of decimals in the first two reductions; in

$$
\frac{1}{3 w} \text { or } \frac{u}{3} . \quad \text { the third reduction, viz., that of the North-East Quadrilateral, the }
$$ not differ by more than a tenth part from its computed value, it was sufficiently accurate, and $\frac{u}{3}$ varied from 1 to 3 places of decimals. But it came to be considered afterwards that unnecessary labour had been expended on the calculation of weights, and in the Southern Trigon and South-West Quadrilateral one significant figure only in the decimal places was retained.

The Bis and $\mathbb{H} \mathrm{s}$, which are functions of b and c and $\frac{u}{3}$, divide themselves into two groups, viz., those 3 , $\mathbb{C}$. appertaining to the linear equations and those belonging to the geodetic equations. The former were in the North-West Quadrilateral obtained to from 3 to 6 decimal places and the latter to from 5 to 7. In the South-East Quadrilateral the corresponding numbers were from 2 to 3 and 7. In the Southern Trigon the former were to 2 places and the latter to 4 : in the South-West Quadrilateral they were respectively to 1 and 4 places.

The 36 ibs and $\mathbb{C}$ cs divide themselves into three groups :-(1) those which spring from linear equations

$$
\mathfrak{\exists B b}, \mathbb{d} \mathfrak{c} .
$$ only; (2) those which are obtained by combining linear equations with geodetic equations, and (3) those which are formed from geodetic equations only. The number of decimal places adopted in the North-West Quadrilateral were for (1) 6 places and for (2) and (3) 8 places. In the South-East Quadrilateral they were for (1) 3 and 4 places, for (2) 7 places and for (3) 8 places. In the Southern Trigon and South-West Quadrilateral they were for (1) respectively 2 places and 1 , and for (2) and (3) 5 places. In the Southern Trigon (3) should doubtless have been retained to more places, owing to the number of cyphers preceding the significant figures.

As the co-efficients of the Indeterminate Factors are merely summations of $\mathbf{3 i b}$ and $\mathbb{C} \mathbb{C}$, the number of places in each co-efficient depends on the number of places in its components. In the North-West and South-East Quadrilaterals all the decimal places were made use of; but in the Southern Trigon

Co-efficients in the Equations between the Indeterminate Factors. ouly 4 places were kept : the introduction of equalizing factors before the solution of the equations did not affect the limit of 4 places, and the solution was carried out with a limit of 4 places. In the South-West Quadrilateral 5 places were employed before the introduction of the equalizing factors and 4 places afterwards.

The values of the Indeterminate Factors were in the North-West and South-East Quadrilaterals

## Indeterminate Factors.

 employed to 5 places, but in the Southern Trigon and South-West Quadrilateral to only 4 places.The angular errors, $y$ and $z$, were in both the North-West and South-East Quadrilaterals calculated to 5 places of decimals and afterwards contracted to 3 places. In the Southern Trigon and South-West Quadrilateral they were calculated to only 4 places and then reduced to 3 in the former and 2 in the latter.

## The Checks on the Calculations.

In the following table are exhibited the checks to which the calculations were subjected in the course of their execution. Column (l) shews the chains and parts of chains involved in each equation of condition; column (2) exhibits the errors in the chains or circuits; these form the absolute terms, both for the equations of condition and for the equations between the indeterminate factors. When the values of these factors were obtained they were multiplied by their co-efficients in the equations connecting them, and the terms being then summed gave the values in column (3). The differences between columns (2) and (3), which are given in column (4), thus shew the accuracy with which the equations between the indeterininate factors
have been solved. The factors being known, the values of $y$ and $z$ were next obtained to 4 places of decimals; and these being substituted in the equations of condition and the terms summed, there resulted the quantities in columu (5). Thus the differences between the values given in columns (2) and (5), which are exhibited in column (6), shew the accuracy with which the solution of the equations of condition has been performed. As only 2 places of decimals of seconds were to be retained for the angular errors, these had to be contracted; and when this had been done and the contracted values had been employed with opposite sigus to correct the calculations of the Triangles, Latitudes, Longitudes and Azimuths, the errors yet remaining in the chains or circuits are shewn in the last column.

| Column |  |  |  | (2) | (3) | (4) | (5) | (6) | (7) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. of Equation of Condition | Chains of Triangulation involved (see page 45) |  |  | Valugiofe |  |  |  |  |  |
|  |  |  |  |  |  |  | By Substitution of $y$ and $z$ |  |  |
|  |  |  |  | As <br> given in Equation of Condition | By <br> Substitution of the As | Residuals from Columns $(2)-(3)$ | As <br> computed to 4 decimals | Residuals <br> from <br> Columns <br> (2) $-(5)$ |  |
| 1 in 0 | $\boldsymbol{G}_{1}+G_{2} \ldots$ | - $\cdot$ |  | + 189*8 | +189.80 | $0 \cdot 00$ | +189.66 | +0.14 | $-0.5$ |
| 2 , 入 | Do. ... | -.. | ... | - 0.637 | - 0.6370 | $\cdot \cdot 0000$ | - 0.6368 | - •0002 | - .002 |
| 3 " L | Do. ... | ... | ... | - 0.571 | -0.5710 | -0000 | - 0.5701 | - -0009 | - $\cdot 005$ |
| 4 \% 4 | Do. .... | ... | ... | - 7.806 | - 7.8058 | -.0002 | - 7.7574 | - . 0486 | + .002 |
| 5 \% 0 | $H_{1}-\left(G_{1}+K_{1}\right)$ | ... | ... | - 212.5 | -212.49 | - - 01 | -211.58 | + . 08 | $+1$ |
| 6 " $\lambda$ | Do. | ... | ... | $+0.068$ | + 0.0681 | - $\cdot 0001$ | + 0.0620 | +.0060 | + .004 |
| 7 , $\boldsymbol{L}$ | Do. | ... | ... | $+0.407$ | + 0.4071 | - $\cdot 0001$ | $+0.4047$ | +.0023 | + .001 |
| 8 \# 4 | Do. | ... | ... | - 7-113 | - 7.1122 | -.0008 | - 7.1337 | + $\cdot 0207$ | - $\cdot 001$ |
| 9 \% 0 | $H_{1}+H_{2} \ldots$ | ... | ... | $+27.4$ | $+27.40$ | -00 | + 28.14 | - 77 | - 0 |
| 10 " $\lambda$ | Do. .. | ... | ... | - 0.435 | - 0.4349 | - •0001 | - 0.4357 | + $\cdot 0007$ | + $\cdot 002$ |
| 11 , L | Do. .. | ... | ... | $+0.065$ | + 0.0650 | -0000 | + 0.0679 | - $\cdot 0029$ | - .001 |
| 12,4 | Do. ... | ... | ... | - , 6.719 | - 6.7199 | + 0009 | - 6.7140 | - .0050 | - .002 |
| 13 "c | $I-\left(H_{1}+K_{2}\right)$ | ... | .. | - 185.9 | -185.91 | + - 01 | $-186 \cdot 23$ | + 33 | - •1 |
| 14 \# $\lambda$ | Do. | ... | .. | $+0.151$ | + 0.1509 | + $\cdot 0001$ | + 0.1531 | - $\cdot 0021$ | - 0002 |
| 15 , $L$ | Do. | ... | ... | - 0.013 | - 0.0131 | + $\cdot 0001$ | - 0.0147 | + $\cdot 0017$ | - -001 |
| 16 " 4 | Do. | ... | ... | + 2.957 | + 29587 | - $\cdot 0017$ | + 2.9858 | - $\cdot 0288$ | - . 005 |
| 17 \% 0 | $J_{1}-\left(I+K_{3}+\right.$ |  | ... | - 62.2 | - 62.20 | - 0 | -62.52 | + 32 | $+\cdot 1$ |
| 18 „ $\lambda$ | Do. | ... | ... | + 0.139 | $+0.1389$ | + - 0001 | + 0.1413 | - -0023 | + .001 |
| 19 , $L$ | Do. | ... | ... | - 0.072 | - 0.0720 | -0000 | - 0.0727 | + -0007 | - .003 |
| 20 , 4 | Do. | ... | ... | + 3.046 | + 3.0466 | -.0006 | + 3.0326 | + 0134 | + $\cdot 002$ |
| 21 \% $c$ | $J_{1}+L \quad \cdots$ | ... | ... | + 2571 | +257.10 | -00 | +257.14 | - 04 | - $\cdot 2$ |
| 22 , $\lambda$ | Do. .. | ... | ... | $+0.060$ | $+0.0600$ | -0000 | + 0.0601 | - -0001 | + .002 |
| $23 ; L$ | Do. | ... | ... | - 0.256 | - 0.2560 | -0000 | - 0.2556 | - -0004 | - .003 |
| 24,4 | Do. . . | ... |  | - 3.912 | - 3.9116 | - 0004 | - 3.9309 | + -0189 | - .002 |

Notr.-The units of this table are, in side the seventh place of logarithms and in latitude, longitude and azimuth a second of arc.

## KHANPISURA MERIDIONAL SERIES.

## KHANPISURA MERIDIONAL SERIES.

## INTRODUCTION.

The Khánpisura Meridional Series of the South-West Quadrilateral is the great chain of principal triangles that follows the meridian of $75 \frac{1}{2}^{\circ}$ from the parallel of $19^{\circ}$ to that of $24 \frac{1}{4}^{\circ}$. Its southern extremity is in the dominions of the Nizam, and it passes through Khándesh and Central India. It consists of one compound figure, two double and two single polygons, and four quadrilaterals, and extends over a meridional distance of $\mathbf{3 6 0}$ miles. Its name is derived from the station of Khanpisura of the Bombay Longitudinal Series.

The series lies between the side Búda (xxi)-Bálagara (xxiv) of the Karáchi Longitudinal Series and the side Chincholi (xxim)-Ágargaon (xxrv) of the Bombay Longitudinal Series. In the simultaneous reduction of the South-West Quadrilateral, it had therefore to be fitted in between a finally fixed side of the North-West Quadrilateral and another of the Southern Trigon : on the completion of this reduction it was found that the errors which had actually been dispersed between the two fixed terminals were as follows:-


Observations for the direct determination of azimuth have been taken at two stations of the Khánpisura Meridional Series, viz., Valvádi and Indrawán.

In 1845 when the North Konkan or Singi Series had been carried as far north as the parallel of $21^{\circ} 45^{\prime}$, it was found necessary to temporarily abandon it, as the health of the party had suffered so terribly in its execution. Lieutenant Harry Rivers of the Bombay Engineers, the Officer in charge, was accordingly directed in October, 1845, to start a new
series of triangulation from a side of the Bombay Longitudinal Series and carry it due north along the meridian of $75^{\circ}$.

The sides of the old Bombay Longitudinal Series that Rivers adopted as bases for

Season 1845-46.
Perbonnil.
Lieutenant H. Rivers, Bombay Engineers, 2nd Assistant G. T. Survey.
Mr. J. Fraser, Sub-Assistant 1st Class.
" T. Sanger, " $\quad$ J. DaCosta, $\quad$ 2nd"Class. the new chain were Párner-Khánpisura and KhánpisuraSautára*, and the first stations he selected were those of Ágargaon and Chincholi. By the end of December 1845 he had completed the triangulation up to the side Dhaigaon-Mathuri, and by the middle of January he had by means of two new single triangles reached YerúlJámkhed. On this latter side he constructed a pentagon round Pophla as a centre which advanced the triangulation as far north as Sátmála-Sirsala. He then proceeded to Surat to take some observations at stations of the Singi Meridional Series, which he had had to relinquish the previous year, and he was occupied with these till the close of the field season.

In the Introduction to the Singi Meridional Series an account is given of the great difficulties that Lieutenant Rivers encountered in the execution of that Series, and of his repeated failures to extend it through the Dáng jungles; he had in fact been unable to carry it north of the parallel $21^{\circ} 45^{\prime}$, and at this point it was now standing in abeyance.

In the summer of 1846 Rivers proposed to Sir Andrew Waugh to connect the Singi and Khánpisura Series in latitude $20^{\circ} 30^{\prime}$ by means of three single triangles, one on the side of the Khánpisura Series, Sirsála-Sátmála, one on the side of the Singi Series, Ankai-Sáler, and one between, and to convert the two present Meridional Series from this point northwards into one on the meridian of $74^{\circ} 45^{\prime}$ : this new series he explained would run through Khándesh and Malwa (Málwa), where there were a succession of hills, which they had not the benefit of in the plains of Gujarát, and which moreover did not extend sufficiently to the east to allow of being utilised for the Khanpisura Series: the atmosphere too would be more favorable for trigonometrical work, being higher and further from the haze of the coast. Sir Andrew Waugh, who still believed in the feasibility of extending the Singi Series, refused to sanction Rivers' proposal on the grounds that it was not in keeping with the system of the Indian triangulation, and directed that both Meridional Series should be kept distinct and unconnected. The party passed the recess season of 1846 at Poona.

On October 9th, 1846, Rivers began observing an astronomical azimuth at Khánpi-

Season 1846-47.
Personnil.
Lieutenant H. Rivers, Bombay Engineers, 2nd Assistant G. T. Survey.
Mr. J. Fraser, Sub-Assistant 1st Class.
" T. Sanger, " 2nd"Class.
sura, which was not completed till October 21st, owing to cloudy and boisterous weather. He then re-observed the angle at Párner between Khánpisura and Ãgargaon and also that at Khánpisura between Párner and Ágargaon, as they had been taken before on but three pairs of zerost. The next stations he visited were Sirsála and Sátmála,

[^17]which are situated on the northern edge of the Ajanta range of ghats and from which a clear view to the north can be obtained all the way to the Sátpuda range. From these stations, at each of which two angles remained to be observed, a further extension of the Khánpisura Series was commenced. After leaving Valvádi, where he had observed an astronomical azimuth, the country became very desolate; there were no villages and no roads, and dense jungle lay in every direction.

At Thíkri a letter arrived from Mr. Sanger, who was in charge of the approximate work, reporting that he had great difficulty in selecting a strong and suitable figure immediately to the north of the parallel of $22^{\circ}$, owing to the country in the Malwa Districts being a perfect plain. Leaving the theodolite and the greater part of his camp at Thíkri, Rivers pushed on in advance to help his assistant; after three weeks hard work he succeeded in laying down an excellent figure, the Mograba Hexagon, and returned to Thíkri to resume the observations of the principal angles. By the middle of April, 1847, he had carried the Khánpisura Series as far north as the side Harnása-Indrawán, and at the latter station had observed an astronomical azimuth. He arrived at Mhow (Mau) shortly before May 1st, where he established his recess quarters.

As Rivers' series was now approaching the parallel of Kalianpur and Sironj the

Socson 1847-48.
Pbesonitel.
Fieutenant H. Rivers, Bombay Engineers, 2nd Assistant G. T. Survey.
Mr. J. Fraser, Sub-Assistant 1st Class.
" T. Sanger, " $\#$ 2nd Class. selection of his stations became a matter of more than ordinary difficulty : preparations were already being made for extending the Great Longitudinal Series along this parallel westwards to Karáchi, but the exact latitude in which it would strike the Khánisura Meridian could not be foreseen. Rivers was told to so select his figures, between the parallels of $24^{\circ}$ and $25^{\circ}$, that any one of them if necessary should admit of being adopted in the new Longitudinal Series. On taking the field in October, 1847, Rivers himself commenced the approximate work, which he found a most difficult task : all his triangles had to admit of satisfactory extensions not only to the north, but also to the east and west, and as there were no commanding hills it was often necessary to make a minor triangulation simply to obtain the direction of the points already determined. Under these circumstances Rivers thought it his best plan to undertake himself the approximate work of the new Longitudinal Series and carry it on simultaneously with that of his own chain. He therefore decided to select the stations on the Khánpisura Meridian as far north as the parallel of $24^{\circ}$ and to then work along that parallel to Sironj. He had just completed the selection of the stations for the Aramlia Polygon, and was about to proceed to Sironj, when he received orders to carry the Khánpisura Series due north to Ajmere (Ajmer) and to leave the longitudinal connection with Sironj to be taken up by another officer. He carried the approximate work up to the parallel of $25^{\circ}$ and then commenced the final observations working southwards from the northernmost stations. The Great Longitudinal Series eventually struck the Series under review in the latitude of Aramlia, but Rivers' polygon around that station proved unsuitable and another had to be selected. The former, however, together with Rivers' work to the north of it, was included in the Aramlia (now the Gurhagarh) Meridional Series, whilst the
side connecting the stations of Bálagara and Búda, which was common to both was made the northern boundary of the Khánpisura Meridional Series. By the end of March, 1848, Rivers had carried the principal work southwards as far as the stations of Dhamnár and Sítamau, and in April he completed the observations at Lohári and Dudhála: at Nigrun, however, though he halted a week, he could not see the Deo Dongri signal, which had been easily visible in November. At Deo Dongri too he was unable to observe Nigrun. At Gurla he met with no better success, though, owing to the shortness of the rays, all the surrounding heliotropes were visible, and at Karsod the Indrawán station could not be made out though large fires were lighted at night, and though the signal had been seen by Mr. Sanger in October. Finding it thus impossible to complete the connection with the side HarnásaIndrawán of his former season's work, he closed the field season at Karsod on May 5th. He had dismantled and packed the instrument, and it was ready to be moved, when during the night one of the boxes was broken open and the telescope and vertical circle were carried off by thieves. They were found next morning in a ditch 300 yards from camp; they were both uninjured but the eye-piece was missing. Rivers arrived at Mhow where he had established his recess quarters on May 15th.

Rivers re-commenced operations the following winter: the first station visited was

Season 1848-49.
Perbonnile:
Lieutenant H. Rivers, Bombay Fingineers, 2nd Absistant G. I'. Survey.
Mr. J. Fraser, Sub-Assistant 1st Class.
"T. Sanger, " 2nd"Class. Indrawan which he reached on November 17th, and from thence he went to Karsod. By the end of the year 1848 he had completed the connection between the northern and southern sections, and the Principal Triangulation of the Khánpisura Meridional Series was finished. Rivers then proceeded towards Neemuch (Nimach) and took up the work of the Gurhágarh Series. The instrument employed by Lieutenant Rivers on the Khanpisura Series was the same 15 -inch Theodolite by Dollond that was used on the southern section of the Singi Series.

The Khánpisura Series as left by Rivers, though otherwise double throughout, was

Season 1862-63.

## Perbonnel.

Captain C. T. Haig, r.e., 1st Assistant.
Mr. DaCosta, Assistant.
" J. McGill, Civil 2nd Assistant.
" G. Anding, Sub-Assistant.
" J. E. Donohoe, 3rd Class Sub-Assistant. weakened near its southern extremity by the existence of two single triangles, viz., Mathuri, Dhaigaon, Jámkhed and Yerúl, Dhaigaon, Jámkhed. In November 1862, Captain Haig, R.E., who was in charge of the Bombay Party and who was about to undertake the Triangulation of the Mangalore Meridional Series, set out from Poona (Puna) with the object of strengthening the single portion of the Khánpisura Series. This object he obtained by the adoption of but one new station that of Áhirmal, which with Mathuri Jamkhed and Rajur gave two new triangles and thus completed a double polygon round Jámkhed and Pophla. Mathuri, the first station visited was reached on November 10th, 1862 and all the observations necessary at the four stations were completed on December 7th. The instrument he used was that known in the Survey Department as Barrow's 24-inch Theodolite No. 2.

In consequence of the great deficiency of observations on certain rays and of the weak character of the heights in general, the re-measurement of all the vertical angles of Rivers' section of the Khánpisura Series was found necessary. In 1882-83, Mr. A. Christie, Surveyor 4th grade, began this revision from the side Bálagara-Búda of the Karachi Longitudinal Series, and worked southwards as far as Jalálabad and Bábákuvar. In November 1883, Mr. H. E. T. Keelan, Surveyor 3rd grade, was directed to commence at the southern extremity of the Series, Ágargaon and Chincholi, and to work northwards so as to close on Mr. Christie's work of the previous year. Unfortunately at Ágargaon Mr. Keelan was attacked with severe inflammation of the right eye, which obliged him to return to Ahmednagar (Ahmadnagar) for medical aid; he was compelled to take privilege leave till January 15th, and consequently lost two months in the best part of the season. This interruption made it impossible to complete the revision of the heights in the field season of 1883-84, and Mr . Keelan had to resume work on it the following year, when the remeasurement of all the vertical angles was finished.

In 1868-69, Lieutenant W. J. Heaviside, r.e., visited the stations of Deo Dongri and Harnása, and in the following year those of Valvádi and Dhaigaon, and at each of the four observed an astronomical latitude.

## Secondary Triangulation.

On the southern part of the Khanpisura Meridional Series, as far north as the River Tápti, an unusually large number of secondary points were fixed by Rivers: the majority of these were intersected pagodas, forts and trees, but there were several secondary stations too, that were visited and observed at: the positions of the towns of Ahmednagar, Dhulia (Dhula) and Aurungabad were determined. The principal station of Ankai of the Singi Series was observed both from Sátmála and Yerúl.

Between the Tapti and Narbada there were no prominent pagodas to observe and no important towns to be fixed and consequently the secondary work was very scanty, consisting of only some ten intersected points in all.

Between the Narbada and the northern terminus of the Series the country was a desolate desert, and but few opportunities offered of executing secondary work: the town of Dhár was the only place of importance that the Series passed over. From the side HarnásaSingárchori a small secondary series was run to the eastwards, which fixed numerous points in the cities of Indore (Indor) and Mhow and which ended at the town of Dewas.

## S. a. BURRARD.

April, 1889.

## KHANPISURA MERIDIONAL SERIES.

PRINCIPAL TRIANGULATION. ALPHABETICAL LIST OF STATIONS.


8-6.

KHANPISURA MERIDIONAL SERIES.

PRINCIPAL TRIANGULATION. NUMERICAL LIST OF STATIONS.


# KHANPISURA MERIDIONAL SERIES. 

## PRINCIPAL TRIANGULATION. DESCRIPTION OF STATIONS.

The Principal Stations of this Series are all situated either on hills or rising ground, and those constructed under the direction of Lieutenant Rivers consisted in general of solid masonry pillars, with one or more marks, sunk in the ground and having their upper surfaces flush with the ground level. Above these pillars, solid structures of loose stone masonry, varying in height from 1 to 14 feet, were erected, with another mark laid loosely at the surface. The stations were all visited again during the field Seasons of 1882-85 for the purpose of revising the observations for height, which were originally very defective. In the course of this revision, which was made under the superintendence of the Officer in charge of the Tidal and Levelling Party, the stations were repaired, some reconstructed, and all protected by mounds of earth and boulders. In the years 1868 to 1870, solid, rectangular masonry pillars, bearing sufficiently accurate marks for Topographical and Revenue Survey purposes-as shewn at page 74 of Volume II of the Account of the Operations, ge., were built for the protection of the upper mark-stones at stations numbered XIV, XVII, XXIII and XXXIV.

The following descriptions have been compiled from those given by the Officers who executed the Series ; by Lieutenant Heaviside, who visited several of the stations during Seasons $1868-69$ and 1869-70; and by the Officer in charge of the Tidal and Levelling Operations, under whose superintendence the vertical angles of the whole Series were revised; supplemented as regards adjacent villages from the Topographical Survey Maps of the countiy traversed, and corrected, so far as the local sub-divisions in which the several stations are situated, from the latest Annual Reports furnished by the District Officers to whose charge the stations were committed.
XXI.-(Of the Karáchi Longitudinal Series). Búda Station, lat. $24^{\circ} 14^{\prime}$, long. $75^{\circ} 11^{\prime}$-observed at in 1848 and 1850 -is situated on a swell of ground about 50 yards $W$. of the cart road from Badpura to Búda, and about $7 \frac{3}{4}$ miles N.W. of the town of Nahhargarh. .The station is in the lands of the village of Búda, pargana Náráyangarh, Holkar's territory.

The atation as originally built in 1848 consisted of a square platform of loose stones, enclosing a central, solid pillar of masonry having a mark at the top and another 4.15 feet below engraved on the rock in situ. When visited in 1850, in the course of the Karáchi Longitudinal Series operations, the old pillar was removed and a new solid pillar of masonry was constructed, $5 \cdot 2$ feet in height, in which three mark-stones were placed in the normal of and at distances of $1 \cdot 23,2 \cdot 75$, and $5 \cdot 2$ feet respectively above the original mark on the rock. When again visited in 1882, the upper mark-stone was wanting which necessitated reference to the central mark of 1850 . The pillar was then rebuilt, 3 g feet in diameter, and another mark-stone placed in its upper surface at 2.58 feet above the central mark or 5.33 feet above the mark on the rock. The height of the pillar above the ground level is 4 feet. A stone and earth platform 16 feet square surrounds the pillar. The directions and distances of the circumjacent villages are :-Limbawás W.N.W., miles $1 \frac{1}{2}$; Bánskheri W. by S., míles $1 \frac{3}{4}$; Dhorwara S. by W., miles $1 \frac{1}{\frac{1}{2}}$; and Taláo Piplia S.E., miles $] \frac{1}{2}$.
XXIV.-(Of the Karachi Longitudinal Series). Bálágara (Balagarra) Hill Station, lat. 24 ${ }^{\circ}$ 10', long. $75^{\circ} 0^{\prime}$-observed at in 1848 and 1850 -is situated on the north-eastern of a group of small, isolated hills, about a mile N.E. of the village of Bálagara, and 3 miles W. of the high road from Neemuch to Indore. The hill, on which the station is, rises about 120 feet above the general level of the country, and is a mile in circumference at base. The station is in the lands of the village of Bálagara, pargana Mandsaur, Gwalior territory.

The station as originally built in 1848 consisted of a platform of loose stone masonry, having a mark-stone at the top and another $3 \cdot 19$ feet below engraved on the rock in situ. When visited in 1850 in the course of the Karachi Lougitudinal Series operations, it does not appear that any alteration in the construction of the station was made. In 1868-69, the mark on the rock was found and the platform, 3 feet in height, consisted of loose stone masonry. In the visit of 1882, the station was found unaltered and in good preservation; the surrounding platform being of stones and earth 18 feet square. The directions and distances of the circumjacent villages are:-Bai E., miles $1 \frac{3}{4}$; Dungloda S. by E., miles $1 \frac{1}{2}$; Narona N. by E., miles 2 ; Khera N.E., mile 1; and Kánkri N.W., miles 1 ? ${ }_{\text {a }}$.
I. Sítamau Hill Station, lat. $24^{\circ} 2^{\prime}$, long. $75^{\circ} 22^{\prime}$-observed at in 1848 -is situated $1 \frac{1}{2}$ miles N.W. of the town of Sítamau, near the centre of a small, flat-topped hill rising some 50 feet above the level of the country, and somewhat conspicuous as being the only wooded hill in the neighbourhood; it is about 20 feet higher than the ridges and spurs with which it is connected. The station is in the lands of the village of Murkhera, Sitamau State, Western Malwa Agency.

The station consisted of a platform of loose stone masonry and contained three marks, the upper two being 5.35 and 8.89 feet respectively above one engraved on the rock at the ground level. It was visited by Lieutenant Heaviside in 1868-69, who stated that "The pillar had apparently not been disturbed." When again visited in 1882, the station was found to consist of an isolated pillar of stone and earth 12.84 feet high, without a mark on its summit, surrounded by a platform of loose stones 18 feet square. A mark-stone was inserted and both the pillar and platform raised by 2.58 feet, making the entire height of the pillar 15.42 feet. The directions and estimated distances of the circumjacent villages are :-Suriakheri N., mile 1 ; Murkhera W. by $\mathbf{S}$., mile $\frac{3}{}$; Chikla E.N.E., miles $3 \frac{1}{2}$; and Sítamau (town) S.E., miles $1 \frac{1}{2}$.
II. Dhamnár Hill Station, lat. $23^{\circ} 53^{\prime}$, long. $75^{\circ} 12$-observed at in 1848 -is situated on the highest part of a low, flat-topped, isolated hill rising some 40 feet above the level of the surrounding country. The station is 616 feet N.E. of a high solitary tree, and 5 miles S.E. of the Railway Station of Dalauda : pargana Mandsaur, Gwalior territory.

The station consisted of a solid pillar of masonry which carried a mark at its surface level with the ground and another, fixed in the rock with mortar, 2 feet below. It was visited in season 1868-69 by Mr. J. Wood, who remarks "There is no platform built here, and the lower mark is $2 \frac{1}{2}$ feet below the surface of the ground." When again visited in 1882, the station was found to consist of a platform of earth and stones 1 foot high with a mark-stone in its upper surface. The directions and estimated distances of the circumjacent villages are :-Jámúnia E., miles $1 \frac{1}{2}$; Atunia' E.N.E., miles $1 \frac{1}{2}$; and Yusufkhera W., mile $\frac{3}{4}$.
III. Nigrun Station, lat. $23^{\circ} 46^{\prime}$, long. $75^{\circ} 27^{\prime}$-observed at in 1848 -is situated on the rising ground about $1 \frac{1}{2}$ miles S.E. of the village from which it is named, and $3 \frac{1}{2}$ miles $N$. of the town and post office of Tal: The station is in the lands of the village of Nigrun, pargana 'Iál, Jaora State, Western Malwa Agency.

The station consists of a solid pillar of masonry, about 5 feet in height, having marks at top and bottom $5 \cdot 15$ feet apart. The platform is built of loose stone masonry and carried to a height of $5 \cdot 27$ feet above the top of the solid pillar, the whole structure being $10 \cdot 27$ feet high. When visited in 1882, the platform and a mark-stone in its upper surface were found in good preservation: The directions and distances of the circumjacent villages are:-Pipalia N.E., miles 4; Naráni E.N.E., miles $5 \frac{1}{\frac{1}{2}}$; Baguuia E. by S., miles 34 ; and Kachalia S.E., miles 4.
IV. Dudhála Hill Station, lat. $23^{\circ} 51^{\prime}$, long. $75^{\circ} 49^{\prime}$-observed at in 1848 -is situated about 30 feet from the southern extremity of a laterite hill rising 100 feet above the level of the country. The top of the hill is flat, running off into wide spurs to N.W. and N.E. of the station, the southern face being rather precipitous. The town of Baraud lies $4 \frac{1}{2}$ miles to S . by E. of the station. The station is in the lands of the village of Dudhála, pargana Jhálra Pátan, Jhallawar State.

The station consists of a platform of loose stone masonry containing two marks, one at the surface $5 \cdot 23$ feet above the other. It was visited by Lientenant Heaviside in season 1868-69, who remarks "The pillar had apparently not been disturbed". When again visited in 1882, the station and its upper mark-stone were found in good preservation. The directions and distances of the circumjacent villages are:-Atipura N.E. by E., miles $1 \frac{1}{8}$; Kasankot $\mathbf{E} . S . \mathrm{E} .$, miles $1 \frac{1}{4}$; Khandwás S., mile 1; and Ratanpur W.S.W., mile $\mathbf{3}$.
V. Deo Dongri Hill Station, lat. $23^{\circ} 27^{\prime}$, long. $75^{\circ} 35^{\prime}$-observed at in 1848 -is at the junction of three walls on the southern side of the roof ( $11 \frac{3}{4}$ feet above ground) of the large temple on a low hill at the northern extremity of the village of Deo Dongri. Ihe village is near the centre of a small, isolated hill, about

800 feet in length at top, and rising about 70 feet above the general level of the surrounding country : pargana Unel, Gwalior territory.

The station consists of a solid pillar of masonry, about 2 feet high, containing a mark in the surface 2.92 feet above one imbedded in the masonry of the wall. The mark is 1.33 feet from the E. side and 1.25 feet from the S . side of the pillar. In March 1869 a protecting pillar of stone masonry, 2 feet square, was built over the mark-stone. When again visited in 1882, the station was found marked by a square pillar of stone masonry rising $2 \cdot 7$ feet above the stone roof of the temple. The azimuths and perambulated distances of the circumjacent villages are:-Mattra $326^{\circ}$, miles $1 \cdot 2$; Mo $356^{\circ}$, miles $1 \cdot 6$; Rattra $48^{\circ}$, mile 0.8 ; Medpur (the largest and most conspicuous temple) $250^{\circ}$, miles $7 \frac{1}{2}$ by estimation.
VI. Lohári Hill Station, lat. $23^{\circ} 35^{\prime}$, long. $75^{\circ} 8^{\prime}$-observed at in 1848 -is situated on a low, flattopped hill rising about 70 feet above the plain, appertaining to the villages of Lohári, Nagdi and Wairala. It lies about a mile E. of the railway line, and of the high road from Jaora to Rutlam. The station is in the lands of the village of Lohári, Jaora State, Western Malwa Agency.


#### Abstract

The station consisted of a platform of loose stones, about 6 feet in height, enclosing a central, solid pillar of masonry which had a mark in its surface and another $5 \cdot 21$ feet below. It was visited in 1869 by Lieutenant Heaviside, when no mark-stones were found and a heap of loose stones alone denoted the site of the station. When again visited in 1883, the station was found to consist of a platform of earth and stones $5 \frac{1}{2}$ feet high with a mark-stone in its upper surface, but as this proved too low for observations to Deo Dongri Station, the platform was raised with an isolated pillar of earth and stones in the centre to a height of $13 \cdot 4$ feet above the ground level. The estimated directions and distances of the following villages are:-Lohári N., miles $1 \frac{1}{2}$; Waraila S., mile 1; Sadakheri E.S.E., miles 2; and Nagdi E.N.E., miles $1 \frac{1}{2}$.


VII. Dhanora Hill Station, lat. $23^{\circ} 17^{\prime}$, long. $75^{\circ} 18^{\prime}$-observed at in 1848 -is situated on a table-land rising about 80 to 100 feet above the surrounding country, 1 mile N . of Laptia village, and 6 miles $\mathbf{E}$. of the Railway Station of Naugauvan. It is in the lands of the village of Dhanora, Sailana State, Western Malwa Agency.

The station consisted of a platform of loose stone masonry, 12 feet in height, which had a mark-stone at top and another at the ground level. When visited in 1883, no mark-stones were found, on removing the ceutral portion of the heap of stones an excavation, a few inches deep, like the foundation of a pillar, was met with at the ground level : in this a mark-stone was fixed and the platform rebuilt to a height of $9 \cdot 3$ feet, and over which an isolated pillar of earth and stones $1 \cdot 4$ feet high was built, carrying a mark-stone in its upper surface; but this height proving insufficient the pillar was raised by $7 \cdot 3$ feet during the same season. The estimated directions and distances of the following villages are:-Sandla S.W. by W., mile 1; Bamori N. by W., miles 2 ; and Kamer E., miles 2.
VIII. Gurla Hill Station, lat. $23^{\circ} 18^{\prime}$, long. $75^{\circ} 36^{\prime}$-observed at in 1848 -is situated on a northern spur of a low, flat-topped range of hills, which stretches in a S.S.E. direction from the station for some 4 or 5 miles, and is about 60 feet above the level of the country to the west. The station is in the lands of the village of Gurla, pargana Unel, Gwalior territory.

The station consists of a platform of loose stone masonry containing two marks, the upper $\mathbf{7} \cdot \mathbf{2 3}$ feet above the lower. It was visited by Lientenant Heaviside in season 1868-69, who stated that "The mark-stone was not uncovered, but the pillar was apparently undisturbed ". When again visited in 1883, the station was found to consist of a platform of earth and stones 6.7 feet above the ground level having a mark-stone in its upper surface. The directions and estimated distances of the circumjacent villages are:-Unel N. by E., miles 3; Gurla W., mile 1; Nawáda N.W., miles 34; and Norela S.S.E., miles 4.
IX. Karsod Hill Station, lat. $23^{\circ} 7^{\prime}$, long. $75^{\circ} 28^{\prime}$-observed at in 1848 and 1862 -is situated on a small hill about $5 \frac{1}{2}$ miles N.E. of the town and railway station of Barnagar. It is towards the $\mathbb{S}$. extremity of the hill, and 119 (ft.?) 8 (in. ?) S. of the southern wall of a temple. It is in the lands of the village of Chota Karsod, pargana Barnagar, Gwalior territory.

The station consists of a platform (most probably constructed in a manner similar to those at the adjacent stations) and contains two marks, the upper 4.27 feet above the lower. When visited in 1862, in the course of the Guzerat Longitudinal Series operations, the station was found to be about 5 feet in height. When again visited in 1883, the station was found in good order and to consist of a platform of earth and stones enclosing a perforated pillar of masonry 5 feet high with two mark-stones, one in its upper surface and the other below; an aperture on the S. side gives access to the lower mark-stone. The estimated directions and distances of the circumjacent villages are:-Rasulabad S., mile $\frac{3}{4}$; Chota Karsod N.E. by N., miles $1 \frac{1}{2}$; and Palwas N., miles 2 ${ }^{4}$.
X. Jalálkheri Hill Station, lat. $23^{\circ} 11^{\prime}$, long. $75^{\circ} 45^{\prime}$-observed at in 1848 -is situated on a detached hill about a mile S. of a table-land. The station is on the northern of two eminences rising 20 feet above the hill top, and some 100 feet above the level of the country and lies $3 \frac{1}{3}$ miles west of the railway station near the town of Ujjain : pargana and district Ujjain, Gwalior territory.

The station consists of a platform of loose stones about 10 feet square and 6 feet high, the central portion from 2 to 8 feet equare is of solid masonry in which three mark-stones are inserted, the two upper being 2.75 and 6.08 feet respectively above
one imbedded in the foundation, the second mark-stone is about the ground level. Ini 1869 Lieutenant Heaviside found the upper mark-stone in position. When visited in 1883, the station was found to consist of a platform of earth and stones 16 feet square and 3.8 feet high with a mark-stone in its upper surface. The directions and estimated distances of the circumjacent villages are :-Jalalkheri W.N.W., mile 1; Mendpura E.N.E., miles $1 \frac{1}{2}$; and Chaudukheri S.W. by S., miles $1 \frac{1}{2}$.
XI. Kaula-ka-Máta Hill Station, lat. $23^{\circ} 8^{\prime}$, long. $75^{\circ} 13^{\prime}$-observed at in 1848 -is on an isolated and symmetrically shaped hill rising about 500 feet above the plain. The station is at the N.E. corner of the flat roof of the porch and $\mathbf{E}$. of the spire of the large temple of Kaula-ka-Máta from which the hill derives its name. The station is in the lands of the village of Barmaval, Sailána State, Western Malwa Agency.

The station is denoted by two marks, the upper 0.75 of a foot above the lower. It was visited in 1869 , when "the mark was found in good preservation". When again visited in 1883, the station was found to consist of a square pillar of masonry 6 inches high with a mark-stone in its upper surface, the height of which above the top of the hill is $18 \frac{1}{\frac{1}{3}}$ feet. The directions and estimated distances of the circumjacent villages are:-Amleti N.E., mile 1; Barmaval W., miles 3; and Lochitara (on the high road to Mhow) E., miles 2.

Another principal station, about 20 yards $S$. of the temple, was established in 1862 in the course of the operations of the Guzerat Longitudinal Series, in which Series its full description will be found under the name of Station "I. Kaula-ka-Máta".
XII. Harnása Tower Station, lat. $22^{\circ} 47^{\prime}$, long. $75^{\circ} 36^{\prime}$-observed at in 1847 and 1848 -is situated on the highest part of the country, the watershed of the Gambhir and Chambal rivers, and 4 miles S. by $\mathbf{E}$. of the town of Depálpur on the road from Neemuch to Indore: pargana Depálpur, Holkar's territory.

The station as originally built in $18 \pm 6$ consisted of a solid pillar of masonry sunk to a depth of about 9 feet, having its upper surface flush with the ground level. It contained two marks, one at the surface about 9 feet above the other. Over the pillar a loose stone platform was constructed with a mark in its upper surface. The height of the platform above the top of the pillar appears to have been originally $7 \cdot 35$ feet ; but this not proving sufficient it was increased to $10 \cdot 31$ feet in April $18+7$. The station was revisited in 1869 by Mr. J. Wood, Assistant Surveyor, who removed the pile of stones and found a mark-stone about 3 feet below the ground level. He built up the pillar to the ground level and placed a mark-stone there. At this level astronomical observations for latitude were taken in 1869-70. Immediately afterwards a perforated masonry pillar was built over the mark-stone at the ground level and carried up to a height of 10.31 feet, the height of the station as given in the original description. The pillar is surrounded by a platform, and an arched passage runs nearly north and south through the platform and pillar giving access to the mark-stone. When again visited in 1883, the upper 4 feet of the pillar was found pulled down, it was rebuilt to a height of $10 \cdot 2$ feet above the ground level mark. Ihe directions and distances of the circumjacent villages are:-Jaloda N.E. by N., miles 1 $\frac{3}{3}$; Harnása S. by E., mile $\frac{2}{3}$; Suklundi S. by W., miles $1 \frac{1}{3}$; Básoda W. by N., mile $\frac{8}{4}$; and Girora N. by W., miles 2.
XIII. Indráwan Tower Station, lat. $22^{\circ} 49^{\prime}$, long. $75^{\circ} 13^{\prime}$-observed at in 1847, 1848 and 1862 -is situated on rising ground, about 1 mile N.W. of the village from which the station obtains its name, and 8 miles N.N.E. of Desi. The station is in the lands of the village of Barawal, pargana Badnáwar, Dhár State, Bhopáwar Agency.

The station as originally built in A pril $18+7$ consisted of a solid pillar of masonry sunk to a depth of 6.3 feet, containing two marks, the upper in the surface of the pillar being at the ground level; over this a platform of loose stones, $\mathbf{7} \cdot \mathbf{4 6}$ feet in height, with a mark at the top was constructed. In November 1848 an addition of $2 \cdot 17$ feet was made to the height of the platform. It was again visited in February 1862 in the course of the operations of the Guzerat Longitudinal Series: in the records of that Series it is simply stated that it is built 4.75 feet high. In 1869 the loose stone platform was removed, and over the original mark at the ground level, a perforated and isolated pillar of masonry $7 \cdot 46$ feet in height and $3 \frac{1}{2}$ feet in diameter was built with a mark-stone in its upper surface, and surrounded by a platform of earth and stones of the same height as the pillar. An arched passage from 15. to W. gives access to the ground level mark. It thus appears that the station as last constructed is $2 \cdot 17$ feet lower than that of November 1848. When again visited in 1883, the pillar and its upper mark-stone were found in good order. The directions and distances of the circumjacent villages are:-Borjhiri W., mile 1; Burwai E., miles 24; and Gundikheri S.E., miles $1 \frac{1}{4}$.
XIV. Mograba Hill Station, lat. $22^{\circ} \stackrel{3}{ }{ }^{\prime}$, long. $75^{\circ} 22^{\prime}$-observed at in 1847 -is situated on the summit of the highest, flat-topped hill $5 \frac{1}{2}$ miles to N.W. of the old, ruined city of Mándo or Mándogarh: the small Bheel village of Mograba lies to the N.E. at about $\frac{3}{4}$ of a mile in direct distance from the station : pargana Nálchha, Dhár State, Bhopáwar Agency.

The station consists of a platform having its upper surface flush with the ground, which contains two marks, the lower, on a large stone set in the muram (a kind of gravel), is $0 \cdot 40$ of a foot below the one in the surface of the platform. It was visited in 1869, when the upper mark-stone was fourd firmly imbedded. When again visited in 1883, the station was found in good order and covered over by a protecting masonry pillar 3 feet, 8 inches high, but as the upper diameter was too gmall to admit of the theodolite, the upper 6 inches of the pillar were removed. The directions and estimated distances of the circumjacent villages are :-Talwára N. by E., miles 8; Múrkhál S., miles 2 $\frac{1}{2}$; and Mandauda S.S.W., miles 3.
XV. Singarchori Hill Station, lat. $22^{\circ} 25^{\prime}$, long. $75^{\circ} 43^{\prime}$-observed at in 1847 -is situated on the highest part of a range of hills so called, lying about $3 \frac{1}{2}$ miles E.S.E. of the village of Mánpur on the high road from

Bombay to Agra, and $11 \frac{8}{4}$ miles S.S.W. of the cantonment of Mhow. The hill is about 1000 feet in height: Mánpur State, Bhopáwar Agency.

The station was denoted by two marks, the upper 1.79 feet above the lower. When visited in 1883, a masonry pillar 2 feet in diameter and 3 feet above ground level surrounded by earthwork about 2 feet high was found; there being no mark-stone on the pillar its upper portion was removed and a mark-stone embedded in its centre 1.75 feet above the ground level. The directions and estimated distances of the following villages are:-Bargaon N.W. by N., miles $1 \frac{1}{2}$; Mograpura E.S.E., miles $1 \frac{1}{2}$; and Nayapura E. by N., miles $1 \frac{1}{2}$.
XVI. Gumánpur Tower Station, lat. $22^{\circ} 35^{\prime}$, long. $74^{\circ} 55^{\prime}$-observed at in 1847 -is situated on rising ground about $\frac{8}{4}$ of a mile S . of the village of that name and about 200 yards N . of the edge of the Ghát, and $5 \frac{1}{2}$ miles N. by E. of the large village of Tanda. It is in the lands of the village of Gumánpur, Amjhera State, Bhopáwar Agency.

The station of 1847 consisted of a loose stone platform with a mark-stone at top $\mathbf{7 . 4 8}$ feet above one let into masonry at the ground level. In 1869 the platform was removed and a perforated and isolated pillar of masonry, $7 \cdot 48$ feet in height, built above the original mark at the ground level, and surrounded by a platform of stones : a passage from $N$. to $S$. gives access to the ground level mark. When again visited in 1883, the station was found to consist of a pillar of masonry 5.3 feet high and 3 feet in diameter with a mark-stone in its upper surface, and surrounded by a platform of loose stones. The directions and distances of the circumjacent villages are:-Ratanpura N.E. by N., miles 2; Ringuod E.N.E., miles 4; Nawapura E. by S., miles $1 \frac{1}{2}$; and Urai W.N.W., mile 4 .
XVII. Thíkri Hill Station, lat. $22^{\circ} 1^{\prime}$, long. $75^{\circ} 27^{\prime}$-observed at in 1847 -is situated on a knoll, 40 yards long, 20 yards wide, and 20 feet high, at the $S$. extremity of a talle-land which rises about 300 feet above the general level of the surrounding country. It is about $3 \frac{1}{3}$ miles S. by E. of the Police Station of Thíkri on the high road from Bombay to Agra: pargana Dharampuri, Dhár State, Bhopáwar Agency.

The station consists of a platform of loose stones enclosing a solid circular pillar of masonry which contains two marks, one at the surface $1 \cdot 25$ feet above the other which is engraved on the rock. When visited in 1869, the upper mark-stone was found firmly fixed; it was again visited in 1883, when the station was found protected by a rectangular capping pillar $3 \frac{1}{g}$ feet high built over the circular pillar level with the surface of the knoll. The directions and distances of the circumjacent villages are :-Rarkot $\mathbf{S}$. by E.,-mile 1; Rupkhera S.W. by W., miles $1 \frac{1}{\frac{1}{3}}$; Khurrampur (on the high road) W., miles $4 \frac{1}{\frac{1}{3}}$; and Nader N.N.E., miles 2.
XVIII. Báwangaz Hill Station, lat. $21^{\circ} 59^{\prime}$, long. $74^{\circ} 54^{\prime}$-observed at in 1847 -is on the terraced roof of a temple which is built of fine slabs of granite, on the highest part-a peak-of a remarkable hill called Báwangaz, about 5 miles $S$. of the Nerbudda river. The temple is dedicated to a god whose colossal figure is cut on the rock in bold relief, about 600 feet below, on the southern face or scarp of the hill. The station is almost in the centre of the flat portion of the roof $\mathbf{E}$. of the dome, 13.42 feet from the nearest part of the circumference of the dome, 11.42 feet from the outside of the N . Wall, and 12.75 feet from the outside of the S. wall; the roof of the temple is 10 feet above the ground. The station is in the lands of the village of Barwanj, Barwáni State, Bhopáwar Agency.

The station consists of a solid circular pillar of masonry which contains two marks, the upper 0.44 of a foot above the one engraved on a slab of granite of the roof. When visited in 1869 and 1883 the station and its upper mark-stone were found in good preservation. The directions and distances of the circumjacent places are: -Barwáni town N.E., miles 44; Chilkalda town N. hy E., miles 7 ; Bhomia village N., miles $2 \frac{1}{2}$; Mangarpati and Kachkor (ou the Goi stream) W.N.W., miles $3 \frac{1}{1}$; and Wadgaon E.N.E., miles 4.
XIX. Jalálabad Hill Station, lat. $21^{\circ} 41^{\prime}$, long. $75^{\circ} 27^{\prime}$-observed at in 1847 -is situated on the highest peak of the same range of hills as that on which the old, ruined fort of Bijagarh stands and from which it lies $\mathbf{3}_{\frac{1}{3}}$ miles in a direction E. by S. The station is in the lands of the village of Náráyangarh, pargana Khargon, Holkar's territory.

The station consists of a platform of loose stone masonry containing two marks, one at the surface and the other 0.44 of a foot below. It was visited by Lieutenant Heaviside in 1869, when the upper mark-stone was found in position, and about $2 \frac{1}{\frac{1}{2}}$ feet above the ground level. In 1883 and 1884, the station was found in good preservation and the upper mark-stone in position. The directions and distances of the circumjacent villages are :-Sangvi N.N.W., miles 4; Bhadwali N., miles 44 ; Sirwil Chauki (police station) and temple S.E. by S., miles $4 \frac{1}{4}$; and Dhaura S.W. by S., miles $2 \frac{1}{2}$.
XX. Bábákuvar (Bábákuvoar) Hill Station, lat. $21^{\circ} 36^{\prime}$, long. $74^{\circ}{ }^{5} 7^{\prime}$-observed at in 1847 -is situated on the main ridge of the Sátpura hills, about $9 \frac{1}{2}$ miles N.W. by W. of the Dak Bungalow at Palásner on the high road from Bombay to Agra, and 550 feet E. of an idol at the W. extremity of the hill. The station is in the lands of the village of Boradi, taluka Shirpur, district Khándesh.

The station consists of a platform of loose stone masonry containing two marks, one at the surface and the other 1.67 feet
below. When visited in 1883 and 1884, the station was found in good preservation and the upper mark-stone in position. The height of the platform is about 1 foot from the ground level. The directions and distances of the circumjacent villages are :Chaparkhera N.E., miles $4 \frac{1}{2}$; Rajmali E., miles $4 \frac{1}{2}$; Vakvar S.E. by E., miles 5 ; and Khera S.E. by S., miles $6 \frac{1}{2}$.
XXI. Árgaon Hill Station, lat. $21^{\circ} 18^{\prime}$, long. $75^{\circ} 34^{\prime}$-observed at in 1847 -is situated on a high peak of the Satpuda range, rising some 2500 feet above the plains of Khandesh. The peak which is known by the name of Mondhiámal, is about $1 \frac{8}{4}$ miles W. of the ruins of Gauligarh, and $5 \frac{1}{2}$ miles N.N.W. of Argaon village. A small conical peak is 50 yards to S.E. The station is in the lands of the village of Bhadgaon, taluka Chopda, district Khándesh.

The station consists of a platform of loose stone masonry containing two marks, one at the surface and the other 0.81 of a foot below engraved on the rock. In 1869 Lieutenant Heaviside found the upper mark-stone in position and nearly on the same level as the highest part of the peak. When again visited in 1884, the upper mark-stone and platform were found in good preservation. The azimuths and estimated distances of the circumjacent villages are:-Dhánora $4^{\circ}$, miles $6 \frac{6}{4}$; Adavad $42^{\circ}$, miles 8; Birgaon $6^{\circ}$, miles 6 ; and Mahorad $356^{\circ}$, miles $4 \frac{1}{2}$.
XXII. Ajnád Hill Station, lat. $21^{\circ} 19^{\prime}$ long. $75^{\circ} 5^{\prime}$-observed at in 1847 -is situated on a long, high ridge running nearly in a direction W.N.W. and E.S.E. and parallel to road to south from Shirpur to Tanda on the Aner river, about 2 miles $N$. of Ajnád village. The station is in the lands of the village of Ajnad, taluka Shirpur, district Khándesh.

The station consists of a platform of loose stone masonry containing two marks, one at the surface and the other 0.67 of a foot below engraved on the rock. When visited in 1884, the upper mark-stone aud platform were found in good preservation. The azimuths and distances of the circumjacent villages are :-Bábla $340^{\circ}$, miles $2 \frac{1}{2}$; Tárli $321^{\circ}$, miles $3 \frac{1}{3}$; and Bhátpur $28^{\circ}$, miles 8.
XXIII. Valvádi (Walvarri) Hill Station, lat. $20^{\circ} 44^{\prime}$, long. $75^{\circ} 14^{\prime}$-observed at in 1846-is situated near the N.W. extremity of a group or range of low hills about 90 feet in height. The station is about 20 yards from the $W$. edge of a flat, rocky hill, whose summit is 150 yards long and 30 yards wide. The station is in the lands of the village of Valvádi, taluka Páchora, district Khándesh.

The station consisted of a platform of loose stone masonry having a mark at its surface and another 2.00 feet below it engraved on the rock in sitt. A heap of stones, apparently the station platform of some former survey, was found here: the centre of this heap was made the site. It was visited in 1870 by Lieutenant Heaviside, when the upper mark -stone was not found, the platform was partly dug up and a solid circular pillar of masoury was built up from the level of the lower mark to a height of 2 feet and a mark-stone iuserted in its upper surface. When again visited in 1884, the station was found protected by a rectangular pillar 2.8 feet high built over the circular masonry pillar. The directions and estimated distances of the circumjacent villages are :-Mándla S.W. by S., miles 4; Títi W. by N., miles $2 \frac{1}{2}$; Chorvár N., miles 2; and Valvádi S.E. by S., miles $1 \frac{1}{2}$.
XXIV. Dhanvar (Dhanwar) Hill Station, lat. $20^{\circ} 53^{\prime}$, long. $75^{\circ} 38^{\prime}$-observed at in 1846 -is on the southern of a group of low, flat-topped hills which rises some 70 feet above the low range from which it springs, and is some 200 feet above the level of the country. The top of the hill is pear shaped, the station being about 20 yards from the narrow end and 60 yards from the broader. The station is in the lands of the village of DhanVár, taluka Jalgaon, district Khándesh.

The station consists of a platform having the usual mark at its surface and another 0.98 of a foot below. In 1869 the upper mark-stone was in position and about 2 feet above the hill top. When visited in 1884, the upper mark-stone was found in the centre and upper surface of a platform 2 feet high. The azimuths and estimated distances of the circumjacent viliages are :Dhánora $186^{\circ}$, miles 2 ; Karmar $300^{\circ}$, miles 2 ; Dehori $240^{\circ}$ miles $1 \frac{1}{2}$; and Paláskhera $350^{\circ}$, miles 4.
XXV. Anakvádi (Anakwarri) Hill Station (locally known as Silla Dongar) lat. $20^{\circ} 47^{\prime}$, long. $74^{\circ} 44^{\prime}$ observed at in 1846 and 1847 -is on the summit of a conical hill about 1000 feet above the plain and some 700 feet above the lower range from which it rises with precipitous sides. The station mark is 20 feet S.E. of a small heap of stones forming a shrine: it is in the lands of Anakvádi village, taluka Dhulia, district Khándesh.

The station consists of a platform having two marks, one in its upper surface and the other 2.5 feet below it. It was visited by Lieutenant Heaviside in season 1868-69, who stated that "A mark-stone is in position and on a level with the surface of the ground." When again visited in 1884, the upper mark-stone was found protruding 6 inches above the surface of the three large stones on which the theodolite stand rested; this upper mark is $3 \cdot 2$ feet above and in the normal of the lower one engraved on the rock in situ. The directions and estimated distances of the circumjacent villages are :-Anakvadi $S$. by W., miles $1 \frac{1}{2}$; Sargaon N.W. by W., miles 3; Dhulia N.E. by N., miles 10; Laling (fort) E.N.E., miles 4; and Arvi (Dak Bangalow) S.S.E., miles $2 \frac{1}{2}$.
XXVI. Sirsála Hill Station, also called Shekh Máru Pír, lat. $20^{\circ} 30^{\prime}$, long. $75^{\circ} 34^{\prime}$-observed at in 1846 is on a hill about 200 feet high close to the N. edge of the table-land which rises gradually from the Godávari
river and here terminates in a northerly direction by a descent of some 1200 feet into the plains of Khándesh. About $1 \frac{1}{8}$ miles $W$. of the station and built in a gorge above a precipice of the table-land, is an uninhabited fort which contains a temple dedicated to Mahádev. The station is in the lands of the village of Sirsala, taluka Nánded, district Aurangabad.

The station consists of a platform of stones having a mark at its surface and another 0.83 of a foot below engraved on the rock in sita. In 1869 Lientenant Heaviside found the upper mark-stone in position and about 2 feet above the hill top. When again visited in 1884, the platform and lower mark were found in good preservation, the upper mark-stone was replaced (having been picked up from the hill side) at 0.83 of a foot above and in the normal of the lower mark. The azimuths and estimated distances of the circumjacent villages are:-Kelgaon $37^{\circ}$, miles $2 \frac{1}{\frac{1}{2}}$; Borkhera $173^{\circ}$, miles 3; Sirsala $313^{\circ}$, miles 14 ; Shekhpur $345^{\circ}$, miles 3; and Pipalgaon $354^{\circ}$, miles 3.
XXVII. Sátmála Hill Station, lat. $20^{\circ} 20^{\prime}$, long. $75^{\circ} 10^{\prime}$-observed at in 1846 -is on a hill so called, about 2 miles W. of a chauki (police station) on the Ganthala Ghát, and 5 miles N. of the taluk town of Kanad. The line of Gháts extends about 15 miles further west, and its descent to the plains to north is considerable. The station is in the lands of the village of Ganthála, taluka Kanad, district Aurangabad.

The station originally consisted of a platform about 5 feet high, having a mark-stone at its surface and another 5.00 feet below. In season 1846-47, the platform was raised 404 feet. When visited in 1884, the platform was found 9 feet high, built of loose boulders, having a mark-stone on its summit not firmly fixed, as the structure was too shaky for observation the upper portion was removed till the mark-stone said to be 5 feet above the ground level was disclosed wedged in between three large stones used for the theodolite stand to rest on. As this part was firm and adapted for observations, the platform was built up to the level of this mark. No masonry pillar appears to have been built here, nor could one be erected now as both water and labour were difficult to oltain. The azimuths and estimated distances of the following places are:-Bamni $345^{\circ}$, miles $5 \frac{1}{2}$; and Hevadgaon $350^{\circ}$, miles $4 \frac{1}{2}$.
XXVIII. Pophla Hill Station, lat. $20^{\circ} 2^{\prime}$, long. $75^{\circ} 31^{\prime}$-observed at in 1846 -is on the highest part of a hill, $1 \frac{1}{2}$ miles N. E. of that village, a vádi (garden) of which is close below the station. It is 7.25 feet $\left(20^{\circ} \mathrm{N}\right.$. of W .) from the centre of a tomb. The station is in the lands of the village of Pophla, taluka Phúlamri, district Aurangabad.

The station consisted of a platform having a mark-stone at its surface and another 1.08 feet below. When visited in 1884, no mark stones were found, the platform, with an excavation in the centre, remained to mark the site of the station. A mark-stone was built into the centre of the platform- $7 \cdot 25$ feet from, $20^{\circ} \mathrm{N}$. of W . of the centre of the tomb (above mentioned), and on a level with the upper surface of the platform which is $1 \cdots 25$ feet above the surface of the hill. The azimuths and estimated distances of the following villages are:-Kámkhera $3^{\circ}$, miles 3 ; Modhai $56^{\circ}$, miles 2; Chincholi $91^{\circ}$, miles $1 \frac{1}{\mathbf{z}}$; Bámangaon 212 ${ }^{\circ}$, miles 2; and Vaghul $266^{\circ}$, miles 2.
XXIX. Rajur Hill Station, lat. $20^{\circ} 4^{\prime}$, long. $75^{\circ} 54^{\prime}$-observed at in 1846 and 1862 -is on a small conical hill about 200 yards $W$. of the village, and N. W. of a large temple, about 50 feet high, built of most elaborately carved stone, having two tiers of pillars above its base which is $13 \frac{1}{2}$ feet high. The horizontal distance of the station to the N. W. pillar of the first tier is 68.8 feet, and that to the N . W. corner of the base, $\boldsymbol{6} 6$ feet. The station is in the lands of the village of Rajur, taluka Jaffrabad, district Aurangabad.

The station first consisted of a platform 14 feet high with two mark-stones, a large one, about 3 feet square and 2 feet thick, at the top and another 13.75 feet below about the ground level. It was visited in 1862 and then rebuilt to a height of about 20 feet. When again visited in 1884, the surrounding platform was found to have fallen away leaving the upper 12 feet of the circular masonry pillar exposed, this was rebuilt with stones. The upper mark-stone was in position, $20 \cdot 25$ feet above and in the normal of the mark at the ground level. The azimuths and estimated distances of the following villages are :-Chanaigaon $32^{\circ}$, miles 2; Taplichandai $112^{\circ}$, miles $1 \frac{1}{2}$; Kamkhera $212^{\circ}$, miles $1 \frac{1}{2}$; Lon $283^{\circ}$, miles 2; and 'Tapon $327^{\circ}$, miles $1 \frac{1}{2}$.
XXX. Yerúl Hill Station, lat. $19^{\circ} 59^{\prime}$, long. $75^{\circ} 12^{\prime}$-observed at in 1846 -is on the high table-land, about $2 \frac{1}{2}$ miles S . of the celebrated cave temples. The station is 418 feet W. of a conspicuous Bar tree, 1949 feet E.N.E. of an old station of the Bombay Trigonometrical Survey, and 60 feet from the southern and 525 feet from the northern edge of the hill. It is in the lands of the village of Súribhanjan, taluka Rŏza, district Aurangabad.

The station consisted of a platform with two mark-stones, one at the ground level and the other $2 \cdot 13$ feet below. In 1870 the upper mark-stone was not found, but the lower one was probably in position. A pile of stones about 3 feet in height was then erected over the platform. When again visited in 1884, no mark-stones were found and only a heap of boulders marking the site of the platform. The platform was rebuilt to a height of 1 foot, takitg the centre of the heap of boulders as a guide and a mark was placed in the centre and on a level with its upper surface. The position of this mark was tested by observing the horizontal angles between the four adjacent stations with a 14 -inch theodolite which showed no appreciable difference with the angles measured in 1816. The estimated directions and distances of the following places are :-Daulatabad (minaret) S.E., miles 4 ${ }_{4}$; Chumar Tekri (centre of hill fort) S.E. by S., miles 8 or 9; aud Daulatabad (Rǒza, mausoleum) N.E:; miles 34.
XXXI. Jámkhed Hill Station, lat. $19^{\circ} 41^{\prime}$, long. $75^{\circ} 42^{\prime}$-observed at in 1845,1846 and 1862 -is situated on a square, flat-topped knoll rising about 20 feet above the surface of the irregular plateau like range trending east and west and terminating about 150 feet to the east of the station in an abrupt fall to the plain below, and lies about 2 miles N . of the town of Jamkhed. The station is in the lands of the village of Rhailgarh, taluka Ambad, district Aurangabad.

The station of 1846 consisted of a platform containing two mark-stones, the lower 1.63 feet below the one at the surface of the ground. When visited in 1862, the mark at the ground level of the old station was found and over this a circular perforated and isolated pillar of masonry $3 \frac{1}{3}$ feet in diameter was built, carrying a mark in its upper surface 3.00 feet above the one at the ground level, access to which was obtained by a passage constructed for the purpose. When again visited in 1884, the circular masonry pillar and the rectangular aperture for plumbing over the mark at the ground level were found in good preservation, but no upper mark. The height of the upper surface of the pillar above the one at the ground level is 3 feet. The azimuths and estimated distances of the following villages are:-Jámkhed $4^{\circ}$, miles $2 \frac{1}{\frac{1}{2}}$; Rhailgarh $180^{\circ}$, miles 2; Kingaon $271^{\circ}$, miles 2; and Vitalvádi $336^{\circ}$, miles $1 \frac{1}{2}$.
XXXII. Áhirmal Hill Station, lat. $19^{\circ} 33^{\prime}$, long. $76^{\circ} 7^{\prime}$-observed at in 1862 -is situated on an isolated hill of that name, about $1 \frac{1}{2}$ miles N.E. by N. of the village of Dhákephal. The platform of the station is built contiguous to a Muhammadan mosque. 1 t is in the lands of the village of Dhákephal, taluka Ambad, district Aurangabad.

The station consists of a platform of loose rubble, enclosing a central, isolated and perforated pillar of masonry 5 feet in height. Access to the lower mark is obtained through a passage specially constructed for the purpose. When visited in 1884, the circular masonry pillar and the mark in its upper surface were found in good preservation. The azimuths and estimated distances of the circumjacent villages are:-Dhárgaon $5^{\circ}$, miles $3 \frac{1}{2}$; Hadgaon $115^{\circ}$, miles $1 \frac{1}{2}$; Jaula $169^{\circ}$, mile 1 ; and Jhirgaon $260^{\circ}$, miles $2 \frac{1}{2}$.
XXXIII. Mathuri Hill Station, lat: $19^{\circ} 11^{\prime}$, long. $75^{\circ} 32^{\prime}$-observed at in 1845 and 1862 -is on the $\mathrm{N}: \mathbf{W}$. corner of the temple built on the conical hill $1 \frac{1}{2}$ miles E . of Mathuri village, over the junction of the walls of the smaller shrine : it is in the lands of the village of Mathuri, taluka Bid, Nizam's territory.

The station of $18+5$ contained two marks, the one imbedded in the stone masonry of the wall 1.38 feet below the upper which was fixed at the level of the roof which is 10 feet above the ground. When visited in 1862 , the mark on a level with roof of the temple was found in position, over which a solid, circular pillar of masonry was built carrying a mark in its upper surface $1 \cdot 17$ feet above the one level with the roof. When again visited in 1884 , the upper portion of the circular masonry pillar was found broken and the upper mark-stone removed; but the mark of 1845 on a level with the roof of the temple was found in position. The pillar was rebuilt to a height of $1 \cdot 17$ feet above the roof of the temple, carrying a mark in its upper surface. The directions and distances of the circumjacent villages are :-Bhorgaon S. by W., miles 2 $\frac{\pi}{3}$; Hukarda S.W., miles 4t; Mirsangvi W.S.W., miles $4 \frac{1}{2}$; Titurvani E. by S., miles $1 \frac{1}{2}$; and Malegaon W. by N., miles 3 g .
XXXIV. Dhaigaon Station, lat. $19^{\circ} 31^{\prime}$, long. $75^{\circ} 15^{\prime}$-observed at in 1845 -is situated on the high ground, about $1 \frac{1}{3}$ miles $\mathbb{S}$. of the Vagji stream which joins the Godávari river at $2 \frac{1}{4}$ miles to N.E. of the station. It is in the lands of the village of Dhaigaon, taluka Nevása, district Ahmednagar.
"The soil was excavated to a depth of about 4.75 feet and $2 \frac{1}{2}$ feet below the muram (a kind of gravel), a large stone, about 4 feet long and 1 foot square, with the usual mark on its upper surface, was imbedded in the muram. From the surface of the muram a pillar of stone masonry about 4 feet in diameter has been built up and raised about 2 feet above the ground. A platform of loose stones has been built around the pillar and a stone with the usual mark placed at its surface at the height of 204 (?) above the mark on the large stone". When visited in 1884; the pillar and the mark were found in good preservation. The azimaths and perambulated distances of the following are :-Dhaigaon (large pipal tree S. of village) $76^{\circ}$, miles $1 \cdot 95$; Gheori (temple) $306^{\circ}$, miles 2.06 ; and Devlána (temple on right bank of the Godávari) $219^{\circ}$ miles 2.29.
XXIII. (Of the Bombay Longitudinal Series). Chincholi Hill Station, lat. $18^{\circ} 55^{\prime}$, long. $75^{\circ} 19^{\prime}$ observed at in $18+5$-is situated on a short narrow ridge about 300 feet long trending east and west nearly, and 30 feet higher than the level of the surrounding plateau. The station is on the western end of the ridge while a large bar tree marks the eastern extremity. The large village of Ashti on the high road from Ahmednagar to Jámkhed lies about 10 miles to S.W. by S. and that of Ámalner 4 miles to E. by N. of the station. It is in the lands of the village of Chincholi, taluka Ashti, Nizam's territory.

## The station consists of a solid platform and contains two marks, the one at its surface is 0.83 of a foot above one fixed

 in 1834. When visited in 1884 , the station was found to consist of a circular masonry pillar $2 \cdot 8$ feet in diameter at top with a markstone embedded flush with its upper surface : the pillar is surrounded by a large irregular shaped platform of loose boulders from which it is not isolated. Judging from the appearance the pillar does not appear to be very ancient. The height of the upper mark above the ground level is 10.6 feet. The azimuths and distances of the circumjacent villages are :-Chikhli $13^{\circ}$, miles 2 ; Chincholi $34^{\circ}$, mile $\underset{4}{3}$; and Gangarvádi $67^{\circ}$, miles 2 ${ }_{4}$.XXIV. (Of the Bombay Longitudinal Series). Ágargaon Hill Station, lat. $19^{\circ} 11^{\prime}$, long. $74^{\circ} 55^{\prime}$ observed at in 1845-is situated on a low part of an extensive and irregularly shaped table-land, about 1 mile N. of that village, and $6 \frac{1}{2}$ miles $\mathbf{E}$. by N. of Shendi which is $\frac{1}{8}$ a mile E. of the high road from Ahmednagar to Aurangabad. It is in the lands of the village of Ágargaon, taluka Nagar, district Ahmednagar.

The station as originally built consisted of a platform of loose stone masonry and contained three mark-stones, one at the ground level and the other two $7 \cdot 13$ and $13 \cdot 54$ feet respectively above it. When visited in 1882 , the station was found to consist of a mound of loose boulders about 10 feet high and 30 feet in diameter, having a post-erected by a Survey Party about 2 or 3 years ago-rising $3 \frac{1}{\ddagger}$ feet above it, the mound was raised $16 \cdot 43$ feet above a bench-mark on the ground level and a mark-stone inserted at that height. When again visited in 1883, the upper mark-stone was found in position and protected by the usual rectangular pillar of masonry. The directions and distances of the following places are :-Ahmednagar S.W., miles 9 ; Ranjani S.E. by E., miles $2 \mathfrak{1}$; Kalhar N.E. by N., miles $2 \frac{1}{\ddagger}$; Pimpalgaon Uzáni W. by S., miles $3 \frac{3}{q}$; and Deogaon S.W., miles 3.

Nors.-In some instances the names of Principal Stations, occurring in the foregoing descriptions, are given by two methods of spelling distingaished from each other by the use of Roman and Italic type, as Station XXV Anakvadi (Anakwariri): the latter spelling is in keeping with that adopted in the pagea containing the observed angles printed in March 1879, which was based on a list of names of places for the Bombay Presidency published under the orders of the Government in September 1875: the spelling in Roman type is in accordance with that in a revised edition of the same published in 1880, and with the list of names for the Dominions of His Highness the Nizam, published in February 1883. It will be seen that the two methods differ but slightly, notwithstanding where differonces occur, both renderings are given so as to remove all possible doubt as to the identity of a station. The method of spelling in Roman type is hereafter exclusively adopted in the publication of this Series.
M. W. ROGERS,

## KHANPISURA MERIDIONAL SERIES.

## PRINCIPAL TRIANGULATION. OBSERVED ANGLES.

## At XXI (Búda)

March 1848; observed by Lieutenant H. Rivers with Dollond's 15-inch Theodolite.


Nore.-Stations XXI and XXIV appertain to the Karachi Longitudinal Series of the North.West Quadrilateral.

## At XXIV (Bálagarra)

March 1848; observed by Lieutenant H. Rivers with Dollond's 15-inch Theodolite.


## At I (Sítamau)

March 1848; observed by Lieutenant H. Rivers with Dollond's 15-inch I'heodolite.

| $\underset{\text { Between }}{\text { Angle }}$ | $182^{\circ} 2^{\prime}$ | $2^{\circ} 1^{\prime}$ | $192^{\circ} 1^{\prime}$ | $\begin{gathered} \text { Circle } \\ 12^{\circ} 1^{\prime} \quad 2 \end{gathered}$ | reading <br> $202^{\circ} 2^{\prime}$ | s , telesc <br> $22^{\circ} 2^{\prime}$ | cope bein <br> $212^{\circ} Z^{\prime}$ | $\mathbf{3 2 ^ { \circ }} \mathbf{2}^{\prime}$ | $\begin{aligned} & \text { n IV } \\ & 222^{\circ} 2^{\prime} \end{aligned}$ | $42^{\circ} 8^{\prime}$ | $232^{\circ} z^{\prime}$ | $52^{\circ} 2^{\prime}$ | $M=$ Mean of Groups <br> ${ }^{2} 0=$ Relative Weight <br> C = Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IV \& III | $\begin{array}{r} d \mathbf{1 2 \cdot 1} \\ d \quad 9 \end{array}$ | $h 20.66$ $h 15 \cdot 67$ <br> h $15^{\circ} 00$ | $\begin{aligned} & h_{12} 1.34 \\ & d 10.00 \end{aligned}$ |  | $\begin{aligned} & d 13.67 \\ & d 14.33 \\ & d 13.00 \end{aligned}$ | $\begin{array}{cc}  & \prime \prime \\ d & 5.50 \\ d & 6.83 \end{array}$ | $\begin{gathered} \prime \prime \\ d 16 \cdot 83 \\ d_{17} .83 \end{gathered}$ | $\begin{array}{ccc}  & \prime \prime \\ h & 6.33 \\ d & 4.67 & h \\ d & 7.34 & a \end{array}$ | $\begin{aligned} & h 17.33 \\ & d 19.56 \\ & d 18.55 \\ & d 17.89 \end{aligned}$ | $\begin{array}{ll} d & 5 \cdot 01 \\ d & 7 \cdot 34 \end{array}$ | $\begin{gathered} \prime \prime \\ h 19.66 \\ d \\ d \end{gathered} 9^{\circ} 45$ | $\begin{array}{cc}  & " \\ h & 11 \cdot 67 \\ d & 6 \cdot 89 \\ d & 9 \cdot 23 \end{array}$ | $\begin{aligned} & M=12^{\prime \prime} \cdot 09 \\ & w=0 \cdot 48 \\ & \frac{1}{w}=2 \cdot 08 \\ & C=49^{\circ} 49^{\prime} 12^{\prime \prime} \cdot 09 \end{aligned}$ |
|  | 10.8 | 17111 | 1117 | 9.33 | 13.67 | $6 \cdot 17$ | 17.33 | 6.11 | 18.33 | 617 | 19.56 | 9.26 |  |
| III \& II |  <br>  $h_{54.33} \quad d 53.67 \quad d 63.33 d 50.84 \quad d 52.22$ |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =57^{\prime \prime} \cdot 29 \\ w & =0 \cdot 48 \\ \frac{1}{w} & =2 \cdot 08 \\ C & =64^{\circ} 39^{\prime} 57^{\prime \prime} \cdot 29 \end{aligned}$ |
|  | $57^{16}$ | 52.33 | $58 \cdot 95$ | 61•16 | 54.67 | 64.08 | 53.66 | 62.55 | 5034 | 62.00 | 5104 | 59.50 |  |
| II \& XXIV |  <br>  $\begin{array}{llll}h 30.00 & h & 30.67 & h 34.00\end{array} d 26.00$ $h 27 \cdot 66$ |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=30^{\prime \prime} \cdot 1 \mathrm{I} \\ & w=0 \cdot 84 \\ & \frac{1}{w}=1 \cdot 19 \\ & C=63^{\circ} 29^{\prime} 30^{\prime \prime} \cdot 11 \end{aligned}$ |
|  | $27 \cdot 6$ | $29^{\circ} 44$ | 29.44 | 27.17 | $33^{\circ} 00$ | 29.84 | 37'50 | 26.45 | 34.50 | $26 \cdot 16$ | 34.00 | 26.11 |  |

Nors.-Stations XXI and XXIV appertain to the Karichi Longitudinal Series of the North-Weat Quadrilateral.

## At I (Sítamau)-(Continued).

| Anglebetweon | $182^{\circ} 2^{\prime}$ | $8^{\circ} 1^{\prime}$ | $192^{\circ} 1^{\prime}$ | Circle readings, telescope being set on IV |  |  |  |  |  | $42^{\circ} \mathbf{2}^{\prime}$ | $232^{\circ} \mathbf{2}^{\prime}$ | $52^{\circ} 2^{\prime}$ | $M=$ Mean of Groupe <br> ${ }^{20}$ = Relative Weight <br> $C=$ Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $18^{\circ} 1^{\prime}$ | $208{ }^{\circ} \mathbf{z}^{\prime}$ | $22^{\circ} 2^{\prime}$ | $212^{\circ}{ }^{\prime}$ | $32^{\circ} 2^{\prime}$ | $222{ }^{\circ} z^{\prime}$ |  |  |  |  |
| XXIV \& XXI | " | " | " | " | " | " | " | " | " | " | " | " | $\begin{aligned} M & =32^{\prime \prime} \cdot 25 \\ w & =0 \cdot 72 \\ \frac{1}{w} & =1 \cdot 39 \\ C & =26^{\circ} 16^{\prime} 32^{\prime \prime} \cdot 25 \end{aligned}$ |
|  | h $36 \cdot 67$ <br> $h 40.00$ | $\begin{aligned} & h 34.34 \\ & h 35^{\circ} 00 \end{aligned}$ | $\begin{aligned} & h 34.34 \\ & h 39.67 \end{aligned}$ | $\begin{array}{r} h 28 \cdot 33 \\ h 31.67 \end{array}$ | $\begin{aligned} & h 36 \cdot 67 \\ & h 32 \cdot 67 \end{aligned}$ | $\begin{aligned} & h 27.66 \\ & h 34.33 \end{aligned}$ | $l 33.67$ | $\begin{aligned} & 31 \cdot 33 \\ & 31 \cdot 67 \end{aligned}$ | $l$ $l$ 34.00 | $\begin{aligned} & l 32.33 \\ & l 33.67 \end{aligned}$ | $\begin{aligned} & l 23.34 \\ & l \\ & l \end{aligned} 26 \cdot 33$ | $\begin{array}{ll} l & 36.33 \\ l & 28.00 \end{array}$ |  |
|  | $\begin{aligned} & h 33.33 \\ & h 35.00 \\ & h 38.34 \end{aligned}$ | $h 33^{\circ} 0$ | h 36\% | h 27.67 | h $34{ }^{\circ}$ | h 29.67 |  |  |  | $l 35 \cdot 34$ | $\begin{array}{lll} l & 19.67 \\ h & 20.00 \end{array}$ | $h 31.67$ |  |
|  | $36 \cdot 67$ | 34.11 | $36 \cdot 67$ | 29.22 | 34.45 | $30 \cdot 55$ | 3184 | 31•50 | $33 \cdot 83$ | 33.78 | 22.33 | 32.00 |  |

## At II (Dhámnár)

March 1848; observed by Lieutenant H. Rivers with Dollond's 15-inch Theodolite.


Norz.-Stations XXI and XXIV appertain to the Karáohi Longitudinal Serien of the North-West Quadrilateral.

## At III (Nigrun)

*April and $\dagger$ December 1848; observed by Lieutenant H. Rivers with Dollond's 15-inch Theodolite.


| April 1848; observed by Lieutenant H. Rivers with Dollond's 15-inch Theodolite. |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { Anglo } \\ \text { botwoon } \end{gathered}$ | $01^{\prime} \quad 180^{\circ} 1^{\prime}$ | $10^{\circ} 0^{\prime}$ | Circl $190^{\circ} 1^{\prime}$ | e readin $20^{\circ} \mathrm{O}$ | gs, teles $200^{\circ} 0^{\prime}$ | cope bei $30^{\circ} 1^{\prime}$ | ing set o $210^{\circ} 0^{\prime}$ | V $40^{\circ} 1^{\prime}$ | $220^{\circ} 0^{\prime}$ | $50^{\circ} 1^{\prime}$ | $230^{\circ} 0^{\prime}$ | $\boldsymbol{M}=$ Mean of Groups <br> $v_{0}=$ Relative Weight <br> C = Concluded Angle |
| V \& III |  <br>  <br>  d 41.84 h 34.66 d 34.99 <br>  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =3^{6^{n}} \cdot 39 \\ w & =0 \cdot 57 \\ \frac{1}{w} & =1 \cdot 75 \\ C & =47^{\circ} 4^{\prime} 3^{6^{n} \cdot 27} \end{aligned}$ |
|  | $39.54 \quad 34.58$ | $34 \cdot 66$ | 33.67 | 34.55 | $37 \cdot 17$ | 28.45 | 41'56 | $36 \cdot 38$ | $45 \cdot 83$ | 31.50 | $38 \cdot 83$ |  |
| III \& I |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =62^{\prime \prime} \cdot 57 \\ w & =0 \cdot 48 \\ \frac{1}{w} & =2 \cdot 08 \\ C & =37^{\circ} 5^{\prime} \quad 2^{N} \cdot 57 \end{aligned}$ |
|  | 6030 69.05 | $62 \cdot 15$ | $65 \cdot 16$ | $66 \cdot 40$ | $65 \cdot 50$ | 66.77 | 61.00 | 57.22 | 54.73 | 66.66 | $55 \cdot 84$ |  |
| December 1848; observed by Lieutenant H. Rivers with Dollond's 15-inch Theodolite. |  |  |  |  |  |  |  |  |  |  |  |  |
| Angle between |   Circle readings, telescope being set on VIII      <br> $180^{\circ} 0^{\prime}$ $10^{\circ} 0^{\prime}$ $190^{\circ} 0^{\prime}$ $20^{\circ} 0^{\prime}$ $200^{\circ} 0^{\prime}$ $30^{\circ} 0^{\prime}$ $210^{\circ} 0^{\prime}$ $40^{\circ} 0^{\prime}$ |  |  |  |  |  |  |  | $220^{\circ} 0^{\prime}$ | $50^{\circ} 0^{\prime}$ | $230^{\circ} 0^{\prime}$ | $\boldsymbol{M}=$ Mean of Groupe <br> $w=$ Relative Weight <br> C = Concluded Angle |
| VIII \& VII |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =13^{\prime \prime} \cdot 08 \\ w & =1 \cdot 89 \\ \frac{1}{w} & =0 \cdot 53 \\ C & =61^{\circ} 5^{\prime} 13^{\prime \prime} \cdot 31 \end{aligned}$ |
|  | $17.17 \quad 15.11$ | 11*00 | 16.78 | 14.45 | 12.44 | $6 \cdot 67$ | 15.00 | $7 \times 06$ | 14.77 | 10.67 | 15.78 |  |
| VII \& VI |  <br>  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =66^{\prime \prime} \cdot 32 \\ w & =1 \cdot 3^{8} \\ \frac{1}{w} & =0 \cdot 72 \\ C & =51^{\circ} 45^{\prime} \quad 5^{\prime \prime} \cdot 34 \end{aligned}$ |
|  | $63.17 \quad 63.94$ | 66.11 | $67 \cdot 64$ | 68.89 | 64.93 | $72 \cdot 50$ | $64 \cdot 16$ | 70.06 | 60.72 | 69.66 | 64.00 |  |
| VI \& III |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =5^{\prime \prime} \cdot 23 \\ w & =0 \cdot 85 \\ \frac{1}{w} & =1 \cdot 18 \\ C & =5^{\circ} \quad 4^{\prime} 52^{\prime \prime} \cdot 56 \end{aligned}$ |
|  | $53.83 \quad 48 \cdot 41$ | 56•04 | 46.91 | $45 \cdot 17$ | 53.67 | 44.99 | 54.16 | 49.44 | 58.50 | $49 \cdot 78$ | 53.83 |  |


| At V (Deo Dongri)-(Continued). |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { Angle } \\ \text { betwoen } \end{gathered}$ |  |  |  |  |  |  |  |  |  |  |  |
| III \& IV |  <br>  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=7^{\prime \prime} \cdot 3^{2} \\ & w=0 \cdot 85 \\ & \frac{1}{w}=1 \cdot 18 \\ & C=4^{\circ} 34^{\prime} 8^{\prime \prime} \cdot 65 \end{aligned}$ |
|  | $6.67{ }^{6} 14.48$ | $\bigcirc \bigcirc 79$ | $10^{\circ} 42 \quad 9.67$ | 377 | ${ }^{1} \mathrm{Or}$ | r 34 | 978 | 2•16 | 1139 | 6.39 |  |
| At VI (Lohári)April 1848; observed by Lieutenant H. Rivers with Dollond's 15-inch Theodolite. |  |  |  |  |  |  |  |  |  |  |  |
| $\underset{\text { betwoen }}{\substack{\text { Angle }}}$ |  |  |  |  |  |  |  |  |  |  | $M=$ Mean of Groupe $^{2}=$ Relative Woight <br> ${ }_{c}^{x}=$ Concluded Anglo |
| H\& III |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=18^{\prime \prime} \cdot 49 \\ & w=0 \cdot 81 \\ & \frac{1}{w}=1 \cdot 23 \\ & C=4^{\circ} 29^{\prime} 18^{\prime \prime} \cdot 50 \end{aligned}$ |
|  | $24.76 \quad 19.00$ | 17.50 | $17.66 \quad 15.11$ | 20.89 | $12 \cdot 34$ | 1934 | ${ }^{17} 00$ | 24.67 | 14.22 | 19.44 |  |
| III \& V |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=46^{\prime \prime \cdot 12} \\ & w=0 \cdot 72 \\ & \frac{1}{w}=1 \cdot 39 \\ & C=50^{\circ} \cdot 28^{\prime} 46^{\prime \prime} \cdot 12 \end{aligned}$ |
|  | $41.08 \quad 49.89$ | 49.84 | $48.72 \quad 4711$ | $44 \cdot 94$ | 45'50 | 43'96 | 50.51 | 42*44 | 4978 | 39.61 |  |
| V \& VII |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=21^{\prime \prime} \cdot 50 \\ & w=0 \cdot 84 \\ & \frac{1}{w}=1 \cdot 19 \\ & C=46^{\circ} 17^{\prime} 21^{\prime \prime} \cdot 50 \end{aligned}$ |
|  | 26.20 19:22 | 20'17 | $16.16 \quad 22.67$ | 23.84 | 28.23 | 18.67 | ${ }^{17} 76$ | 19.89 | $21^{166}$ | 23.61 |  |
| VII \& XI |  <br>  $h 24.00$ $d 22.67$ |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=21^{\prime \prime} \cdot 51 \\ & w=1 \cdot 08 \\ & \frac{1}{w}=0 \cdot 93 \\ & C=16^{\circ} 59^{\prime} 21^{\prime \prime} \cdot 51 \end{aligned}$ |
|  | 24.00 21.00 | $22 \cdot 34$ | $21.50 \quad 19.16$ | 14.67 | ${ }^{17} 763$ | 24.67 | $23: 75$ | 24:51 | 20'77 | 24.11 |  |




| At IX (Karsod)-(Continued). |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Angle } \\ & \text { between } \end{aligned}$ | $0^{\circ} 0^{\prime} \quad 180^{\circ} 0^{\prime} \quad 10^{\circ} 0^{\prime}$ | Circle readings, telescope being set on VIII |  |  |  |  |  |  |  |  | $M$ $w_{0}=$ Mean of Groups Relative Weight <br> ${ }_{c}^{*}=$ Concluded $\Delta \mathrm{g}$ gle |
| XI \& VII |  <br>  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=55^{\prime \prime} \cdot 24 \\ & w=0 \cdot 60 \\ & \frac{1}{w}=1 \cdot 67 \\ & C=40^{\circ} 5^{\prime} 55^{\prime \prime} \cdot 24 \end{aligned}$ |
|  | $59 \cdot 67 \quad 59 \cdot 33 \quad 53 \cdot 33$ | 49.67 | 53.33 | 50:83 | 5192 | $58 \cdot 50$ | 54.16 | $63^{\circ 00}$ | 51.59 | 57.58 |  |
| VII \& VIII |  <br>  $h 60 \cdot 33$ |  |  |  |  |  |  |  |  |  | $\begin{aligned} \cdot M & =64^{\prime \prime \prime} \cdot 63 \\ w & =1 \cdot 08 \\ \frac{1}{w} & =0 \cdot 93 \\ C & =77^{\circ} 9^{\prime} 4^{\prime \prime} \cdot 63 \end{aligned}$ |
|  | $59.67 \quad 64 \cdot 17 \quad 6100$ | $66 \cdot 33$ | $66 \cdot 17$ | $66 \cdot 00$ | $66 \cdot 17$ | $65^{\circ} 00$ | $68 \cdot 83$ | $60 \cdot 44$ | 70.08 | 6 r .66 |  |

## At X (Jalálkheri)

December 1848; observed by Lieutenant H. Rivers with Dollond's 15-inch Theodolite.


## At XI (Kaula-ka-Máta)

November 1848; observed by Lieutenant H. Rivers with Dollond's 15-inch Theodolite.

| Anglebetween |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| VI \& VII |  <br>  h 57.00 <br> h61 33 <br> $h 59^{\circ} 00$ |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =59^{\prime \prime} \cdot 35 \\ \boldsymbol{v} & =0 \cdot 72 \\ \frac{\mathbf{1}}{w} & =1 \cdot 39 \\ C & =3^{\circ} 57^{\prime} 59^{\prime \prime} \cdot 3.5 \end{aligned}$ |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | $55 \cdot 89$ | $50 \cdot 67$ | 63.17 | 54.50 | 6155 | $63 \cdot 84$ | 62.83 | $59^{\circ} 50$ | $60 \cdot 50$ | 58.34 | 61.44 | 60.00 |  |



## At XII (Harnása)-(Continued).



Notr.-R. M. denotes Referring Mark.

| At XIII (Indráwan)-(Continued). |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { Angle } \\ \text { betweon } \end{gathered}$ | $0^{\circ} 0^{\prime}$ | $180^{\circ} 0^{\prime}$ | $10^{\circ} 0^{\prime}$ | $\begin{aligned} & \text { Circle r } \\ & 190^{\circ} 0^{\prime} \end{aligned}$ | reading <br> $20^{\circ} \mathrm{O}^{\prime}$ | , telesc <br> $200^{\circ} 0^{\prime}$ | ope being $30^{\circ} 0^{\prime}$ | g set on $210^{\circ} 0^{\prime}$ | R.M. $40^{\circ} 0^{\prime}$ | $220^{\circ} 0^{\prime}$ | $50^{\circ} 0^{\prime}$ | $230^{\circ} \mathrm{O}$ | $\begin{aligned} M & =\text { Mean of Groupe } \\ & =\text { Relative Weight }\end{aligned}$ <br> ${ }_{C}^{w o}=$ Concluded Angle |
| XIV \& XVI |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=40^{\prime \prime} \cdot 65 \\ & w=0 \cdot 82 \\ & \frac{1}{w}=1 \cdot 22 \\ & C=67^{\circ} 9^{\prime} 40^{\prime \prime} \cdot 67 \end{aligned}$ |
|  |  | 39.61 | $39 \cdot 0$ | $36 \cdot 89$ | $44 \cdot 89$ | $40 \cdot 83$ | 41.58 | 4125 | 46.11 | 41.33 |  |  |  |

## At XIV (Mograba)

March 1847; observed by Lieutenant H. Rivers with Dollond's 15-inch T'heodolite.


| At XIV (Mograba)-(Continued). |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\underset{\text { Angle }}{\substack{\text { Antwen }}}$ | $0^{\circ} 0^{\prime} \quad 1799^{\circ} 5{ }^{\prime}$ | Circle readings, telescope being set on XII |  |  |  |  |  |  | $220^{\circ} 0^{\prime}$ | $50^{\circ} 0^{\prime}$ | $230{ }^{\circ} 0^{\prime}$ | $M=$ Mean of Groupe <br> $w^{2}=$ Relative Weight <br> C = Concluded Angle |
| XVI \& XIII |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =64^{\prime \prime} \cdot 83 \\ w & =0 \cdot 72 \\ \frac{1}{w} & =1 \cdot 39 \\ C & =47^{\circ} 32^{\prime} \quad 4^{N} \cdot 83 \end{aligned}$ |
|  | $63.16 \quad 62.50$ | 56.89 | 68.83 | $60 \cdot 50$ | 67•17 | $66 \cdot 82$ | 71.56 | 65.83 | $63 \cdot 0$ | $68 \cdot 18$ | 63.50 |  |
| XIII \& XII |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =35^{\prime \prime} \cdot 84 \\ w & =1 \cdot 26 \\ \frac{1}{w} & =0 \cdot 79 \\ C & =43^{\circ} 57^{\prime} 35^{\prime \prime} \cdot 83 \end{aligned}$ |
|  | 36.01 32.67 | 38.89 | 31.22 | $39^{16}$ | $32 \cdot 84$ | 37.50 | 32.22 | $38 \cdot 17$ | 38.33 | $37 \times 45$ | 35.67 |  |
| At XV (Singárchori)March 1847; observed by Lieutenant $\boldsymbol{H}$. Rivers with Dollond's 15-inch Theodolite. |  |  |  |  |  |  |  |  |  |  |  |  |
| $\begin{gathered} \text { Angle } \\ \text { between } \end{gathered}$ | $288^{\circ} 14^{\prime} \quad 48^{\circ} 14^{\prime}$ | Circle readings, telescope being set on XVII |  |  |  |  |  |  | $88^{\circ} 14^{\prime} \quad 278^{\circ} 14^{\prime} \quad 98^{\circ} 14^{\prime}$ |  |  | $M=$ Mean of Groupe <br> $v^{2}=$ Relative Weight <br> C $=$ Concluded Angle |
| XVII \& XIV | $\left.\begin{array}{lllll} h_{52} \cdot \circ 0 & h_{42} \cdot 67 & h_{45} \cdot 66 & h_{43} \\ h_{52} \cdot 34 & h_{41} \cdot 67 & h_{46} \cdot 67 & h_{44} .00 \end{array}\right)$ |  |  | $\begin{gathered} " \\ h 39 \cdot \circ \\ h \\ h 37.34 \\ h 39.67 \end{gathered}$ | h 43.67 <br> $h 44: 67$ | $\begin{aligned} & \quad " 1 \\ & h 38 \cdot 33 \\ & h \\ & 39 \cdot 33 \end{aligned}$ | $\begin{aligned} & h_{41} \cdot 66 \\ & h_{41} \cdot \infty \end{aligned}$ | $\begin{aligned} & h 37.33 \\ & h \\ & h 1^{\circ} 00 \end{aligned}$ | $\begin{gathered} n \\ d 50 \cdot 83 \\ d \\ d 9.83 \end{gathered}$ | $\begin{gathered} \quad \prime \prime \\ h 38 \cdot 33 \\ h 39 \cdot 33 \\ d \\ d 7.33 \end{gathered}$ | $\begin{array}{r} h 50 \cdot 33 \\ h \\ 46 \cdot 67 \end{array}$ | $\begin{aligned} & M=43^{\prime \prime} \cdot 6 \mathrm{I} \\ & \boldsymbol{w}=0 \cdot 48 \\ & \frac{1}{w}=2 \cdot 08 \\ & C=5^{\circ} 47^{\prime} 43^{\prime \prime \cdot} \cdot 61 \end{aligned}$ |
|  | 52.17 $42 \cdot 17$ | 46•17 | 43.50 | 38.67 | 44•17 | $38 \cdot 83$ | 4133 | $39 \cdot 16$ | 50.33 | $38 \cdot 33$ | $48 \cdot 50$ |  |
| XIV \& XII |  <br>  $h 35^{\circ} 66$ $h 44.67$ <br> d $43 \cdot 84$ |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=39^{\prime \prime} \cdot 42^{\prime} \\ & w=0 \cdot 72 \\ & \frac{1}{w}=1 \cdot 39 \\ & C=78^{\circ} 5^{\prime} 8^{\prime} 39^{\prime \prime} \cdot 4^{2} \end{aligned}$ |
|  | $34.66 \quad 37 \times 0$ | $\begin{array}{llll}36 \cdot 34 & 42 \cdot 66 & 45 \cdot 67\end{array}$ |  |  | $\begin{array}{llll}42 \cdot 17 & 43 \cdot 33 & 36 \cdot 84\end{array}$ |  |  | $40 \cdot 00 \quad 36 \cdot 17$ |  | $44.84 \quad 33.33$ |  |  |
| At XVI (Gumánpur) <br> March 1847; observed by Lieutenant H. Rivers with Dollond's 15-inch Theodolite. |  |  |  |  |  |  |  |  |  |  |  |  |
| Angle between |  |  |  |  |  |  |  |  |  |  |  | $\boldsymbol{M}=$ Mean of Groupe <br> ${ }^{2}=$ Relative Weight <br> $C=$ Concluded Angle |
| XIII \& XIV |  <br>  h $29^{\circ} 00$ |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =23^{\prime \prime \prime} \cdot 97 \\ w & =0 \cdot 97 \\ \frac{1}{w} & =1 \cdot 03 \\ C & =65^{\circ} 18^{\prime} 24^{\prime \prime} \cdot 02 \end{aligned}$ |
|  | $19.83 \quad 21.84$ | 21.83 | $26 \cdot 17$ | $26^{\circ} 33$ | 21.83 | $28 \cdot 67$ | 22.00 | 29.11 | 2717 | 23.33 | 19.50 |  |

## at XVI (Gumánpur)-(Continued).



## At XVII (Thíkri)

February and March 1847; olserved by Lieutenant H. Rivers with Dolloıd's 15-inch Theodolite.


## At XVIII (Báwangaz)

February 1817; observed by Lieutenant H. Rivers with Dollond's 15-inch Theodolite.


## At XIX (Jalálabad)

February 1847; observed by Lieutenant II. Rivers with Dollond's 15-inch Theodolite.

| Angle between | $0^{\circ} 0^{\prime}$ | $180^{\circ} 0^{\prime}$ | $10^{\circ} 0^{\prime}$ | Circle <br> $190^{\circ} 0^{\prime}$ | reading $20^{\circ} 0^{\prime}$ | s, telenco $200^{\circ} 0^{\prime}$ | ope bein $30^{\circ} 0^{\prime}$ | g set on $210^{\circ} 0^{\prime}$ | $\begin{gathered} \mathrm{XXI} \\ 40^{\circ} \mathrm{O}^{\prime} \end{gathered}$ | $220^{\circ} 0^{\prime}$ | $50^{\circ} 0^{\prime}$ | $230^{\circ}{ }^{\prime}$ | $\boldsymbol{M}=$ Mean of Groupu <br> $w_{0}=$ Relative Weikht <br> $C=$ Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| XXI \& XXII | ." | " | * | * | " | " | " | " | " | " | " | " | $\begin{aligned} M & =44^{\prime \prime} \cdot 89 \\ w & =0 \cdot 60 \\ \frac{1}{w} & =1 \cdot 67 \\ C & =60^{\circ} 31^{\prime} 44^{\prime \prime} \cdot 89 \end{aligned}$ |
|  | h 47.00 | h 43.33 | $h 42 \cdot 67$ | $h_{48} 8.33$ | $h 48.66$ | h 49.00 | h 41.00 | $h 54.67$ | h 41.00 | ${ }^{4} 44^{\circ} \times 0$ | $h 38.00$ | h 44.00 |  |
|  | $h 48.00$ | $h 47.67$ | $\begin{aligned} & h 42 \cdot 33 \\ & d 40 \cdot 32 \end{aligned}$ | h 4733 | $\begin{aligned} & n+33 \\ & h 45.34 \end{aligned}$ | h 49.67 | $h_{40} 33$ | h 53.00 | h 3934 | $h 43 \cdot 6$ | $\begin{aligned} & h 41^{\prime} 00 \\ & h 37.67 \\ & h 35^{\circ} 00 \end{aligned}$ | $h 43 \cdot 66$ |  |
|  | 47.50 | 45.50 | 41'77 | 4783 | 46.44 | 49.34 | 40.66 | 53.84 | 40'17 | $43 \cdot 83$ | 37*92 | $43 \cdot 83$ |  |


| At XIX (Jalálabad)-(Continued). |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { Angle } \\ \text { between } \end{gathered}$ | $0^{\circ} 0^{\prime}$ | Circle readings, telescope being set on XXI |  |  |  |  |  | $220^{\circ}{ }^{\prime}$ | $50^{\circ}{ }^{\prime}$ | $230^{\circ} 0^{\prime}$ |  <br> ${ }_{C}^{* 0}=$ Relative Weight |
| XXII \& XX |  <br>  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=13^{\prime \prime} \cdot 39 \\ & w=0 \cdot 36 \\ & \frac{1}{w}=2 \cdot 7^{8} \\ & C=36^{\circ} 45^{\prime} 13^{\prime \prime \prime} \cdot 39 \end{aligned}$ |
|  | 15.00 | 20.75 1111 | $16.01 \quad 4.67$ | $8 \cdot 16$ | 15.17 | ${ }_{11} 67$ | 14.83 | .783 | 24.11 | 11.38 |  |
| XX \& XVIII |  <br>  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=21^{\prime \prime} \cdot 18 \\ & w=0 \cdot 36 \\ & \frac{1}{w}=2 \cdot 78 \\ & C=41^{\circ} 55^{\prime} 21^{\prime \prime} \cdot 18 \end{aligned}$ |
|  | 18.84 | $16.83 \quad 31.11$ | $18.00 \quad 33.51$ | 19.83 | 22:32 | 17'99 | $19^{117}$ | $25 \cdot 66$ | 11.56 | 19.33 |  |
| XVIII \& XVII |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=22^{\prime \prime} \cdot 4^{1} \\ & w=0 \cdot 48 \\ & \frac{1}{w}=2 \cdot 08 \\ & C=60^{\circ} 15^{\prime} 22^{\prime \prime} \cdot 41 \end{aligned}$ |
|  | 19.66 | 23.00 15.55 | $25^{\circ} 00 \quad 10^{\circ} 49$ | 27\%0 | 23.51 | 27'17 | 21.83 | $\begin{array}{lll}22.00 & 27.89 & 25.83\end{array}$ |  |  |  |
| At XX (Bábákuwar) <br> January 1847; observed by Lieutenant H. Rivers with Dollond's 15-inch Theodolite. |  |  |  |  |  |  |  |  |  |  |  |
| $\underset{\substack{\text { Angle } \\ \text { between }}}{\text { a }}$ |  |  |  |  |  |  |  |  |  |  | $M=$ Mean of Groupe <br> ${ }_{C}^{w}=$ Relative Weight |
| XVIII \& XVII |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=37^{\prime \prime} \cdot 93 \\ & w=0 \cdot 60 \\ & \frac{1}{w}=1 \cdot 67 \\ & C=55^{\circ} 41^{\prime} 37^{\prime \prime} \cdot 93 \end{aligned}$ |
|  | $36 \cdot 50$ | $\begin{array}{lll}3 \cdot 17 & 35 \cdot 39\end{array}$ | $\begin{array}{lll}36 \cdot 16 & 37 \cdot 38\end{array}$ | 35.94 | 34.33 | 4778 | $34 \cdot 67$ | 44.05 | 32.50 | 42:33 |  |
| XVII \& XIX | $h_{24} \cdot 33 h_{26} \cdot 00 h_{19} \cdot 34 h_{30} \cdot 33 h_{19} \cdot 33 h_{24} \cdot 00 h_{20 \cdot 67} h_{1} 8 \cdot 33 h_{20} \cdot 00 h_{10} \cdot 67 h_{21} \cdot 67 h_{15} \cdot 67$ <br>  <br>  <br> ${ }_{h} 25.33$ |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=20^{\prime \prime} \cdot 47 \\ & w=0 \cdot 49 \\ & \frac{\mathbf{I}}{w}=2 \cdot 04 \\ & C=3^{1^{\circ}} 56^{\prime} 20^{\prime \prime} \cdot 53 \end{aligned}$ |
|  | $23 \cdot 17$ | $24.16 \quad 19.89$ | $30 \cdot 0017.38$ | 23.44 | $20 \cdot 17$ | 17772 | $19 \cdot 16$ | 11.22 | 21.50 | 17.84 |  |
| XIX \& XXI |  <br>  d $69^{\circ} 00$ d $59^{\circ} 49$ <br> ${ }^{d} 67^{\prime} 99^{d 6} 3^{\prime} 50$ <br> d $65^{\circ} 16$ <br> d66.49 d $71{ }^{\circ} 0$ |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=66^{\prime \prime} \cdot 72 \\ & w=0 \cdot 73 \\ & \frac{1}{w}=1 \cdot 37 \\ & C=3^{\circ} 51^{\prime} 6^{\prime \prime} \cdot 71 \end{aligned}$ |
|  | $65 \cdot 84$ | 59.16 67.50 | $63.33 \quad 70 \cdot 55$ | $65 \cdot 61$ | 7000 | $64 \cdot 05$ | $73 \cdot 16$ | 6905 | 6700 | 65.34 |  |

At XX (Bábákuwar)-(Continued).

| Angle between | $0^{\circ} 0^{\prime}$ | $180^{\circ} 1^{\prime}$ | $10^{\circ} 0^{\prime}$ | Circle r $190^{\circ} 0^{\prime}$ | eadings, <br> $20^{\circ} 0^{\prime}$ | telescop $200^{\circ} 1^{\prime}$ | e being $80^{\circ} 0^{\prime}$ | set on $X$ <br> $210^{\circ} 0^{\prime}$ | $\begin{array}{r} \text { XVIII } \\ 40^{\circ} 0^{\prime} \end{array}$ | $220^{\circ} 0^{\prime}$ | $50^{\circ} 0^{\prime}$ | $230^{\circ} 0^{\prime}$ | $\boldsymbol{M}=$ Mean of Groups <br> ${ }^{2} 0$ = Relative Weight <br> C = Ooncluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| XXI \& XXII | " | $"$ | " | $\cdots$ | " | " | -* | " | " | " | " | " | $\begin{aligned} M & =52^{\prime \prime} \cdot 93 \\ w & =0 \cdot 60 \\ \frac{1}{w} & =1 \cdot 67 \\ C & =40^{\circ} 27^{\prime} 52^{\prime \prime} \cdot 93 \end{aligned}$ |
|  | $h 59^{\circ} 00$ | $h 60 \cdot 00$ | $h_{56}$ | h 49.33 | h 49.33 | $h_{47} 733$ | h 49.34 | h 54.00 | h 45.34 | h 55.67 | 52.00 | 53.67 |  |
|  | h 54.34 <br> d 64.00 <br> d 66.00 | h 56.00 | h 55.33 | h 50.33 | h 51.67 | $\begin{aligned} & h 47.00 \\ & h 49^{\circ} 67 \end{aligned}$ | $h 50.67$ | $\begin{aligned} & h 57.00 \\ & h 53.34 \end{aligned}$ | $h 47.34$ | そ 53.66 <br> d 50.82 | $53 \cdot 33$ | $56 \cdot 66$ |  |
|  | $60 \cdot 84$ | 58.00 | $55 \cdot 66$ | $49 \cdot 83$ | $50 \cdot 50$ | 48.00 | 50.01 | 54.78 | $46 \cdot 34$ | 53.38 | 52.66 | $55^{1} 17$ |  |

## At XXI (Árgaon)

January 1847; observed by Lieutenant H. Rivers with Dollond's 15-inch Theodolite.


## At XXII (Ajnád)

January 1847; observed by Lieutenant H. Rivers with Dollond's 15-inch Theodolite.


## At XXIII (Walwári)

December 1846; observed by Lieutenant H. Rivers with Dollond's 15-inch Theodolite.

| $\begin{gathered} \text { Angle } \\ \text { betweo } \end{gathered}$ | $140^{\circ} 1^{\prime}$ | $230^{\circ} 0^{\prime}$ | $150^{\circ} 0^{\prime}$ | Circle <br> $330^{\circ} \sigma^{\circ}$ | reading <br> $160^{\circ} 0^{\prime}$ | s, telesco <br> $340^{\circ} 0^{\prime}$ | ope bein $170^{\circ} 0^{\circ}$ | $g$ set on $350^{\circ} 0^{\prime}$ | R.M. $180^{\circ} \sigma^{\prime}$ | $0^{\circ} 0^{\prime}$ | $190^{\circ}{ }^{\prime}$ | $10^{\circ} 0^{\prime}$ | $M=$ Mean of Groups <br> $w_{0}=$ Relative Weight <br> C = Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| R.M. \& XXI | " | " | " | " | " | " | " | " | " |  | " | " | $\begin{aligned} M & =64^{\prime \prime} \cdot 89 \\ w & =1 \cdot 20 \\ \frac{1}{w} & =0 \cdot 83 \\ C & =27^{\circ} 5^{\prime} \quad 4^{\prime \prime} \cdot 89 \end{aligned}$ |
|  | $h 65.00$ | h $62 \cdot 00$ | $h 57 \cdot 0$ | $h 65 \cdot 66$ | h $60 \cdot 67$ | h 67.00 | h61.67 | h66.33 | h62.33 | h 68.00 | h65.33 | $h 69.00$ |  |
|  | h66.33 | $\begin{aligned} & h 66.33 \\ & h 65.34 \end{aligned}$ | $\begin{aligned} & h 60 \cdot 66 \\ & h 61 \cdot 34 \end{aligned}$ | $h 66 \cdot 33$ | $h 59 \cdot 34$ | $h 66.66$ | $h 64.34$ $h 64.67$ | $h 6733$ | $h 60 \cdot 33$ $h 6400$ | h $68 \cdot 6$ | h63.67 | h 7000 |  |
|  |  |  |  |  |  |  | $d 67.50$ |  |  |  |  |  |  |
|  | 65.67 | 64.56 | 59.67 | 65.99 | 60\%1 | $66 \cdot 83$ | 64.54 | $66 \cdot 83$ | 62.22 | 68 | 64.50 | 69.50 |  |

Noxs.-R. M. donoter Roforring Mark.

## At XXIII (Walwári)-(Continued).

| $\begin{gathered} \text { Angle } \\ \text { between } \end{gathered}$ | $140^{\circ} 1^{\prime} \quad 320^{\circ} \sigma^{\prime}$ | $150^{\circ} 0^{\prime}$ | Circle re $830^{\circ} 0^{\prime}$ | eadings $160^{\circ} 0^{\prime}$ | telescop $340^{\circ} 0^{\prime}$ | $\begin{aligned} & \text { pe being } \\ & 170^{\circ} 0^{\prime} \end{aligned}$ | set on $\mathbf{R}$ <br> $350^{\circ} 0^{\prime}$ | $\begin{aligned} & \text { R. M. } \\ & 180^{\circ} 0^{\prime} \end{aligned}$ | $0^{\circ} \sigma^{\prime}$ | $190^{\circ} 0^{\prime}$ | $10^{\circ} 0^{\prime}$ | $\boldsymbol{M}=$ Mean of Groups <br> ${ }^{*} 0$ - Relative Weight <br> C = Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| XXI \& XXIV |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =19^{\prime \prime} \cdot 08 \\ w & =1 \cdot 32 \\ \frac{1}{w} & =0 \cdot 76 \\ C & =40^{\circ} 19^{\prime} 19^{\prime \prime} \cdot 08 \end{aligned}$ |
|  | $14.34 \quad 21.77$ | 18.33 | 24*00 | 19.66 | $20 \cdot 50$ | 18.48 | $16 \cdot 16$ | 20*09 | 18.67 | 22.08 | 14.84 |  |
| $\begin{gathered} \text { XXIV \& } \\ \text { XXVI } \end{gathered}$ | $h 31.34 h 26.67 h 32.00 h 19.00 h 24.66 h 23.34 h 27.00 h 24.00 h 27.67 h 22.66 h 18.33 h 26.33$ <br>  h 19.67 |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=24^{\prime \prime} \cdot 42 \\ & w=0 \cdot 61 \\ & \frac{1}{w}=1 \cdot 64 \\ & C=57^{\circ} 45^{\prime} 24^{\prime \prime \cdot} \cdot 39 \end{aligned}$ |
|  | 29.17 22.34 | 3217 | $20 \cdot 50$ | 23.49 | 22.84 | 26.67 | $26 \cdot 16$ | $26 \cdot 67$ | 19.16 | 18:33 | 25.50 |  |
| XXVI \& XXVII |  <br>  h 57.33 |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=53^{\prime \prime} \cdot 28 \\ & w=0 \cdot 85 \\ & \frac{1}{w}=1 \cdot 18 \\ & C=60^{\circ} 44^{\prime} 53^{\prime \prime} \cdot 3^{2} \end{aligned}$ |
|  | $49.83 \quad 56 \cdot 78$ | 46:00 | $56 \cdot 84$ | 54.59 | 54.50 | 5033 | 53.00 | $52 \cdot 84$ | 57.62 | 56•17 | $50 \cdot 83$ |  |
| $\begin{gathered} \text { XXVII \& } \\ \text { XXV } \end{gathered}$ |  <br>  <br> ${ }^{h} 57.33$ <br> d 68.50 |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =64^{\prime \prime} \cdot 22 \\ w & =0 \cdot 96 \\ \frac{1}{w} & =1 \cdot 04 \\ C & =87^{\circ} 7^{\prime} 4^{\prime \prime} \cdot 22 \end{aligned}$ |
|  | $64.83 \quad 57 \times 44$ | 64.67 | $\cdot 57.83$ | 63.17 | 64.33 | 65.32 | 66•17 | $65 \cdot 33$ | 69.55 | 64.49 | 67.55 |  |
| XXV \& XXII |  <br>  $\boldsymbol{h 2 8 . 0 0} \quad \begin{array}{lll}\text { h } 27.67 & \boldsymbol{h} 28.67 & \text { d } 24.83\end{array}$ |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =27^{\prime \prime} \cdot 56 \\ w & =1 \cdot 84 \\ \frac{1}{w} & =0 \cdot 54 \\ C & =71^{\circ} 27^{\prime} 27^{\prime \prime} \cdot 5^{8} \end{aligned}$ |
|  | $30.50 \quad 26.66$ | 29.51 | 26.00 | 31733 | 27.16 | $28 \cdot 89$ | 23.17 | 29.22 | 25.33 | 27.22 | 25.78 |  |
| XXII \& R.M. |  <br>  $\begin{array}{lllll}h_{45} .00 & h_{45} .66 & h_{47} .33 & h_{44} .67\end{array}$ <br> h ${ }_{50} \cdot 66$ <br> $h 43.33$ |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=45^{\prime \prime} \cdot 80 \\ & w=2 \cdot 93 \\ & \frac{1}{w}=0 \cdot 34 \\ & C=14^{\circ} 43^{\prime} 45^{\prime \prime} \cdot 78 \end{aligned}$ |
|  | $45 \cdot 84 \quad 47 \cdot 16$ | 49.17 | $46 \cdot 66$ | $45^{\circ} \mathrm{O}$ | $43 \cdot 17$ | $46 \cdot 22$ | $45 \cdot 33$ | $43^{\circ} 00$ | 45.44 | $46 \cdot 33$ | $46 \cdot 17$ |  |



## At XXVI (Sirsala)

$\ddagger$ January ; and § November 1846; observed by Lieutenant H. Rivers with Dollond's 15-inch T'heodolite.


## At XXVII (Sátmála)

$\|$ February ; and 9 December 1846; observed by Lieutenant H. Rivers with Dollond's 15-inch Theodolite.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline $\underset{\text { between }}{\text { Angle }}$ \& $0^{\circ} 0^{\prime}$ \& $180^{\circ} 0^{\prime}$ \& $10^{\circ} 1^{\prime}$ \& Circle
190

19 \& reading

2000 \& | s, telesc |
| :--- |
| $200^{\circ} 0^{\prime}$ | \& ope bein $30^{\circ}{ }^{\sigma}$ \& \[

\mathrm{ng} set on
\]

$$
210^{\circ} 0^{\prime}
$$ \& \[

$$
\begin{aligned}
& \text { XXV } \\
& 40^{\circ} \sigma^{\prime}
\end{aligned}
$$

\] \& $220^{\circ}{ }^{\circ}$ \& $49^{\circ} 59^{\prime}$ \& $230^{\circ} 0^{\prime}$ \& | $\boldsymbol{M}=$ Mean of Groupe |
| :--- |
| 20 - Relative Weight |
| C = Concluded Angle | <br>

\hline \multirow{5}{*}{$$
\left\lvert\, \begin{gathered}
\text { I } \\
\text { XXV \&XIII }
\end{gathered}\right.
$$} \& " \& " \& " \& " \& " \& " \& " \& " \& \& " \& " \& \& \multirow[b]{5}{*}{\[

$$
\begin{aligned}
& M=23^{\prime \prime} \cdot 90 \\
& w=0 \cdot 84 \\
& \frac{1}{w}=1 \cdot 19 \\
& C=50^{\circ} 14^{\prime} 23^{\prime \prime} \cdot 90
\end{aligned}
$$
\]} <br>

\hline \& h 21.67 \& h $26 \cdot 67$ \& h 19.34 \& K 25.33 \& $h 18.67$ \& h $25^{\circ} 00$ \& h $25^{\circ} 00$ \& h 29000 \& h 19.67 \& h 28.67 \& h 21.67 \& h $30 \cdot 00$ \& <br>
\hline \& h 24.33 \& h23:67 \& \& h 22.67 \& \& \& \& d27.50 \& $h_{19}{ }^{\circ}$ \& \& \& \& <br>

\hline \& \& $$
\begin{aligned}
& h 23.00 \\
& h 21.34
\end{aligned}
$$ \& \& \& \& \& \& \& \& \& \& \& <br>

\hline \& $22 \cdot 33$ \& 24.00 \& 19.67 \& 23.78 \& $19^{\circ} 33$ \& $25^{\circ} 00$ \& 23.67 \& 28.95 \& 19.11 \& $29^{\circ} 0$ \& 21.84 \& $30 \cdot 17$ \& <br>
\hline
\end{tabular}



At XXVIII (Pophla)-(Continued).

| $\begin{gathered} \text { Angle } \\ \text { between } \end{gathered}$ | Circle readings, telescope being set on XXVII |  |  |  |  |  |  |  | $\boldsymbol{M}=$ Mean of Groups <br> ${ }^{20}$ = Relative. Weight <br> C = Concluded Anglo |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $0^{\circ}{ }^{\prime}$ | $180^{\circ} 0^{\prime}$ | $15^{\circ} 0^{\prime}$ | $195^{\circ} 1^{\prime}$ | $30^{\circ} 0^{\prime}$ | $210^{\circ}{ }^{\circ}$ | $45^{\circ} 0^{\prime}$ | $225^{\circ} 0^{\prime}$ |  |
| $\underset{\text { XXXI }}{\text { XXIX }}$ | " | " | " | " | " | " | " | " | $\begin{aligned} M & =47^{\prime \prime} \cdot 59 \\ w & =0 \cdot 56 \\ \frac{1}{w} & =1 \cdot 79 \\ C & =67^{\circ} 22^{\prime} 47^{\prime \prime} \cdot 59 \end{aligned}$ |
|  | h 43.00 | h 48.33 | $h_{41} \times 66$ | h 55.33 | $\boldsymbol{h} 43.33$ | $h_{4} 8.00$ | ${ }^{\boldsymbol{h}} 47.00$ | ${ }^{\prime} 46 \cdot 33$ |  |
|  | $h 50 \cdot 66$ | h 50.33 | $h 43.00$ | ${ }_{\text {d }}^{51}$ 166 | $\boldsymbol{h} 42.33$ | $h 50.00$ | $h 50.00$ | $h 47.33$ |  |
|  |  |  |  |  |  |  |  | h 50\%00 |  |
|  | $47^{\circ} 44$ | 49.33 | 42.33 | 53.50 | $42 \cdot 55$ | $49^{\circ} 00$ | 48.50 | 48•08 |  |
| XXXI \& XXX | h 38.66 | h 38.67 | h 41.34 | d 42.67 | h 39.67 | $h_{44}{ }^{\text {\% }}$ 4 | h $39^{\circ} 00$ | h 45.33 | $\begin{aligned} M & =4^{\prime \prime \prime} \cdot 2 I \\ w & =0 \cdot 75 \\ \frac{1}{w} & =1 \cdot 33 \\ C & =104^{\circ} 36^{\prime} 41^{\prime N} \cdot 25 \end{aligned}$ |
|  | $\begin{array}{ll} h & 36 \cdot 34 \\ k & 38.00 \end{array}$ | h 36.67 | h 43.67 $\boldsymbol{k} 43.67$ | d $42 \cdot 66$ | $h 41^{\circ} 00$ | $h 44.67$ | h 37.33 | $h 46 \cdot 34$ <br> h 45 .66 |  |
|  | $37 \cdot 67$ | $37 \cdot 67$ | $42 \cdot 89$ | 42.67 | 40'33 | 44:51 | 38.16 | 4578 |  |
| $\underset{X X V I I}{X X X}$ | \% 64.33 | h 63.33 | h 66.00 | h 56.33 | h 65.67 | ${ }^{\text {h } 56.33}$ | h64.67 | $h 58.34$ | $\begin{aligned} M & =61^{\prime \prime} \cdot 47 \\ w & =0 \cdot 40 \\ \frac{1}{w} & =2 \cdot 50 \\ C & =54^{\circ} 10^{\prime} \quad 1^{\prime \prime} \cdot 47 \end{aligned}$ |
|  | h 66.66 $h 66.00$ | ${ }^{2} 63.00$ | h 61.66 | $\boldsymbol{h} 56 \cdot 34$ | h 66.00 | h 54.66 | h 63.00 | ${ }^{\prime} 55^{\circ} 0$ |  |
|  |  | h 66.33 | $\boldsymbol{6 9 . 3 3}$ |  |  |  | h65.34 | $h 55.34$ |  |
|  | 65.66 | 64:22 | $62 \cdot 33$ | 56.34 | 65.83 | 55'50 | 64.34 | 57.56 |  |

## At XXIX (Rajur)

*November 1862 ; observed by Captain C. T. Haig, R.E., with Barrow's 24-inch Theodolite No. 2. $\dagger J a n u a r y 1846$; observed by Lieutenant H. Rivers with Dollond's 15-inch Theodolite.


| At XXIX (Rajur)-(Continued). |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\underset{\text { between }}{\text { Angle }}$ | $288^{\circ} 8^{\prime}$ | $106^{\circ} 8^{\prime}$ | Circle read $801^{\circ} 8^{\prime}$ | ga, telesc $181^{\circ} g^{\prime}$ | being se $816^{\circ} 8^{\prime}$ | $\begin{gathered} \text { on XXXI } \\ 136^{\circ} 8^{\prime} \end{gathered}$ | 831 ${ }^{\circ} 7^{\prime}$ | $161{ }^{\circ} 8^{\prime}$ | $M=$ Mean of Groups Relative Weight <br> ${ }^{20}=\begin{aligned} & \text { Relative Weight } \\ & C=\text { Concluded Angle }\end{aligned}$ |
| $\underset{\text { XXVIII }}{\dagger}$ | $\begin{gathered} " n \\ h_{3} 38 \cdot 33 \\ h{ }_{3} 8 \cdot 34 \end{gathered}$ | $\begin{aligned} & n \\ & h_{3} 30 \cdot 67 \\ & 30 \cdot 66 \end{aligned}$ | $\begin{aligned} & h_{23}{ }_{3}^{33} \cdot 66 \end{aligned}$ | $\begin{aligned} & h 30 \cdot 67 \\ & h 32 \cdot 33 \end{aligned}$ | $\begin{aligned} & h 30.67 \\ & h_{3} 3 \cdot 66 \\ & h 29 \cdot 34 \end{aligned}$ | $\begin{aligned} & h 34 \\ & h 34 \\ & h 37.63 \\ & h 38.33 \\ & h 35 \cdot 33 \\ & h 35 \cdot 34 \end{aligned}$ |  |  | $\begin{aligned} & M=33^{\prime \prime} \cdot 69 \\ & w=\circ \cdot 48 \\ & \frac{1}{w}=2 \cdot 08 \\ & C=57^{\circ} 53^{\prime} 33^{\prime \prime} \cdot 69 \end{aligned}$ |
|  | 38:34 | 30.66 | 33.50 | $33^{150}$ | $30^{\prime 2}$ | - $35 \cdot 42$ | 29.33 | 40.55 |  |
| At XXX (Yerul) |  |  |  |  |  |  |  |  |  |
| $\underset{\substack{\text { Angle } \\ \text { between }}}{\text { and }}$ | Circle readings, telescope being set on XXVII |  |  |  |  |  |  |  | $\begin{aligned} & M \mathcal{M}=\text { Moan of Groups } \\ & w=\text { Reoanive Woinh } \\ & c=\text { Concluded Angito } \end{aligned}$ |
| $\underset{\text { XXVIIII }}{\text { XX }}$ |  | $\begin{gathered} \prime \prime \\ h_{18} 18.33 \\ h 25 \cdot 67 \\ h_{27} \cdot 34 \end{gathered}$ |  |  | $\begin{gathered} " \\ h_{31 \cdot 0} \\ h_{37} 37.34 \\ h 32 \cdot 33 \end{gathered}$ |  | $\begin{aligned} & h 25 \cdot 66 \\ & h 29^{\circ \circ} 0 \end{aligned}$ | $\begin{aligned} & h_{23} 2.66 \\ & h_{19} 967 \\ & h_{210} .0 \\ & h_{1} 8.67 \end{aligned}$ | $\begin{aligned} & M=24^{\prime \prime} \cdot 75 \\ & w=0 \cdot 47 \\ & \frac{1}{w}=2 \cdot 13 \\ & C=82^{\circ} 33^{\prime} 24^{\prime \prime} \cdot 70 \end{aligned}$ |
|  | 22;78 | 23.78 | 23.44 | $23 \cdot 11$ | 33.56 | 23.25 | ${ }^{27} 33$ | 20'75 |  |
| $\underset{\text { XXXIII }}{\text { XXVII }}$ | $\begin{aligned} & h 26 \cdot 67 \\ & h 2767 \\ & d 28 \cdot 34 \end{aligned}$ | $\begin{aligned} & h_{31} 1 \cdot 67 \\ & h_{24}+34 \\ & h_{25}^{25} 3 \\ & d 26.34 \\ & d 28.67 \end{aligned}$ | $h 36 \cdot 0$ <br> $h 36$ <br> $h 31.00$ <br> $h 34.34$ <br> $h_{3}$ <br> 3.83 | h 35.67 $h 35.00$ $d 3700$ |  |  | $\begin{aligned} & h 30.66 \\ & h 30 \cdot 33 \\ & h 33.34 \\ & h 29.33 \end{aligned}$ | $\begin{aligned} & h 33.00 \\ & h 34.33 \end{aligned}$ | $\begin{aligned} & M=32^{\mu} \cdot 88 \\ & w=0 \cdot 40 \\ & \frac{1}{w}=2 \cdot 50 \\ & C=43^{\circ} 5^{\prime} 32^{\prime \prime} \cdot 88 \end{aligned}$ |
|  | 27.56 | 27.27 | 33.29 | $35 \cdot 89$ | 3483 | 39.65 | $30^{\circ} 92$ | $33 \cdot 66$ |  |
| $\underset{\text { XXXIIV }}{\text { XXXI }}$ | $\begin{aligned} & h 39^{\prime \cdot} 33 \\ & d 41 \\ & d 41+16 \\ & d 39 \cdot 8 \end{aligned}$ |  |  | $\begin{aligned} & h 35 \cdot 66 \\ & h_{34} 343 \\ & d 36 \cdot 66 \end{aligned}$ | $\begin{aligned} & h 27 \cdot 67 \\ & h 32 \cdot 00 \\ & h 28.34 \\ & h 32 \cdot 00 \\ & h \end{aligned}$ | $\begin{aligned} & h 30.67 \\ & h 28.66 \\ & h 27.00 \\ & h 28.67 \\ & d 29.08 \end{aligned}$ |  | $\begin{aligned} & h 31.34 \\ & h 29^{\circ} \mathrm{Co} \end{aligned}$ | $\begin{aligned} & M=35^{\prime \prime} \cdot 05 \\ & w=0 \cdot 24 \\ & \frac{1}{w}=4 \cdot 17 \\ & C=50^{\circ} 56^{\prime} 35^{\prime \prime} \cdot 05 \end{aligned}$ |
|  | $40 \cdot 11$ | 42.40 | $32 \cdot 85$ | $35 \cdot 55$ | $30 \cdot 0$ | 28.82 | 40.50 | $30 \cdot 17$ |  |

## At XXXI (Jámkhed)

*December 1845 and January 1846; observed by Lieutenant H. Rivers woith Dollond's 15-inch Theodolite. $\dagger$ November 1862; observed by Captain C. T. Haig, R.E., with Barvow's 24-inch Theodolite No. 2.


## At XXXII (Áhirmal)

December 1862; observed by Captain C. T. Haig, R.E., with Barrow's 24-inch Theodolite No. 2.

| Anglebetween | $0^{\circ} 0^{\prime}$ | $180^{\circ} 0^{\prime}$ | Circle readings, telescope being set on XXXIII |  |  |  |  |  | $172^{\circ} 48^{\prime}$ | $352^{\circ} 48^{\prime}$ | $\boldsymbol{M}=$ Mean of Groups <br> ${ }^{v}=$ Relative Weight <br> $C=$ Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $43^{\circ} 13^{\prime}$ | $223^{\circ} 13^{\prime}$ | $86^{\circ} 24^{\prime}$ | $266^{\circ} 24^{\prime}$ | $129^{\circ} 36^{\prime}$ | $309^{\circ} 36^{\prime}$ |  |  |  |
| $\underset{\mathbf{X X X I}}{\text { XXXIII }}$ | " | " | " " | " | " | " | " | " | " | " | $\begin{aligned} & M=26^{\prime \prime} \cdot 23 \\ & w=3 \cdot 90 \\ & \frac{1}{w}=0 \cdot 26 \\ & C=5^{\circ} 39^{\prime} 26^{\prime \prime} \cdot 23 \end{aligned}$ |
|  | $h 24.18$ | $h 24.80$ | $l 26 \cdot 72$ | h 25.56 | $l 28.06$ |  |  |  | h 24.24 | h 25.40 |  |
|  | h 24.66 | $h 25.60$ | $l 26.62$ | h 26.28 | $l 28.28$ | $l 28.36$ | $l 27.58$ | $l 25.62$ | $h 25.10$ | h 23.96 |  |
|  | 24.42 | $25^{20}$ | $26 \cdot 67$ | $25 \cdot 92$ | 28.17 | 28.95 | $27 \times 46$ | $26 \cdot 12$ | 24.67 | 24.68 |  |
| $\underset{\text { XXIX }}{\text { XXXI \& }}$ | $\begin{aligned} & h 18 \cdot 40 \\ & h 18.36 \end{aligned}$ | $\begin{aligned} & h 19.68 \\ & h 19.80 \end{aligned}$ | $l$ $l$ $l$ 16.688 | $h 20 \cdot 00$ $h 19.76$ | $l 20.62$ $l$ 18 | $l 15.90$ $l 16.90$ | $l$ $l$ $l$ 188.18 | $l 19.86$ | h21.54 | h22.80 | $\begin{aligned} M & =19^{\prime \prime} \cdot 39 \\ w & =2 \cdot 50 \\ \frac{1}{w} & =0 \cdot 40 \\ C & =50^{\circ} 35^{\prime} 19^{\prime \prime} \cdot 39 \end{aligned}$ |
|  |  |  |  | h976 |  |  |  |  |  | h22.64 |  |
|  | 18.38 | 19.74 | $16 \cdot 78$ | 19.88 | 19.65 | 16.42 | 18.19 | $20 \cdot 63$ | 21.48 | . 22.72 |  |

At XXXIII (Mathuri)
December 1845; observed by Lieutenant H. Rivers with Dollond's 15-inch Theodolite.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\underset{\text { between }}{\text { Angle }}
\] \& \(309{ }^{\circ} 11^{\prime}\) \& \(129^{\circ} 11^{\prime}\) \& Circle read \(324^{\circ} 11^{\prime}\) \& \begin{tabular}{l}
gs, teles \\
\(144^{\circ} 11^{\prime}\)
\end{tabular} \& being se \(339^{\circ} 10^{\prime}\) \& \[
\begin{gathered}
\text { on } \mathrm{XXII} \\
159^{\circ} 11^{\prime}
\end{gathered}
\] \& \(351^{\circ} 11^{\prime}\) \& \(174^{\circ} 11^{\prime}\) \& \[
\begin{aligned}
M \& =\text { Mean of Groups } \\
w \& =\text { Relative Weight } \\
C \& =\text { Concluded Angle }
\end{aligned}
\] \\
\hline \multirow{5}{*}{\[
\begin{gathered}
\text { XXIII \& } \\
\text { XXIV }
\end{gathered}
\]} \& " \& " \& " \& " \& " \& \& " \& " \& \multirow[b]{5}{*}{\[
\begin{aligned}
M \& =42^{\prime \prime} \cdot 37 \\
w \& =0 \cdot 40 \\
\frac{1}{w} \& =2 \cdot 50 \\
C \& =50^{\circ} 49^{\prime} 42^{\prime \prime} \cdot 37
\end{aligned}
\]} \\
\hline \& \(h 44.33\)
\(h\) \& \({ }_{6} 45.66\) \& h \(40 \cdot 00\) \& ¢ 36.66 \& \(h_{46}{ }^{\text {a }} 33\) \& \% 34.33 \& \(h_{49} 67\) \& h 43.33 \& \\
\hline \& \(h 47.33\)

4 \& h 45.34
$h 43.67$ \&  \& h 33.66 \& $h 46 \cdot 00$ \& h 38.67 \& $h 48.66$ \& h 44.34 \& <br>

\hline \& \&  \& \& h 34.33 \& \& h 36.67 \& $$
\begin{aligned}
& h 44.34 \\
& h \\
& h 5 \cdot 67
\end{aligned}
$$ \& \& <br>

\hline \& $45^{\circ} 00$ \& 44.67 \& $40 \cdot 78$ \& $34 \cdot 88$ \& 46•17 \& $36 \cdot 56$ \& 47*08 \& $43 \cdot 84$ \& <br>

\hline \multirow{4}{*}{$$
\begin{aligned}
& \text { XXIV \& } \\
& \text { XXXIV }
\end{aligned}
$$} \& \& $h_{52.67}$ \& $h 58.66$ \& h 59.00 \& h 56.67 \& h 66.33 \& h 53.33 \& h 62.00 \& \multirow[t]{4}{*}{\[

$$
\begin{aligned}
M & =5^{\prime \prime} \cdot 82 \\
w & =0 \cdot 62 \\
\frac{1}{w} & =1 \cdot 61 \\
C & =5^{1} 33^{\prime} 58^{\prime \prime} \cdot 81
\end{aligned}
$$
\]} <br>

\hline \& $$
\begin{aligned}
& h 59.67 \\
& h 6{ }_{1} \cdot 67
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& h 52 \cdot 00 \\
& h 57.00
\end{aligned}
$$
\] \& $h 58.34$

$d 60.00$ \& $h 63.00$
$h 62.00$ \& $h_{56} \cdot 33$ \& $h 60.33$
$h 62.00$ \& $h 55.67$
$h$
53.66 \& h61.66 \& <br>

\hline \& \& \& $$
d 58 \text { OI }
$$ \& \& \& \& \& \& <br>

\hline \& 61.11 \& 53.92 \& 58.75 \& 61.33 \& $56 \cdot 50$ \& 62.89 \& 54.22 \& $6 \times 83$ \& <br>

\hline \multirow[t]{3}{*}{$$
\underset{\mathbf{X X X I}}{\text { XXXIV }}
$$} \& h 29.00 h $29^{\circ} 00$ \& $h 38.67$

$h 36.66$
$h$ \& $h 30 \cdot 67$
$h 32 \cdot 66$ \& $h 34.00$
$h 37.00$ \& h 34.00 h 34.34 \& h 30.67
$h 32.00$ \& $h 35.33$

$h 34.00$ \& \[
$$
\begin{aligned}
& h 26 \cdot 67 \\
& h 26.00
\end{aligned}
$$

\] \& \multirow[t]{3}{*}{\[

$$
\begin{aligned}
M & =32^{N} \cdot 69 \\
w & =0 \cdot 56 \\
\frac{1}{w} & =1 \cdot 79 \\
C & =55^{\circ} 56^{\prime} 32^{N} \cdot 69
\end{aligned}
$$
\]} <br>

\hline \& h 29.00 \& $$
\begin{aligned}
& h 3733 \\
& h 37.33
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& d 3201 \\
& d \quad 32 \cdot 33
\end{aligned}
$$
\] \& h $37{ }^{\circ} 00$ \& \& h 3133 \& h 36.34 \& \& <br>

\hline \& 29*00 \& $37 \times 50$ \& 3192 \& $36 \cdot 00$ \& 34*17 \& 3r.33 \& $35^{222}$ \& 26.34 \& <br>
\hline
\end{tabular}

Note. - Stations XXIII and XXIV appertain to the Bombay Longitudinal Series.

## At XXXIII (Mathuri)-(Continued).

November 1862; observed by Captain C. T. Haig, R.E., with.Barrow's 24-inch Theodolite No. 2.

| Angle between | $0^{\circ} 0^{\prime}$ | $180^{\circ} 1^{\prime}$ | Circle readings, telescope being set on XXXI |  |  |  |  |  | $172^{\circ} 48^{\prime}$ | 352 ${ }^{\circ} 48^{\prime}$ | $\boldsymbol{M}=$ Mean of Groups <br> $v^{2}=$ Relative Weight <br> $C=$ Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $43^{\circ} 13^{\prime}$ | $223^{\circ} 13^{\prime}$. | $86^{\circ} 24^{\prime}$ | $266^{\circ} 24^{\prime}$ | $129^{\circ} 37{ }^{\prime}$ | $309^{\circ} 37^{\prime}$ |  |  |  |
| $\underset{\text { XXXII }}{\text { XXXI \& }}$ | " | " | " | " | " | " | " | " | " | " | $\begin{aligned} & M=19^{\prime \prime} \cdot 29 \\ & w=6 \cdot 30 \\ & \frac{1}{w}=0 \cdot 16 \\ & C=37^{\circ} 42^{\prime} 19^{\prime \prime} \cdot 29 \end{aligned}$ |
|  | h 16.90 | h 18.96 | h 18.58 | h21.62 | h19.12 | ${ }_{\text {h }}^{18.92}$ | l21.10 | $l_{19.62}$ | $l 19.34$ | $l 17.44$ |  |
|  | $h_{18}{ }^{2}$ | h 17.52 | $h 19.82$ | h21.04 | h 19.46 | $h 19.62$ | $l 21.04$ | $l 19.82$ | $l 19.30$ | $l 18.30$ |  |
|  | 17.61 | 18.24 | 19.20 | 21.33 | 19.29 | 19.27 | 21.07 | 19.72 | 19.32 | 17.87 |  |

## At XXXIV (Dhaigaon).

December 1845; observed by Lieutenant H. Rivers with Dollond's 15-inch Theodolite.

| Angle between | Circle readings, telescope being set on XXX |  |  |  |  |  |  |  | $M=$ Mean of Groups <br> ${ }^{v}$ - $=$ Relative Weight <br> C = Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $128^{\circ} 28^{\prime}$ | $308^{\circ} 28^{\prime}$ | $143^{\circ} 28^{\prime}$ | $323^{\circ} 28^{\prime}$ | $158^{\circ} 28^{\prime}$ | $338^{\circ} 28^{\prime}$ | $173^{\circ} 28^{\prime}$ | $853^{\circ} 28^{\prime}$ |  |
| $\underset{\mathbf{X X X I}}{\mathbf{X X X}}$ | " | " | " | " | " | " | " | " | $\begin{aligned} & M=10^{\prime \prime} \cdot 92 \\ & w=0 \cdot 72 \\ & \frac{1}{w}=1 \cdot 39 \\ & C=75^{\circ} 24^{\prime} 10^{\prime \prime} \cdot 92 \end{aligned}$ |
|  | ¢ 10.00 | ${ }^{1} 13.66$ | h 9.00 | $h_{11} 134$ | $h 10 \cdot 00$ | $h 14.66$ | $h 1000$ | h12.33 |  |
|  | $h 13.66$ | h 17.33 | h 3.34 | h 13.34 | $\boldsymbol{h} 767$ | h11.33 | d 12.49 | h 11.67 |  |
|  | h $5 \cdot 67$ | h 15.66 | h $4^{\circ} 00$ |  |  | h 15.33 | d 9.83 | d 9.33 |  |
|  |  |  | d 4.55 |  |  |  |  | d 11.00 |  |
|  | 9.78 | 15.55 | 522 | 12.34 | 8.84 | 13.77 | 10'77 | $1{ }^{1} 08$ |  |
| $\underset{\mathbf{X X X I I I I}}{\text { XXXI }}$ | h 36.33 | h $30 \cdot 34$ | h 39.66 | h $32 \cdot 00$ | $h 28.33$ | h 26.67 | h 34.66 | h 33.34 | $\begin{aligned} M & =32^{\prime \prime} \cdot 34 \\ w & =0 \cdot 56 \\ \frac{1}{w} & =1 \cdot 79 \\ C & =73^{\circ} 16^{\prime} 32^{\prime \prime} \cdot 34 \end{aligned}$ |
|  | ¢ 34.00 | h 28.00 | ¢ 39.33 | h 29.66 | h 28.66 | h 30.33 | h 35.67 | h $35^{\circ} \mathrm{O}$ |  |
|  | $\begin{aligned} & h 38.33 \\ & d 34.77 \end{aligned}$ | h 28.34 | $\begin{aligned} & h 34.67 \\ & d \\ & d 6 \cdot 99 \end{aligned}$ |  |  | h 28.67 |  | $\begin{aligned} & d 31 \cdot 50 \\ & d 33.17 \end{aligned}$ |  |
|  | $35 \cdot 86$ | 28.89 | 37.66 | 30•83 | 28.50 | 28.56 | $35^{16}$ | 33.25 |  |
| $\underset{\text { XXIII }}{\text { XXXIII }}$ | ¢ 36.67 | $h 48.00$ | h 42.34 | $h_{50.66}$ | h.50.67 | h 52.33 | $h_{41} 167$ | h 47.66 | $\begin{aligned} M & =46^{\prime \prime} \cdot 13 \\ w & =0 \cdot 32 \\ \frac{1}{w} & =3 \cdot 13 \\ C & =32^{\circ} 50^{\prime} 46^{\prime \prime} \cdot 13 \end{aligned}$ |
|  | h 39.34 | h 45.67 | $h 46 \cdot 0$ | $h_{50.67}$ | h 5134 | $\boldsymbol{h} 52.00$ | $h 39.66$ | $h 44.00$ |  |
|  | $\begin{aligned} & h 39.00 \\ & d 36.89 \\ & d \end{aligned}$ | $h 47.33$ | $\begin{aligned} & h 46 \cdot 67 \\ & d \\ & d 4 \cdot 10 \end{aligned}$ |  |  | $h_{51}$ 166 |  | $\begin{aligned} & d 4 \cdot 16 \\ & d 44 \cdot 83 \end{aligned}$ |  |
|  | 37'98 | 47*00 | $44^{778}$ | 50•66 | $5{ }^{\circ} \mathrm{OI}$ | 5200 | $40 \cdot 66$ | 44*91 |  |
| $\underset{\text { XXIV }}{\text { XXII }}$ | $h 43.33$ | ${ }_{7} 36 \cdot 00$ | $h_{4} \mathrm{r} \cdot 66$ | h 29.34 | ${ }_{6} 42.33$ | ${ }_{\text {h }} 35.67$ | h 45.67 | $h 43.33$ $h 43.3$ | $\begin{aligned} M & =39^{\prime \prime} \cdot 19 \\ w & =0 \cdot 40 \\ \frac{1}{w} & =2 \cdot 5^{\circ} \\ C & =50^{\circ} 0^{\prime} 39^{\prime \prime} \cdot 19 \end{aligned}$ |
|  | h 40.33 | $h_{4} 1^{\circ} \mathrm{O}$ | ¢ $41 \mathrm{I}^{\circ} \mathrm{O}$ | h31.67 | h41.66 | ${ }_{\text {h }} 33.34$ | $h 4300$ | $h 43.33$ |  |
|  | $\begin{aligned} & h 41 \cdot 00 \\ & d 40 \cdot 10 \end{aligned}$ | h 40.00 | $\begin{aligned} & h 41 \cdot 00 \\ & d 40 \cdot 32 \end{aligned}$ |  |  | ${ }_{6} 33.67$ | $\begin{array}{r} h 43.67 \\ h 44.67 \end{array}$ | h 39.00 $h 39.67$ |  |
|  |  |  |  |  |  |  |  | h41.33 |  |
|  | 41'19 | $39^{\circ} 00$ | $41^{\circ} 00$ | 30*50 | 4200 | 34.23 | 44.25 | 41'33 |  |

Note.-Stations XXIII and XXIV appertain to the Bombay Longitudinal Series.

|  | ember 1 | 5 ; observe | ed by | At XXI <br> Lieutenan | (Chinc <br> H. Rive | oli) <br> with $D$ | ollond's | inch | dolite. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\underset{\substack{\text { Angle } \\ \text { betweon }}}{\text { a }}$ | $120^{\circ} \mathrm{O}$ | Circle readings, telescope being set on XXIV |  |  |  |  |  | $840^{\circ} 0^{\prime}$ | $\begin{aligned} & M=\text { Mean of Groupp } \\ & w=\text { Relative Weight } \\ & C=\text { Concluded Angle } \end{aligned}$ |
|  |  | $300^{\circ} \mathrm{O}$ |  | $140^{\circ} 0^{\prime}$ | $320^{\circ} 0^{\prime}$ |  | ${ }^{\circ} \mathrm{O}$. |  |  |
| $\underset{\text { XXIV }}{\text { XXIV }}$ | " | " |  |  | " |  |  |  | $\begin{aligned} & M=36^{\prime \prime \prime} \cdot 89 \\ & w=0 \cdot 72 \\ & \frac{1}{w}=1 \cdot 39 \\ & \boldsymbol{C}=5 \circ^{\circ} 55^{\prime} 36^{\prime \prime \prime} \cdot 89 \end{aligned}$ |
|  | ${ }_{4} 37.67$ | ${ }_{4}{ }_{3} 8.00$ |  | ${ }^{h} 3464$ | ${ }^{\text {h }} 39.67$ |  | $\cdots$ |  |  |
|  |  | L 3 37 |  | ${ }_{6}{ }^{2} \cdot 33$ |  |  |  | ${ }^{\text {h }} 33.33$ |  |
|  | h 39.66 $h_{41} 13$ | d 3717 |  |  |  |  |  |  |  |
|  | $39^{\prime 9}$ | 3784 |  | $33 \cdot 50$ | 38.44 |  | 33 | 38:33 |  |
| $\underset{\text { XXXIII }}{\text { XXXIV }}$ |  | $\begin{aligned} & h 42.00 \\ & h 43 \circ \end{aligned}$ | $\begin{aligned} & h_{41} .33 \\ & h_{42} \cdot 33 \end{aligned}$ |  | h 37.33 3 | $\begin{aligned} & h_{44} 4400 \\ & h_{4} 4400 \\ & h_{42} .00 \end{aligned}$ |  |  | $\begin{aligned} & M=39^{\prime \prime} \cdot 68 \\ & w=0 \cdot 54 \\ & \frac{1}{w}=1 \cdot 85 \\ & C=44^{\circ} 45^{\prime} 39^{\prime \prime} \cdot 68 \end{aligned}$ |
|  |  |  |  |  |  |  |  |  |  |
|  | 36.55 | 42:50 |  | $4{ }^{18} 8$ | 37.55 | $43 \cdot 33$ |  | 3633 |  |
|  | At XXIV (Ágargaon) |  |  |  |  |  |  |  |  |
| November 1845; observed by Lieutenant H. Rivers with Dollond's 15-inch Theodolite. |  |  |  |  |  |  |  |  |  |
| $\underset{\text { between }}{\substack{\text { Angle }}}$ | $2689^{1} 13^{\prime}$ | Circle readings, telescope being set on XXXIV |  |  |  |  |  | ${ }^{128}{ }^{\circ} 12^{\prime}$ | $M=$ Mean of $\begin{aligned} & \text { Groups } \\ & w=\text { Relative }\end{aligned}{ }^{\text {Weight }}$ <br> ${ }^{w}=$ Relative Weight $C=$ Concluded Angle |
|  |  | $83^{1} 13^{\prime}$ | $278^{\circ} 12^{\prime}$ | ${ }^{98}{ }^{\circ} 12$ | $293^{\circ} 12^{\prime}$ | $113^{\circ} 12^{\prime}$ | $308^{\circ} 12^{\prime}$ |  |  |
| $\underset{\text { XXXIV \& }}{\substack{\text { XXIII }}}$ |  | $\begin{aligned} & h 42 \cdot 34 \\ & h 44 \\ & h 49.67 \\ & h 39 \cdot 67 \\ & h \end{aligned}$ |  | $\begin{aligned} & h 50 \cdot 67 \\ & h \\ & h_{49} \cdot 67 \end{aligned}$ | $"$ | $"$ | $"$ | $\begin{gathered} " \\ h_{4} 133 \\ h_{41} 66 \end{gathered}$ | $\begin{aligned} M & =41^{\prime \prime} \cdot 89 \\ w & =0 \cdot 32 \\ \frac{1}{w} & =3 \cdot 13 \\ C & =45^{\circ} 34^{\prime} 41^{\prime \prime} \cdot 89 \end{aligned}$ |
|  |  |  |  |  | $h 40.67$ $h 380$ | ${ }_{4} 49.33$ | ${ }_{\text {h }} 3600$ |  |  |
|  |  |  |  |  | ${ }_{4}{ }_{4}{ }^{\circ} \mathrm{O}$ | ${ }^{\text {h }} 4700$ | ${ }^{\text {h }} 37 \times 3$ |  |  |
|  |  |  |  |  | $\begin{aligned} & d 45.45 \\ & d \\ & 4045 \end{aligned}$ | $\begin{aligned} & \left.\begin{array}{l} d \\ d \cdot 39 \\ d \\ 47 \end{array}\right) \end{aligned}$ |  |  |  |
|  | 37'45 | 42.75 | $36 \cdot 0$ | 50'17 | 4191 | $47 \cdot 5$ | 3778 | 41.50 |  |
| $\underset{\text { XXIIII }}{\text { XXXII }}$ | $\begin{aligned} & h 64 \cdot 00 \\ & h 66.66 \\ & h 65 \cdot 00 \\ & h 66 \cdot 34 \\ & h 64 \cdot 34 \end{aligned}$ | ${ }^{5} 58.66$ | ${ }^{6} 63.00$ | $\begin{aligned} & h 62 \cdot 67 \\ & h_{59} \cdot \mathbf{3} \end{aligned}$ | $\begin{aligned} & h 65 \cdot 67 \\ & h 68.00 \\ & h 65 \cdot 00 \\ & d 70.45 \\ & d 6545 \end{aligned}$ | $\begin{aligned} & h 60 \cdot 00 \\ & h 64 \cdot 00 \\ & h 59 \cdot 67 \\ & d 60 \cdot 95 \\ & d 61 \cdot 00 \end{aligned}$ | $\begin{aligned} & h 71.33 \\ & h 7133 \\ & h 72.30 \end{aligned}$ | $\begin{aligned} & h 65 \cdot 0 \\ & h 64.67 \\ & h 6434 \end{aligned}$ | $\begin{aligned} & M=64^{\prime \prime} \cdot 57 \\ & w=0 \cdot 55 \\ & \frac{\mathbf{I}}{w}=1 \cdot 82 \\ & C=33^{\circ} 29^{\prime} 4^{\prime \prime} \cdot 63 \end{aligned}$ |
|  |  | ${ }_{\substack{\text { a }}}^{h 687} 36$ | ${ }^{h} 6 \mathrm{H}_{1} \cdot 00$ |  |  |  |  |  |  |
|  |  |  | ${ }^{6} 61 \cdot 34$ |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  | 64.47 | $64: 39$ | 6178 | 6r.oo | 66.91 | 6112 | 72:22 | 6467 |  |

Note.-Stations XXIII and XXIV appertain to the Bombay Longitudinal Series.
March 1879.

## J. B. N. HENNESSEY,

In charge of Computing Office.

## KHANPISURA MERIDIONAL SERIES.

Sums of Squares of Apparent Errors of Single Observations, and of Apparent Errors of Single Zeros.

| Station of Obeervation | Obeerred Angle | Number of Observations | Num of Squares of Errors of single Observations | Number of Zeros | Sum of Squares of Errurs of single Zeros | Rumaris |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| XXI | I \& II | 26 | $137 \times 55$ | 12 | 190.43 |  |
| " | II \& XXIV | 29 | 180•39 | 12 | 422.43 |  |
| XXIV | XXI \& I | 28 | 98.56 | 12 | 203.29 |  |
| " | I \& II | 25 | 22.83 | 12 | 126.27 |  |
| I | IV \& III | 31 | 56.89 | 12 | $273 \cdot 80$ |  |
| " | III \& II | 29 | $60 \cdot 66$ | 12 | $250 \cdot 59$ |  |
| - " | II \& XXIV | 29 | 38.33 | 12 | 157.92 |  |
| " | XXIV \& XXI | 36. | $156 \cdot 13$ | 12 | 163.49 |  |
| II | XXIV \& XXI | 28 | 37.02 | 12 | 90.57 | Dollond's 15-inch. |
| " | XXI \& I | 28 | 50.76 | 12 | 206.36 |  |
| " | 1 \& III | 31 | 81.70 | 12 | 152.24 |  |
| " | III \& VI | 32 | 64.73 | 12 | $107 \cdot 81$ |  |
| III | VI \& II | 34 | $93 \cdot 87$ | 12 | 113.78 |  |
| " | II \& I | 43 | 205.56 | 12 | 183.79 |  |
| " | I \& IV | 26 | 53.19 | 12 | $297 \cdot 87$ |  |
| " | IV \& V | 39 | 147.34 | 12 | $165^{10}$ |  |
| " | $\boldsymbol{V}$ \& VI | 33 | 148.15 | 12 | 383.35 |  |
| IV | V \& III | 38 | 70.07 | 12 | $236 \cdot 34$ |  |

Note.-Stations XXI and XXIV appertain to the Karáchi Longitudinal Series of the North-West Quadrilateral.


Nots.-R.M. denotes Referring Mark.
-a.

| Station of Obeervation | Obeerred Anglo | $\begin{gathered} \text { Number of } \\ \text { Observs- } \\ \text { tions } \end{gathered}$ | - Sum of Squares of Errors of single Observation | ${ }^{\text {Number of }}$ | Sum of Squates of Hrrors of single Zeros | Rrncrzs. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| XIV | XVI \& XIII | 26 | 49*49 | 12 | 178.08 |  |
| " | XIII \& XII | 31 | 82.93 | 12 | . $90 \cdot 85$ |  |
| XV | XVII \& XIV | 26 | 21.61 | 12 | 251.41 |  |
| " | XIV \& XII | 27 | $20 \cdot 35$ | 12 | 194.45 |  |
| XVI | XIII \& XIV | 25 | 27.21 | 12 | 124.27 |  |
| " | XIV \& XVIII | 32 | $86 \cdot 45$ | 12 | 189.68 |  |
| XVII | XIX \& XX | 25 | 38.23 | 12 | 299.65 |  |
| " | XX \& XVIII | 27 | $83 \cdot 81$ | 12 | $136 \cdot 58$ |  |
| " | XVIII \& XIV | 31 | $98 \cdot 74$ | 12 | 109.49 |  |
| " | XIV \& XV | 31 | $72 \cdot 73$ | 12 | 131.71 |  |
| XVIII | XVI\& XIV | 30 | 44.84 | 12 | $94 \cdot 13$ |  |
| " | XIV \& XVII | 27 | 38.40 | 12 | 104.20 |  |
| " | XVII \& XIX | 28 | $61 \cdot 86$ | 12 | 187.39 |  |
| " | XIX \& XX | 26 | 24.51 | 12 | 223.22 |  |
| XIX | XXI \& XXII | 28 | $42 \cdot 46$ | 12 | 218.84 |  |
| " | XXII \& XX | 27 | 41.09 | 12 | 330.28 |  |
| " | XX\& XVIII | 28 | $45 \cdot 21$ | 12 | 418.51 |  |
| " | XVIII \& XVII | 28 | 23.22 | 12 | $290 \cdot 95$ | , |
| XX | XVIII \& XVII | 32 | 69.47 | 12 | 222.84 |  |
| " | XVII \& XIX | 32 | 101.56 | 12 | $233 \cdot 35$ |  |
| " | XIX \& XXI | 31 | 145.99 | 12 | $152 \cdot 69$ | Dollond's 15-inch. |
| " | XXI \& XXII | 29 | 125.70 | 12 | 196. 20 |  |
| XXI | XXIV \& XXIII | 32 | $38 \cdot 37$ | 12 | 139.55 |  |
| " | XXIII \& XXII | 32 | $35 \cdot 23$ | 12 | $190 \cdot 78$ |  |
| " | XXII \& XX | 30 | $60 \cdot 85$ | 12 | 92.58 |  |
| " | XX \& XIX | 25 | 41.73 | 12 | 138.73 |  |
| XXII | XX\& XIX | 33 | 56.18 | 12 | $178 \cdot 99$ |  |
| " | XIX \& XXI | 31 | $45 \cdot 70$ | 12 | 121.88 |  |
| " | XXI \& XXIV | 30 | $43 \cdot 98$ | 12 | $167 \cdot 60$ |  |
| " | XXIV \& XXIII | 28 | 36.22 | 12 | 78.92 |  |
| " | XXIII \& XXV | 24 | $35 \cdot 33$ | 12 | $203 \cdot 76$ |  |
| XXIII | R.M. \& XXI | 29 | 49.68 | 12 | 101.06 |  |
| " | XXI \& XXIV | 29 | $46 \cdot 67$ | 12 | 93.90 |  |
| " | XXIV \& XXVI | 25 | $83 \cdot 38$ | 12 | $184 \cdot 76$ |  |
| " | XXVI \& XXVII | 25 | 56.02 | 12 | 135'19 |  |
| " | XXVII \& XXV | 26 | 25.40 | 12 | 134.29 |  |
| " | XXV \& XXII | 28 | $62 \cdot 37$ | 12 | $62 \cdot 11$ |  |
| II | XXII \& R.M. | 31 | $99 \cdot 74$ | 12 | $30 \cdot 19$ |  |
| XXIV | XXVI \& XXIII | 30 | $46 \cdot 27$ | 12 | 153.04 |  |
| " | XXIII \& XXII | 30 | 199.69 | 12 | 174.79 |  |
| " | XXII \& XXI | 36 | 118.58 | 12 | 194.45 |  |


| Station of Obsorvation | Observed Angle | Number of Observa. tions | Sum of Squaree of Errors of single Observations | Number of Zeros | Sum of Squares of Errors of single Zeros | Remaris. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| XXV | XXII \& XXIII | 26 | $27 \cdot 48$ | 12 | 254.30 | ? |
| " | XXIII \& XXVII | 28 | 26.39 | 12 | $82 \cdot 64$ |  |
| XXVI | XXIX \& XXVIII | 23 | 82.08 | 8 | 74*10 |  |
| " | XXVIII \& XXVII | 25 | 98-66 | 8 | 123.21 |  |
| " | XXVII \&XXIII | 37 | 17111 | 12 | 192.75 |  |
| " | XXIII \& XXIV | 39 | $195 \cdot 18$ | 12 | 334*33 |  |
| XXVII | XXV \& XXIII | 32 | 40'00 | 12 | 160.51 |  |
| " | XXIII \& XXVI | 31 | $73 \cdot 84$ | 12 | 152.24 | \} Dolloud's 15-inch. |
| " | XXVI \& XXVIII | 21 | $26 \cdot 68$ | 8 | $75 \cdot 45$ |  |
| " | XXVIII \& XXX | 21 | 30.22 | 8 | $124 * 49$ |  |
| XXVIII | XXVII \& XXVI | 21 | 26.43 | 8 | 50.47 |  |
| " | XXVI \& XXIX | 21 | 36.11 | 8 | 49•56 |  |
| " | XXIX \& XXXI | 20 | 56•35 | 8 | 94*11 |  |
| " | XXXI \& XXX | 19 | 11.35 | 8 | $71 \cdot 85$ | - |
| " | XXX \& XXVII | 21 | 44.52 | 8 | $130 \cdot 36$ | $j$ |
| XXIX | XXXII \& XXXI | 20 | 5.44 | 10 | 19•39 | Barrow's 24-inch No. 2. |
| " | XXXI \& XXVIII | 21 | 24*74 | 8 | 129.36 | 1 |
| " | XXVIII \& XXVI | 21 | - 27.44 | 8 | 116.74 |  |
| $\mathbf{X X X}$ | XXVII \& XXVIII | 25 | 152.88 | 8 | 111.76 |  |
| " | XXVIII \& XXXI | 30 | $134 \cdot 64$ | 8 | 123.08 |  |
| " | XXXI \& XXXIV | 29 | 98.65 | 8 | 202.53 | \} Dollond's 15-inch. |
| XXXI | XXXIII \& XXXIV | 23 | $35 \cdot 04$ | 8 | 59'37 | . |
| " | XXXIV \& XXX | 24 | - $30 \cdot 97$ | 8 | 46.24 |  |
| " | XXX \& XXVIII | 24 | 79*22 | 8 | 85'90 |  |
| " | XXVIII \& XXIX | 17 | 5. 55 | 8 | 419.87 | $J$ |
| " | SXIX \& XXXII | 20 | 5.62 | 10 | 32•76 | 7 |
| " | XXXII \& XXXIII | 20 | $2 \cdot 94$ | 10 | 9'44 |  |
| XXXII | XXXIII \& XXXI | 20 | 3.34 | 10 | $22 \cdot 14$ | \} Barrow's 24-inch No. 2. |
| " | XXXI \& XXIX | 20 | - $3 \cdot 66$ | 10 | 35'52 | $\int$. |
| XXXIII | XXIII \& XXIV | 24 | 46-18 | 8 | $143 \cdot 38$ | ) |
| " | XXIV \& XXXIV | 24 | 51.37 | 8 | $87 \cdot 71$ | ( Dollond's 15-inch. |
| " | XXXIV \& XXXI | 24 | 14.36 | 8 | 99•07 | $)$ |
| " | XXXI \& XXXII | 20 | $3 \cdot 64$ | 10 | 13.46 | Barrow's 24-inch No. 2. |
| XXXIV | XXX \& XXXI | 24 | 81.80 | 8 | 69.75 | 7 |
| " | XXXI \& XXXIII | 24 | 46.50 | 8 | 92.69 | , |
| " | XXXIII \& XXIII | 24 | 34*19 | 8 | $179 \cdot 20$ |  |
| " | XXIII \& XXIV | 27 | $47 \cdot 86$ | 8 | $145 \cdot 52$ | Dollond's 15 inch |
| XXIII | XXIV \& XXXIV | 18 | $28 \cdot 73$ | 6 | 38.71 | \} Dollond's 15-inch. |
| " | XXXIV \& XXXIII | 15 | 18.17 | 6 | 51.45 |  |
| XXIV | XXXIV \& XXXIII | 27 | 77-17 | 8 | 173.00 |  |
| " | XXXIII d XXIII | 32 | 104.72 | 8 | $96 \cdot 47$ | $j$ |

Nute.-Stations XXIII and XXIV appertain to the Bombay Longitudinal Series.

From the preceding data of the sums of the squares of the apparent errors, in the measurement of each angle, we may ascertain the e.m.s. (error of mean square) of observation of a single measure of an angle, and the e.m.s. of graduation and observation of the mean of the measures on a single zero, for each group of angles measured with the same instrument, by the same observer, and under similar circumstances.

The instruments employed were as follows :-
1st.-A theodolite by Dollond, having an azimuthal circle 15 inches in diameter, furnished with 8 microscopes; observations were taken ou 6, 4 or 3 pairs of zeros (face right and face left), giving circle readings at $10^{\circ}, 15^{\circ}$ or $20^{\circ}$ apart.

2nd.-Barrow's 24-inch Theodolite No. 2, having 5 microscopes; observations were taken on 5 pairs of zeros, giving circle readings at $7^{\circ} 12^{\prime}$ apart.

The e.m.s. of observation of a single measure of an angle $=\sqrt{\text { Sum of squares of apparent errors of observations. }}$ No. of observations - No. of angles $\times$ No. of changes of zero.
$\left.\begin{array}{l}\text { - The e.m.s. of graduation and obsorvation of the mean of the } \\ \text { measures on a single zero }\end{array}\right\}=\sqrt{\frac{\text { Sum of squares of apparent errors of zero. }}{\text {. No. of angles } \times \text { (No. of changes of zero-1). }} \text {. }}$

| Group | Instrament andObserver |  |  | Number of |  |  |  | c. m. s. of observation of a single measure | e. m.e. of graduation and observation of a single zero |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | $\begin{aligned} & \frac{8}{60} \\ & \frac{6}{9} \end{aligned}$ |  | \% |  |  |
| I | $\left\{\begin{array}{l} \text { Dollond's 15-inch Theodolite; } \\ \text { Lieutenant H. Rivers. } \end{array}\right\}$ | Hills, | - 10 | 2:46 | 106 | 3134 | 1272 |  | $\left\{\left\{\frac{18981 \cdot 09}{1272-.06}\right\}^{7}- \pm 4 \cdot 035\right.$ |
| II | Ditto. | " | 150 | $2 \cdot 94$ | 27 | 636 | 216 | $\left\{\frac{1505 \cdot 68}{636-216}\right\}^{\frac{1}{2}}- \pm 1.898$ | $\left\{\frac{3175.24}{216-27}\right\}^{\frac{1}{2}}= \pm 4.099$ |
| III | Ditto. | " | 200 | 2.75 | 2 | 33 | 12 | $\left\{\frac{46.90}{83-12}\right\}^{\frac{1}{2}}= \pm 1.494$ | $\left\{\frac{90 \cdot 16}{12-2}\right\}^{\frac{1}{2}}= \pm 8.003$ |
| IV |  | " | 712 | 2.00 | 6 | 120 | 60 | $\left\{\frac{24 \cdot 64}{120-60}\right\}^{\}}= \pm 0.641$ | $\left\{\frac{138 \cdot 71}{60-6}\right\}^{\frac{1}{2}}= \pm 1.568$ |

Spril 1879.
J. B. N. HENNESSEY,

## In okarge of Computing Offico.

opmereby, Google

## KHANPISURA MERIDIONAL SERIES.

PRINCIPAL TRIANGULATION. REDUCTION OF FIGURES.

## KHANPISURA MERIDIONAL SERIES.

## PRINCIPAL TRIANGULATION. REDUCTION OF FIGURES. •

Figure No. 1.


* In the tables of the equations between the factors the co-efficients of the terms below the diagonal are omitted for convenience, the co-efficient of the pth torm in the $q$ th line being alwaye the same as the co-efficient of the qth term in the pth line.

Figure No. 2.-


Figure No. 8.

| Observed Angles |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No | Value |  |  |  | No. | Value |  |  |  | No. | Value |  |  |  |
| - , " |  |  |  |  | - , " |  |  |  |  | - , " |  |  |  |  |
| 1 | 81 | 57 | 38•78 | 0.76 | 10 | 48 | 53 | $16 \cdot 64$ | 1.03 | 19 | 57 | 2 | I•88 | 1-35 |
| 2 | 51 | 45 | 5•34 | 0.72 | 11 | 77 | 9 | $4 \cdot 63$ | $0 \cdot 93$ | 20 | 56 | 15 | 1•3 | $2 \cdot 78$ |
| 3 | 46 | 17 | 21.50 | $1 \cdot 19$ | 12 | 53 | 57 | $35 \cdot 81$ | $1 \cdot 19$ | 21 | 66 | 42 | 59.79 | 1.67 |
| 4 | 126 | 2 | $38 \cdot 87$ | $0 \cdot 93$ |  | 29 | 24 | 47*96 | $0 \cdot 60$ | 22 | 84 | 32 | 50.85 | 0.76 |
| 5 | 16 | 59 | 21.51 | $\bigcirc \cdot 93$ | 14 | 88 | 44 | $1 \cdot 82$ | $0 \cdot 57$ | 23 | 39 | 18 | $45 \cdot 73$ | 2.08 |
| 6 | 36 | 57 | $59 \cdot 35$ | 1•39 | 15 | 61 | 51 | 13.31 | $\bigcirc \cdot 53$ | 24 | $56 \quad 8$ |  | 23.01 | $2 \cdot 08$ |
| 7 | 73 | 41 | 38.55 | $\bigcirc \cdot 93$ | 16 | 56 | 42 | 8.08 | 2.08 | 25 | 43 | 34 | 59.43 | -. 93 |
| 8 | 65 | 19 | 29.06 | 2.08 | 17 | 83 | 38 | $8 \cdot 37$ | 2.08 | 26 | 54 | 20 | $33 \cdot 46$ | $0 \cdot 91$ |
| 9 | 40 | 58 | 55*24 | $1 \cdot 67$ | 18 | 39 | 39 | $45 \cdot 82$ | $2 \cdot 78$ | 27 | 82 | $4 \quad 30 \cdot 94$ |  | 1.67 |
| Equations to be satisfied Factor |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\mathrm{x}_{1}$ |  | + $\mathrm{x}_{8}$ |  | $+\mathrm{x}_{3}$ | $\ldots$ | $\ldots$ |  | $\cdots$ |  |  | $=e_{1}=+2.32$, |  |  | $\lambda_{1}$ |
|  | $x_{4}$ |  | $+\mathrm{x}_{6}$ | $+x_{6}$ | ... |  | ... | ... |  | $\cdots$ | $=\mathrm{e}_{8}=-\mathrm{r} \cdot 69$, |  |  | $\lambda_{2}$ |
|  | $\mathrm{x}_{7}$ |  | $+\mathrm{x}_{8}$ | + $\mathrm{x}_{9}$ | $\ldots$ |  | ... | ... |  | $\cdots$ | $=\mathrm{e}_{3}=+\mathrm{I} \cdot 7 \mathrm{I}$, |  |  | $\lambda_{3}$ |
|  | $\mathrm{x}_{10}$ |  | $+\mathrm{x}_{11}$ | ${ }_{+18}$ | ... |  | ... | ... |  |  | $=e_{4}=-4.41$, |  |  | $\lambda_{4}$ |
|  | $\mathrm{x}_{13}$ |  | $+x_{14}$ | $+x_{15}$ | ... |  | $\ldots$ | ... |  | .. | $=\mathrm{e}_{5}=+\mathrm{I} \cdot 76$, |  |  | $\lambda_{6}$ |
|  | $\mathrm{X}_{16}$ |  | $+\mathrm{x}_{17}$ | $+\mathrm{x}_{18}$ | ... |  | $\cdots$ | ... |  | .. | $=\mathrm{e}_{6}=-0.11$, |  |  | $\lambda_{6}$ |
|  | $\mathrm{x}_{19}$ |  | $+\mathrm{x}_{20}$ | $+\mathrm{x}_{21}$ | ... |  | ... | ... |  | $\ldots$ | $=e_{7}=-0.57$, |  |  | $\lambda_{7}$ |
|  | $\mathrm{x}_{82}$ |  | $+x_{23}$ | + $\mathrm{x}_{34}$ | $\ldots$ |  | ... |  |  | $\ldots$ | $=\mathrm{e}_{8}=-3.17$, |  |  | $\lambda_{8}$ |
|  | $\mathrm{x}_{86}$ |  | $+x_{26}$ | $+\mathrm{x}_{97}$ | :.. |  | ... |  |  | $=e_{9}=+2.63$, |  |  |  | $\lambda_{9}$ |
|  | $\mathrm{x}_{1}$ |  | $+\mathrm{x}_{6}$ | $+\mathrm{x}_{7}$ | $+x_{10}$ |  | $+\mathrm{x}_{13}$ |  |  | $=\mathrm{e}_{10}=+0.80$, |  |  |  | $\lambda_{10}$ |
|  | $\mathrm{x}_{9}$ |  | $+x_{11}$ | $+\mathrm{x}_{16}$ | $+\mathrm{x}_{19}$ |  | + $\mathrm{x}_{22}$ |  |  | $=\mathrm{e}_{11}=+0 \cdot 1 \mathrm{I}$, |  |  |  | $\lambda_{11}$ |
|  | $5 x_{3}-$ | $\begin{aligned} & \cdot 79 \\ & \cdot 73 \end{aligned}$ | $\begin{aligned} & 9 \mathbf{x}_{2}+1 \\ & 3 \mathbf{x}_{18} \end{aligned}$ | $329 \mathrm{x}_{6}$ $23 \mathrm{x}_{11}$ | $\mathrm{X}_{15} \mathrm{x}_{5}$ | $\cdot 151$ | $\left.\mathrm{X}_{14} \mathrm{X}_{9}\right\}$ |  |  | $=e_{18}=+6 \cdot 161$, |  |  |  | $\lambda_{18}$ |
| + | $5 x_{81}-$ | $\begin{array}{r} \cdot 29 \\ -\cdot 67 \end{array}$ | $\begin{aligned} & 9 x_{7}+ \\ & 7 \mathbf{x}_{20}+ \\ & + \end{aligned}$ | $\begin{aligned} & 87 x_{10} \\ & 67 x_{24} \end{aligned}$ | $\begin{aligned} & x_{12} \\ & 1 x_{23} \end{aligned}$ | $\begin{gathered} 1 \cdot 200 \\ \cdot 14 \end{gathered}$ | $6 \mathbf{x}_{18}$ | $\begin{aligned} & -\cdot 11 \\ & -\cdot 7^{2} \end{aligned}$ |  | $=\mathrm{e}_{15}=-0.133$, |  |  |  | $\lambda_{18}$ |

Figure No. 3-(Continued).

| Equations between the Factors |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. of e | Value of e | Co-efficients of |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | $\lambda_{1}$ | $\lambda_{8}$ | $\lambda_{3}$ | $\lambda_{4}$ | $\lambda_{5}$ | $\lambda_{6}$ | $\lambda_{7}$ | $\lambda_{8}$ | $\lambda_{0}$ | $\lambda_{10}$ | $\lambda_{11}$ | $\lambda_{18}$ | $\lambda_{18}$ |
| 1 | $+2 \cdot 32$ | $+2.67$ |  |  |  |  |  |  |  |  | $+0.76$ |  | 0.57 |  |
| 2 | - 1.69 |  | $+3.25$ |  |  |  |  |  |  |  | +0.93 |  | 1.20 |  |
| 3 | +1.71 |  |  | $+4.68$ |  |  |  |  |  |  | +0.93 | +1.67 | 0'97 | -0.69 |
| 4 | -4.41 |  |  |  | $+3.1$ |  |  |  |  |  | + r.03 | +0.93 | 0.65 | +0.03 |
| 5 | +1.76 |  |  |  |  | 1 170 |  |  |  |  | +0.60 |  | 0.27 |  |
| 6 | -0.11 |  |  |  |  |  | $6 \cdot 9$ |  |  |  |  | +2.08 |  | +312 |
| 7 | -0.57 |  |  |  |  |  |  | 5.80 |  |  |  | +1.35 |  | -1.14 |
| 8 | $-3.17$ |  |  |  |  |  |  |  | $4 \cdot 92$ |  |  | +0.76 |  | -1.15 |
| 9 | $+2.63$ |  |  |  |  |  |  |  |  | 3.51 |  | +0.93 |  | $-0.42$ |
| 10 | $+0.80$ |  |  |  |  |  |  |  |  |  | +4.25 |  |  | +0.63 |
| 11 | +0.11 |  |  |  |  |  |  |  |  |  |  | $+7.72$ | 1.71 |  |
| 12 | $+6.161$ |  |  |  |  |  |  |  |  |  |  |  | 17.45 | -1.07 |
| 13 | -0.133 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Values of the Factors |  |  |  | Angular errors in seconds |  |  |  |  |  |  |  |  |  |  |
| $\begin{aligned} & \lambda_{1}=+0.6779 \\ & \lambda_{8}=-0.5^{2} 5^{8} \\ & \lambda_{3}=+0.1824 \\ & \lambda_{4}=-1.6397 \\ & \lambda_{5}=+0.8328 \\ & \lambda_{6}=-0.0237 \\ & \lambda_{7}=-0.1358 \\ & \lambda_{8}=-0.675^{1} \\ & \lambda_{9}=+0.7126 \\ & \lambda_{10}=+0.4305 \\ & \lambda_{11}=+0.1126 \\ & \lambda_{18}=+0.3188 \\ & \lambda_{13}=-0.0575 \end{aligned}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

Figure No. 4.


Figura Na. $\mathbf{b}$.


50-a.
KHANPISURA MERIDIONAL SERIES.
Kigure No. 6.


Figure No. 7.


Frgure No. 8.


Norf.-The reciprocal weights here given are not the preliminary reciprocal weights, as in the reduction of other figures, but final or absolute weighta,

Figure No. 8-(Continued).

| Equations between the Factors |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\circ$$\stackrel{\circ}{\circ}$iín |  | Co-efficients of |  |  |  |  |  |  |  |  |  |  |  |
|  |  | $\lambda_{1} \quad \lambda_{9}$ | $\lambda_{3}$ | $\lambda_{4}$ | $\lambda_{6}$ | $\lambda_{6}$ | $\lambda_{7}$ | $\lambda_{8}$ | $\lambda_{\theta}$ | $\lambda_{10}$ | $\lambda_{11}$ | $\lambda_{1 s}$ | $\lambda_{18}$ |
| 1 | +1-49 | $+13^{11}$ |  |  | - |  |  |  |  | + 4.37 |  | $13 \cdot 11$ |  |
| 2 | -4.00 | +13.11 |  |  |  |  |  |  |  | + 4.37 |  |  |  |
| 3 | - 1.75 |  | 13.11 |  |  |  |  |  |  | + 4.3 | $+4$ | 52.44 | 117.99 |
| 4 | - 0.09 |  |  | $+13$ |  |  |  |  |  | + 43 | $+4$ | 26.22 | 8.74 |
| 5 | - $2 \cdot 38$ |  |  |  | $+13$ |  |  |  |  | + 43 |  |  |  |
| 6 | +1.65 |  |  |  |  | $+13.1$ |  |  |  |  | $+4$ |  | 48.07 |
| 7 | -2.20 |  |  |  |  |  | +13 |  |  |  | $+4$ |  | 34.96 |
| 8 | $+0.23$ |  |  | * |  |  |  | $+1$ |  |  | + 0 |  | 6.30 |
| 9 | -0.11 |  |  |  |  |  |  |  | $+1$ |  | + 0 |  | 1.26 |
| 10 | - 1.17 |  |  |  |  |  |  |  |  | $+218$ |  |  | 61.18 |
| 11 | -8.32 |  |  |  |  |  |  |  |  |  | $+18$ | 74.29 |  |
| 12 | +20.9 |  |  |  |  |  |  |  |  |  |  | 51.81 | $2643 \cdot 85$ |
| 13 | -8.5 |  |  |  |  |  |  |  |  |  |  |  | $6775 \cdot 54$ |
| Values of the Factors |  |  | Angular errors in seconds |  |  |  |  |  |  |  |  |  |  |
| $\begin{aligned} & \lambda_{1}=+0.1384 \\ & \lambda_{2}=-0.2566 \\ & \lambda_{3}=+0.0541 \\ & \lambda_{4}=+0.2362 \\ & \lambda_{3}=-0.1776 \\ & \lambda_{6}=+0.3487 \\ & \lambda_{7}=+0.0362 \\ & \lambda_{8}=+0.3435 \\ & \lambda_{0}=+0.1517 \\ & \lambda_{10}=-0.0608 \\ & \lambda_{11}=-0.6357 \\ & \lambda_{19}=+0.0045 \\ & \lambda_{13}=+0.0030 \end{aligned}$ |  |  | $x_{1}=+.34$ $x_{10}=+.88$ $x_{19}=-2.62$ <br> $x_{9}=+.37$ $x_{11}=-2.08$ $x_{20}=+.07$ <br> $x_{3}=+.78$ $x_{19}=+1.11$ $x_{91}=+.35$ <br> $x_{6}=-1.39$ $x_{13}=-1.04$ $x_{98}=-.19$ <br> $x_{6}=-1.55$ $x_{14}=-1.03$ $x_{23}=+.17$ <br> $x_{6}=-1.06$ $x_{16}=-.31$ $x_{24}=+.25$ <br> $x_{7}=+.04$. $x_{16}=-1.25$ $x_{26}=-.30$ <br> $x_{8}=+.09$ $x_{17}=+1.30$ $x_{26}=+.06$ <br> $x_{9}=-1.88$ $x_{18}=+1.60$ $x_{97}=+.13$ <br>  $\left[\mathbf{w x}^{7}\right]=7.53$  |  |  |  |  |  |  |  |  |  |  |

54-a.
KHANPISURA MERIDIONAL SERIESS.
Figure No. 9.


May 1879.
J. B. N. HENNESSEY,

In charge of Computing Offico.

## KHANPISURA MERIDIONAL SERIES.

## PRINCIPAL TRIANGULATION. TRIANGLES.



Noris.-1. The values of the sides are given in the same lines with the opposite angles.
2. Stations XXI (Búda) and XXIV (Bálágara) appertain to the Karachi Longitudinal Series of the North.West Quadrilateral.




| No.of Trianglo |  | Number and Name of Station |  | Corrections to Observed Angle |  |  |  | $\underset{\substack{\text { Angle }}}{\text { Corrected Plane }}$ Angle | Distance |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Cireuit | Non- Yeirenit |  |  | Figure | Circuit | Non. circuit | Total |  | Log. feet | Feet | Miles |
| 27 | 188 | XXIX (Rájur) XXXI (Jámkhed) XXXII (Áhirmal) | $\begin{aligned} & \mathbf{1} 80 \\ & \mathbf{I} \cdot 8 \mathbf{1} \\ & \mathbf{I} .80 \\ & \hline \end{aligned}$ | $" 1$ <br> $-\quad .13$ <br> $+\cdots 30$ <br> $-\quad .06$ | " | $\begin{array}{r}17 \\ -1.12 \\ +1.61 \\ -49 \\ \hline\end{array}$ | $\begin{array}{r}1.25 \\ +1.91 \\ -\quad .55 \\ \hline\end{array}$ | $\begin{array}{rcc} \circ & \prime \prime \\ -47 & 39 & 8 \cdot 77 \\ 81 & 45 & 34 \cdot 19 \\ 50 & 35 & 17 \cdot 04 \\ \hline \end{array}$ | $\begin{aligned} & 5^{\circ} 1718948,8 \\ & 5^{\prime} 2987006,8 \\ & 5^{\prime} 1911634,9 \end{aligned}$ | $\begin{aligned} & 148557 \cdot 60 \\ & 198930 \cdot 17 \\ & 155297 \cdot 14 \end{aligned}$ | $\begin{aligned} & 28 \cdot 136 \\ & 37 \cdot 676 \\ & 29 \cdot 412 \end{aligned}$ |
|  | 189 | XXXII (Āhirmal) <br> XXXI (Jámkhed) <br> XXXIII (Mathuri) | 5.41 |  |  |  | + 11 | 180 |  | $\begin{aligned} & 190510 \cdot 22 \\ & 242888 \cdot 71 \\ & 148557 \cdot 60 \end{aligned}$ | $\begin{aligned} & 36 \cdot 08 \mathrm{r} \\ & 46 \cdot 002 \\ & 28 \cdot 136 \end{aligned}$ |
|  |  |  | $\begin{aligned} & 2.23 \\ & 2.24 \\ & 2.23 \\ & \hline \end{aligned}$ | $\begin{array}{r} \\ \hline\end{array}$ |  | $\begin{array}{r}-1.14 \\ +1.54 \\ -40 \\ \hline\end{array}$ | $\begin{array}{r} -1.39 \\ +1.73 \\ -\quad 57 \\ \hline \end{array}$ |  | $\begin{aligned} & 5 \cdot 2799182,9 \\ & 5 \cdot 3854073,1 \\ & 5 \cdot 1718948,8 \end{aligned}$ |  |  |
|  |  |  | $6 \cdot 70$ |  |  |  | - . 23 | 180 0-0.00 |  | 164802•70 <br> $170948 \cdot 65$ <br> $205383 \cdot 85$ | $\begin{aligned} & 31 \cdot 213 \\ & 32 \cdot 377 \\ & 38 \cdot 898 \end{aligned}$ |
|  |  | XXX (Yerál) <br> XXXI (Jámkhed) <br> XXXIV (Dhaigaon) | $\begin{aligned} & 2 \cdot 15 \\ & 2 \cdot 15 \\ & 2 \cdot 16 \\ & \hline \end{aligned}$ | $\begin{array}{r} -1.30 \\ +1.25 \\ -1.60 \\ \hline \end{array}$ | $\begin{array}{r}.26 \\ +\quad 1.25 \\ +\quad 99 \\ \hline\end{array}$ |  | $\begin{array}{r} -1.04 \\ -\quad 00 \\ -\quad .61 \\ \hline \end{array}$ | 50 56 $31 \cdot 86$  <br> 53 39 19 99 <br> 75 24 $8 \cdot 15$  | $\begin{aligned} & 5 \cdot 2169643,3 \\ & 5 \cdot 2328656,6 \\ & 5 \cdot 3125662,6 \end{aligned}$ |  |  |
|  |  |  | $6 \cdot 46$ |  |  |  | -1.65 | $180 \quad 0000$ | $\begin{aligned} & 5^{\circ} 1878534,6 \\ & 5^{\circ} 2799183,0 \\ & 5^{\circ} 2169643,3 \end{aligned}$ | 154118.04 <br> 190510. 22 <br> 164802•70 | $\begin{aligned} & 29 \cdot 189 \\ & 36 \cdot 081 \\ & 31.213 \end{aligned}$ |
| 28 |  | XXXI (Jámkhed) <br> XXXIV (Dhaigaon) <br> XXXIII (Mathuri) | $\begin{array}{r} 1 \cdot 92 \\ 1 \cdot 92 \\ 1 \cdot 92 \\ \hline \end{array}$ | +2.62 -.07 -.35 | $\begin{array}{r}\text { ( } \\ \hline \mathbf{1} 99 \\ -\quad .58 \\ \hline\end{array}$ |  | $\begin{array}{r} +1.63 \\ +1.50 \\ -\quad 93 \\ \hline \end{array}$ | 50 46 $58 \cdot 24$ <br> 73 16 $31 \cdot 92$ <br> 55 56 $29 \cdot 84$ |  |  |  |
|  |  |  | $5 \cdot 76$ |  |  |  | $+2 \cdot 20$ | $\begin{array}{llll}180 & 0 & 0.00\end{array}$ | $\begin{aligned} & 5 \cdot 3306386,2 \\ & 5 \cdot 2279535,0 \\ & 5 \cdot 1878534,6 \end{aligned}$ | $\begin{aligned} & 214110 \cdot 80 \\ & 1690255^{\circ} 99 \\ & 15418^{\circ} 04 \end{aligned}$ | $\begin{aligned} & 40 \cdot 551 \\ & 32 \cdot 013 \\ & 29 \cdot 189 \end{aligned}$ |
| 29 |  | XXXIV (Dhaigaon) <br> XXXIII (Mathuri) <br> XXIV (Ãgargaon) | $\begin{aligned} & 2.04 \\ & 2.04 \\ & 2.04 \\ & \hline \end{aligned}$ | -1.38 -1.89 +2.37 | +1.17 -3.88 +2.71 |  | $\begin{array}{r}+\quad 79 \\ +5.77 \\ +5.08 \\ \hline\end{array}$ | $\begin{array}{lll} 82 & 51 & 24 \cdot 07 \\ 51 & 33 & 51 \\ 41 & 00 \\ 45 & 34 & 44 \cdot 93 \\ \hline \end{array}$ |  |  |  |
|  |  |  | 6.12 |  |  |  | + 10 | 180 |  | 166810. 22 <br> 118714.19 <br> 214110 •80 | $\begin{aligned} & 31 \cdot 593 \\ & 22.484 \\ & 40 \cdot 551 \end{aligned}$ |
| 30 |  | XXXIII (Mathuri) <br> XXIV (Ágargaon) <br> XXIII (Chincholi) | $\begin{array}{r} 1.56 \\ 1.55 \\ 1.56 \\ \hline \end{array}$ | $\begin{array}{r} +\quad 48 \\ +\quad 19 \\ +\quad 43 \\ \hline \end{array}$ | $\begin{array}{r} 1.91 \\ +3.88 \\ -1.89 \\ \hline \end{array}$ |  | $\begin{array}{r} -1.43 \\ +3.99 \\ -1.46 \\ \hline \end{array}$ | $\begin{array}{rrrr} 50 & 49 & 39 & 38 \\ 33 & 29 & 7 & 07 \\ 95 & 41 & 13 & 55 \\ \hline \end{array}$ | $\begin{aligned} & 5^{\circ} 2222226,8 \\ & 5^{\circ} \circ 745026,5 \\ & 5^{\circ} 3306386,2 \end{aligned}$ |  |  |
|  | 190 | XXXIV (Dhaigaon) <br> XXXIII (Mathuri) <br> XXIII (Chincholi) | 4.67 |  |  |  | +1.10 | $180 \quad 0 \quad 0.00$ | $\begin{aligned} & 5 \cdot 0745026,7 \\ & 5 \cdot 3299498,8 \\ & 5 \cdot 1878534,6 \end{aligned}$ | $\begin{aligned} & 118714 \cdot 19 \\ & 213771 \cdot 52 \\ & 154118 \cdot 04 \end{aligned}$ | $\begin{aligned} & 22 \cdot 484 \\ & 40 \cdot 487 \\ & 29 \cdot 189 \end{aligned}$ |
|  |  |  | $\begin{aligned} & \mathrm{I} \cdot 4 \mathrm{I} \\ & \mathrm{I} \cdot 4 \mathrm{I} \\ & \mathrm{I} \cdot 4 \mathrm{P} \\ & \hline \end{aligned}$ | - 04 -1.41 -1.31 |  | +3.49 <br> -5.79 <br> +2.30 | $\begin{array}{r}+3.45 \\ -7.20 \\ +\quad 99 \\ \hline\end{array}$ | $\begin{array}{rrr} 32 & 50 & 48 \cdot 17 \\ \mathbf{1 0 2} 23 & 32 \cdot 57 \\ 44 & 45 & 39 \cdot 26 \\ \hline \end{array}$ |  |  |  |
|  |  |  | 4.23 |  |  |  | $-2 \cdot 76$ | $180 \quad 0 \quad 0.00$ |  |  |  |

Nows-Stations XXIII (Chincholi) and XXIV (Agargaon) appertain to the Bombay Longitudinal Series of the Southern Trigon.

February, 1890.
W. H. COLE,

In charge of Computing Office.

## KHANPISURA MERIDIONAL SERIES.

PRINCIPAL TRIANGULATION. LATITUDES, LONGITUDES AND AZIMUTHS.


| Station 1 |  |  |  | side A B |  |  | Station B |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Cirouit No. | Number and Name of Station | Latitude North | Longitude East of Greenwich | Azimuth at A | Log. Feet | Azimuth at B | Number and Name of Station |
| 1 | XXI (Búda) | -1 | - , | $681449 \cdot 77$ | 4.7960898,2 | $\stackrel{\circ}{\circ} 1$ | XXIV (Bálágara) |
|  |  | 241411.86 | 751043.06 |  |  | 2481032.62 |  |
|  | $" \quad "$ |  | " | $\left\|\begin{array}{lll} 318 & 22 & 3 \times 33 \\ 357 & 46 & 23.46 \end{array}\right\|$ | 4.9906041,7 | 1382718.09 | I (Sitamau) |
|  | XXIV "Bálágara) |  | $75 \quad \begin{gathered}\text { " } 15.84\end{gathered}$ |  | 5'1011136,7 | 1774645.02 | II (Dhamnár) |
|  |  | $241021 \cdot 90$ |  | 292 1 43.09 | 5'1233300,4 | 1121045.64 | I (Sítamau) |
|  | " $\quad$ |  | " | $328 \quad 2815 \cdot 62$ | 5-0816499, 1 | 1483252.57 | II (Dhamnár) |
|  | I (Sítamau) | 2426.65 | 752224.33 | 484115.05 | 4*9036849,2 | $2283651 \times 70$ | " $\quad$ " |
|  | " " |  |  | 344191766 | 5-0066897,4 | $\begin{array}{llll}164 & 319.59\end{array}$ | III (Nigrun) |
|  | " " | " <br> " | " <br> " | $\left\lvert\, \begin{array}{rrr} 294 & 12 & 6 \cdot 37 \\ 296 & 50 & 40 \cdot 79 \end{array}\right.$ | 5.2173375,4 | 11423408 | IV (Dudhála) |
| 2 | II (Dhamnár) | $235322 \cdot 29$ | $75 \text { " }$ |  | $\begin{aligned} & 4^{\circ} 9949085,4 \\ & 5 ` 0530788,6 \end{aligned}$ | 116574.33 | III (Nigrun) |
| " |  | " | " | $92811 \times 57$ |  | $1892651 \cdot 11$ | VI (Lohári) |
|  | III (Nigrun) | $234559 \cdot 27$ | $752725 \cdot 29$ | $25616 \quad 6.69$ | 5•1007639,4 | $762459 \cdot 44$ | IV (Dudhála) |
|  |  | " |  | 3403725.36 | $5 \cdot 0905099,5$ | $1604021 \cdot 11$ | V (Deo Dongri) VI (Lohári) |
|  |  | $2350 \text { " } 54 \cdot 31$ |  | $\begin{array}{ccc} 58 & 3 & 51 \cdot 48 \\ 29 & 20 & 24 \cdot 24 \end{array}$ |  | $2375610 \cdot 00$ |  |
|  | IV (Dudhála) |  | $754925 \cdot 06$ |  | $\begin{aligned} & 5 \cdot 1002476,1 \\ & 5 \cdot 2237339,0 \end{aligned}$ | $\begin{array}{llll} 209 & 14 & 30 \cdot 90 \\ 288 & 24 & 54^{\prime} 74 \end{array}$ | VI (Lohári) <br> V (Deo Dongri) |
|  | $V$ (Deo Dongri) | $232647 \cdot 79$ | $753444 \cdot 17$ | $\begin{array}{r} 292024.24 \\ 10835.28 .39 \end{array}$ | $\begin{aligned} & 5 \cdot 2237339,0 \\ & 5 \cdot 1927174,7 \end{aligned}$ |  | V (Deo Dongri) <br> VI (Lohári) |
|  |  | " | " | $565022 \cdot 80$ | 5.0560418,5 | 236433771 | VII (Dhanora) <br> VIII (Gurla) <br> VII (Dhanora) <br> XI (Kaula-ka-Máta) <br> VIII (Gurla) |
|  |  | , | " 6 | 35459 9.98 | 4.7473177,6 | $1745930 \cdot 77$ |  |
| 3 | VI (Lohári) | $233457 \cdot 88$ | $75 \quad 8 \quad 16.03$ | 3344214.23 | 5*0920594,6 | 1544559.49 |  |
| 4 | VII (Dhanam) |  | " | $3514136 \cdot 72$ | 5.2206490,4 | 1714318.72 |  |
| 4 | VII (Dhanora) | $231630 \cdot 23$ | $751742 \cdot 57$ | $\begin{array}{llll}266 & 824\end{array}$ | 5.0014903,5 | 861529.14 |  |

Norn.—Stations XXI (Búda) and XXIV (Bálágara) appertain to the Karáchi Longitudinal Series of the North-Weat Quadrilateral.

| Station A |  |  |  | Side A B |  |  | Station B |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Circuit No. | Number and Name of Station | Latitude North | Longitude Fast of Greenwich | Aximuth at A | ${ }^{1}$ Log. Feet | Aximuth at B | Number and Name of Station |
| 475 | $\begin{aligned} & \text { VII (Dhanora) } \\ & \text { "\#II (Gurla) } \end{aligned}$ | $\bigcirc$ ' " | $\bigcirc 1$ |  | 4.9202418,1 | $135 \quad 550 \cdot 11$ | IX (Karsod) |
|  |  | 231630.23 | $751742 \cdot 57$ |  |  |  |  |
|  |  | $23173^{\prime \prime} 6 \cdot 14$ | $753536 \cdot 57$ | 28 431909 | 4•7786086,1 | 208411815 | XI (Kaula-ka-Máta) |
|  |  |  |  | 3217 51.38 | 4.8895432,2 | 2121456.50 | IX (Karsod) |
|  | IX (Karsod) | $23 \quad 646 \cdot 48$ | $\begin{gathered} 753536 \cdot 57 \\ 752812 \cdot 70 \end{gathered}$ | 3101321.71 | $4.8181844,0$ | 1301654.13 | $\mathbf{X}$ (Jalálkheri) |
|  |  |  |  | $2554955^{\circ} 00$ | 4.9755438,6 | $755621 \times 10$ |  |
| " | " | " | " | $94 \quad 656.28$ | 4*9439963,4 | $274 \quad 04740$ | XI (Kaula-ka-Máta) |
| " | " | " | " | $3402246 \cdot 12$ | 5.0930463,2 | 1602539.51 | XII (Harnása) |
| n | - | " | " | 3724 4890 | 5-1363074,8 | 21719210 | XIII (Indrawan) |
|  | X (Jalálkheri) | 231034.89 | $754435^{\circ} \mathrm{O1}$ | $194756 \cdot 92$ | 51717896,0 | 1994426.97 | XII (Harnása) |
|  | XI (Kaula-ka-Máta) | $23 \quad 748 \cdot 21$ | $751233 \cdot 30$ | 3573855.30 | 5.0611078,9 | 177391500 | XIII (Indráwan) |
|  | XII (Harnása) | $224729^{\circ 91}$ | $753537^{\circ} 33$ | 93423967 | 5.0969580,6 | $27334 \begin{array}{ll}2.85\end{array}$ | X'" " |
|  | " | " | " | 27423517 | 5.2285994,3 | 2073713.03 | XIV (Mograba) |
|  | " " | " | " | $\begin{array}{llll}343 & 26 & 0.80\end{array}$ | $5 \cdot 1590244,2$ | 1632849.24 | XV (Singárchori) |
| 6 | XIII (Indráwan) | $224848 \cdot 54$ | $751323 \cdot 78$ | 3433626.99 | 5.2162374,1 | 1633937.09 | XIV (Mograba) |
| " | " $\quad$ | " | " | $5046 \quad 6 \cdot 38$ | 5-1257558,2 | $23039 \quad 030$ | XVI (Gumánpur) |
|  | XIV (Mograba) | 222244.21 | $752138 \cdot 57$ | 26422241 | 5-0806120,3 | $8430 \quad 8.96$ | XV (Singárchori) |
|  |  | " |  | $116 \quad 733.26$ | 5.2224297,5 $5 \cdot 1307296,3$ | 2955721.87 | XVI (Gumánpur) |
|  | " " |  |  | $\left\lvert\, \begin{array}{rrrr} 346 & 21 & 49.56 \\ 48 & 11 & 11 & 63 \\ 31 & 42 & 23.76 \end{array}\right.$ | 5.1307296,3 | 1662357.49 | XVII (Thíkri) |
|  | XV (Singárchori) | $22 \stackrel{"}{24} 39^{\circ} 91$ | $7542 \text { " } 45 \cdot 62$ |  | $5 \cdot 3256813,5$$5 \cdot 2253017,9$ | $\begin{array}{lll} 228 & \circ & 38 \cdot 57 \\ 211 & 36 & 28 \cdot 05 \end{array}$ | XVIII (Báwangaz) |
|  |  |  |  |  |  |  | XVII (Thíkri) |
| 7 | XVI (Gumánpur) XVII (Thíkri) | $223450 \cdot 27$ | 745459.56 | 15652.19 | 5.3319590,4 | 181 5622.77 | XVIII (Báwangaz) |
|  |  | 22122.77 | $752717 \cdot 16$ | 8741773 | 5-2784758,4 | $2665142 \cdot 71$ |  |
|  | " " |  | " <br> " | $15035.07$ | $5 \cdot 0931438,5$$5 \cdot 3597984,0$ | $1815019.33$ | XIX (Jalálabad) |
|  | " |  |  | $474335 \cdot 26$ |  | 2273228.29 | XX (Bábákuvar) |
| 8 | XVIII (Báwangaz) | $215923.20$ | 7453 41*99 | 301 2244.22 | 5.3383250,6 | 1213457.95 | XIX (Jalálabad) |
| " | XIX (Jalálabad) | 214035.29 | $7526^{\prime \prime} 34 \cdot 90$ | 3514929.07 | 5•1635562,2 | 1715050.60 | XX (Bábákuvar) |
|  |  |  |  | 793933.91 | 5•2257597,2 | $\begin{aligned} & 25928 \quad 47 \cdot 50 \\ & 1622519.85 \end{aligned}$ | XXI (Ārgaon) |
|  |  | " | " | 3422234.98 | 5•1477707,3 |  |  |
|  | XX (Bábäkuvar) | $213533.54$ | " | $425420 \cdot 12$ | 5.2545348,9 | 2224625.98 | XXII (Ajnád) |
| 9 |  |  | $745721 \cdot 60$ | 2961954.05 | 5-3662898,6 | $\begin{array}{llll}116 & 3319.78\end{array}$ | XXI (Árgaon) |
| " | XXI (Ārgaon) | $211827 \cdot 70$ | 7534 4.92 | 3364746.96 | 5.0422364,2 | 1565034.95 | XXII (Ajnád) |
|  |  |  |  | $905055^{\circ} \mathrm{O}$ | 5.2172132,3 | 2704021.23 |  |
|  |  | " | " | 293515.23 | 5.3738994,8 | 2092753.73 | XXIII (Valvádi) |
|  |  | 2118490 | " | 3504355.64 | 5.1926514,3 | 17045 30'91 | XXIV (Dhanvár) |
| 10 | XXII (Ajnád) |  | $75 \quad 5 \quad 0.92$ | $3464857 \times 0$ | 5.3296345,6 | 16652 I 2 I | XXIII (Valvádi) |
| " | $\begin{array}{cc} " \\ \text { XXIII (Valvádi) } \end{array}$ | $\begin{gathered} " \\ 204427 \cdot 73 \end{gathered}$ | $\begin{gathered} " \\ 751334.30 \end{gathered}$ | -309 1532.56 | $\begin{aligned} & 5 \cdot 3908798,9 \\ & 5 \cdot 3540683,4 \end{aligned}$ | 1292735.652113412.76 | XXIV (Dhanvár) <br> XXV (Anakvádi) |
| 11 |  |  |  | 314142.21 |  |  |  |
| 11 |  |  |  | 2494713.48 | 5•1792053,0 | 69564.78 | XXIV (Dhanvár) |
| " | " " | $\begin{aligned} & 98 \\ & 98 \end{aligned}$ | " | 952434.963073238.54 | 5'1586443,7 | $\begin{aligned} & 275149.36 \\ & 127394 \times 8 \end{aligned}$ | XXV (Anakvádi) <br> XXVI (Sirsála) |
| " |  |  |  |  |  |  |  |



Notz.-Station XXIII (Chincholi) and XXIV (Agargaon) appertain to the Bombay Longitudinal Series of the Southern Trigon.
W. H. COLE,

In oharge of Computing Office.

## KHANPISURA MERIDIONAL SERIES．

## PRINCIPAL TRIANGULATION．HEIGHTS ABOVE MEAN SEA LEVEL．

The following table gives，first，the usual data of the observed vertical angles and the heights of the signal and instrument， \＆c．，in pairs of horizontal lines，the first line of which gives the data for the lst or the fixed station，and the second line the data for the 2nd or the deduced station．This is followed by the arc contained between the two stations，and then by the terrestrial refraction and the height of the 2nd station above or below the lst，as computed from the vertical angles in the usual manner． This difference of height applied to the given height above mean sea level of the fixed station，gives that of the deduced station． Usually there are two or three independent values of the height of the deduced station；the details are so arranged as to show these consecutively and their mean in the columns of＂Trigonometrical Results．＂The mean results thus obtained are however liable to receive corrections for the errors generated in the trigonometrical operations，which are shown up by the spirit levelling operations，wherever a junction between the two has been effected．The spirit levelled determinations are always accepted as final，and the trigonometrical heights of stations lying between those fixed by the levelling operatious are adjusted by simple proportion to accord with the latter．In the table the spirit levelled values are printed thus，289110，\＆c．，to dis－ tinguish them from the adjusted trigonometrical values．The column in which the mean trigonometrical heights are given is barred across where necessary，as after deduction of Stn．XVII from Stn．XIV，page 67＿a，to indicate that one set of adjustments ends and another begins．The trigonometrical heights always refer to the upper mark or to the upper surface of the pillar or structure on which the theodolite stood；when a spirit levelled height does not refer to either of these surfaces，it is given in combination with a correction，thus $\left\{\begin{array}{c}854.65 \\ -3.5\end{array}\right.$ ，and the sum of these two quantities，in this case $85{ }^{\prime} \cdot{ }_{15}$ ，represents the value with which the corre－ sponding trigonometrical mean height $849^{\circ} 2$ is comparable．Descriptions follow these tables，exactly indicating the surfaces on which the levelling staff stood during the determinations of the spirit levelled heights．

When the pillar of the station is perforated，the height given in the last column is that between the upper surface of pillar and the ground level mark－stone in the floor of the passage；otherwise，it is the approximate height of the structure above the ground at the base of the station．

The heights of the initial stations above Mean Sea Level are taken from the Karachi Longitudinal Series of the North－West Quadrilateral and are as follows：－

XXI（Búda） $1525 \cdot 5$ feet；XXIV（Bálágara） $1804 \times 1$ feet．

| Astronomical Date |  | Number and Name of Station | Observed Vortical Angle |  | Height in feet |  |  | Terrestrial Refraction |  |  | Height in feet of 2 nd Station above Mean Sea Level |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1882－83 | Mean of Times of obser vation |  |  |  |  | $\begin{aligned} & \text { 劳 } \\ & \text { 宏 } \\ & \text { 莴 } \end{aligned}$ |  |  |  |  | Trigonometrical Results |  | FinalResult |  |
|  |  |  |  |  |  |  |  |  |  |  | $\begin{gathered} \text { By each } \\ \text { deduc- } \\ \text { tion } \end{gathered}$ | Mean |  |  |
|  | $h^{\prime} \boldsymbol{m}$ |  | －，＂ |  |  |  | ＂ |  |  |  |  |  |  | feet |
|  | 128 | XXI（Búda） | D ○ 415.8 | 4 | 1•7 | $4 \cdot 8$ | 640 |  |  |  |  |  |  |  |
| ＂ 2 | 133 | ＊Digau | Do $653 \cdot 1$ | 4 | 17 | $4 \cdot 8$ | 640 |  |  |  |  |  |  |  |
| ＂ 21 | 131 | XXIV（Bálágara） | D 017173 | 8 | 1．8 | 4.8 |  |  |  |  |  | 1548 | 1548 | $1 \cdot 5$ |
| ＂ 2 |  | ＊Digau | EO 443.5 | 4 | $0 \cdot 9$ |  | 804 | 42 | ． 052 | $-257 \times 9$ | $1546 \cdot 2$ |  |  |  |

Nore．－Stations XXI（Búda）and XXIV（Bálágara）appertain to the Karáchi Longitudinal Series of the North－West Quadrilateral．
＊＇lhis is an auxiliary station for the determination of height only，and its data are not published in this Volume．

| Astronomical Date |  | Number and Name of Station | Observed Vertical Angle |  | Height in feet |  |  | $\left\|\begin{array}{c}\text { Terrestrial } \\ \text { Refraction }\end{array}\right\|$ |  | $\begin{aligned} & \text { Height of } \\ & \text { 2nd Station - 1st Station } \\ & \text { in feet } \end{aligned}$ | Height in feet of 2nd Station above Mean Sea Level |  |  | Height of Pillar or Towor |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1882－83 | Mean of Times of obser－ vation |  |  |  | 號 | 总 |  | 若 |  |  | $\begin{array}{r} \text { Trigono } \\ \text { Ros } \end{array}$ | metrical <br> sults |  |  |
|  |  |  |  |  | \％ | 曹 |  | $\stackrel{\text { a }}{\square}$ | คัં |  |  | Mean | Result |  |
|  | h m |  | － 11 |  |  |  | ＂ |  |  |  |  |  |  | feet |
| Nov． 25 | 133 | XXIV（Bálágara） | D ○ $1442 \cdot 5$ | 4 | ＊ $0 \cdot 9$ |  | 1313 | 79 | －060 | －190．2 | 1613.9 |  |  |  |
| Dec． 6 | 20 | I（Sítamau） | D o 447.9 | 6 | 1•7 | $4 \cdot 8$ | 1313 | 79 |  | －190 2 | 1613 |  |  |  |
| ＂2，Jan． 2 | 133 | $\dagger$ Digau | $\begin{array}{lllll}\text { E } & \text { O } & \text { O } & 78 \\ \text { D }\end{array}$ | 8 | $\begin{array}{r}1 \cdot 1 \\ 1 \\ \hline 1\end{array}$ | 4．8． | 526 | 17 | －032 | ＋ 69.1 | 16173 | 1615＊8 | 1616 | $15^{\circ} 4$ |
| ＂6，＂ 3 | 141 | I（Sítamau） | D 0844.9 | 8 | 1．8 | $4 \cdot 8$ | 526 | 17 | O32 | ＋691 | 16173 | 15 |  | 154 |
| ，20，＂ 1 | 141 | II（Dhamnár） | 1） $\mathrm{C}_{42} \cdot 8$ | 8 | 3.7 | $4 \cdot 8$ |  |  |  | －6I．6 | 1616 |  |  |  |
| ＂6，＂ 3 | 134 | I（Nítamau） | Do $330 \cdot 3$ | 10 | $2 \cdot 0$ | $4 \cdot 8$ | 791 | 34 |  | －6I•6 | 1616 |  |  |  |
| Jan． 20 | 253 | XXI（Búda） | D o $545 \cdot 3$ | 6 | 1．8 | 4.8 |  |  |  |  | $1683 \cdot \frac{ \pm}{+}$ |  |  |  |
| ＂ 1 | 124 | II（Dhamnár） | D $01416 \cdot 8$ | 4 | $5 \cdot 0$ | $4 \cdot 8$ | 1247 | 25 |  | ＋158．1 |  |  |  |  |
| Nor．27，20，Dec． 21 | 211 | XXIV（Bálágara） | D 012373 | 12 | 1．8 | 4.8 |  | 62 |  |  | $1677 \cdot 0$ |  |  |  |
| Dec． 20 | 215 | II（Dhamnár） | Do 520.5 | 6 | 3．1 | $4 \cdot 8$ | 1193 | 62 | －052 | $-1271$ | $1677{ }^{\circ}$ |  |  |  |
| ，2，Jan． 2 | 135 | $\dagger$ Digau | E o 157.9 | 14 | $2 \cdot 3$ | 4.8 | 624 | 12 | －019 | ＋130．3 | $1678 \cdot 5$ | 1677．6 | 1678 | 1 |
| ＂20，＂ 1 | 147 | II（Dhamnár） | D $01215{ }^{\prime} 9$ | 10 | 1．8 | 4.8 | 624 | 12 | Or9 | $+1303$ | 1678 | 1677 6 | 1678 | 1 |
| ＂6，„， 3 | 134 | I（Sítamau） | D o $330 \cdot 3$ | 10 | $2 \cdot 0$ | $4 \cdot 8$ | 791 | 34 | 043 | ＋6I．6 | 1677＊2 |  |  |  |
| ＂20，＂ 1 | 141 | II（Dhamnár） | D 0842.8 | 8 | $3 \cdot 7$ | $4 \cdot 8$ | 791 | 34 | 043 | ＋616 | 1677 |  |  |  |
| ＂ 6 | 143 | I（Sítamau） | D o 8 50．9 | 4 | $1 \cdot 8$ | 4.8 |  | 36 |  | － 28.8 | 1587.0 |  |  |  |
| ＂ 16 | 150 | III（Nigrun） | D $0648 \cdot 5$ | 6 | $4 \cdot 3$ | $4 \cdot 8$ | 1003 | 36 | 036 | － 28.8 | 15870 | 1586．1 |  | 10 |
| ＂ 20 | 29 | II（Dhamnár） | D 010 50．0 | 6 | $2 \cdot 9$ | $4 \cdot 8$ |  | 36 |  |  |  |  |  |  |
| „16，Jan． 6 | 131 | III（Nigrun） | D 0426.2 | 8 | $2 \cdot 2$ | 4.8 | 977 | 36 | 037 | 92.4 | 1585 |  |  |  |
| ＂ 6 | 146 | I （Sítamau） | D 0944.4 | 4 | $2 \cdot 5$ | 4.8 |  |  |  |  |  |  |  |  |
| ＂7，18 | 24 | † Tarauli | D 0437.5 | 10 | $4 \cdot 3$ | $4 \cdot 8$ | 959 | 52 |  |  | 15445 |  |  |  |
| ＂15，16 | 26 | III（Nigrun） | D o 738.5 | 8 | $2 \cdot 0$ | $4 \cdot 8$ |  |  |  |  |  | $1545 * 3$ | 1546 | 3•3 |
| ＂7，18 | 27 | †Tarauli | D $04 \begin{array}{lll}\text { l } & 1\end{array}$ | 8 | 1．8 | $4 \cdot 8$ | 749 | 33 | 044 | －40＊0 | $1546 \cdot 1$ |  |  |  |
| ＂ 15 | 211 | III（Nigrun） | D） $0658 \cdot 9$ | 6 | 1.7 | $4 \cdot 8$ | 1246 | 63 |  | $+89 \cdot 3$ | $1675{ }^{\circ}$ |  |  |  |
| ＂ 8 | 224 | IV（Dudhála） | D 01150.4 | 4 | 1．8 | 4.8 | 1246 | 63 | O51 | ＋ 893 | 16754 |  |  |  |
| ，7，Jan． 4 | 24 | † Tarauli | E 0114.2 | 10 | $2 \cdot 1$ | 4.8 |  |  |  |  |  | 16745 | 5 | 5 |
| ＂ 8 | 232 | IV（Dudhála） | D 01132.4 | 4 | 2．9 | $4 \cdot 8$ | 679 | 38 | 056 | ＋128．2 | $1673 \cdot 5$ |  |  |  |
| ，15，Jan． 6 | 227 | III（Nigrun） | D o 23 317 7 | 8 | 1•7 | 4.8 |  |  | OII |  | $1607 \cdot 6$ |  |  |  |
| ＂ 14 | 252 | $\dagger$ Pátan | D 0533.8 | 4 | 1．8 | 4．1 | 472 | 5 | Or | ＋215 | 16076 | $1605 \cdot 4$ | 1606 | $6 \cdot 5$ |
| ，18，Jan． 4 | 22 | $\dagger$ Tarauli | D ○ 236.6 | 8 | 3.0 | $4 \cdot 8$ | 695 | 28 | － 040 |  | $1603 \cdot 2$ |  |  | 5 |
| ＂ 14 | 221 | $\dagger$ Pátan | D 0817.7 | 4 | 1．6 | 4．1 | 695 | 28 | 040 | $+579$ | 16032 |  |  |  |
| Jan． 6 | 130 | III（Nigrun） | D o 4 44．1 | 4 | $2 \cdot 9$ | 4.8 | 994 | 29 | 029 | ＋9I•8 | $1677 \cdot 9$ | 1677．9 | 1678 | 5 |
| ＂ 8 | 119 | $\dagger$ Parnakhera | DOII 1－8 | 4 | $2 \cdot 2$ | 4．8 | 994 | 29 | 029 | ＋918 | 1677 | 16779 | 168 | 5 |
| Dec． 8 | 241 | IV（Dudhála） | D O If 16.9 | 6 | I．8 | 4.8 | 1654 |  |  | ＋5I•I | $1725 \cdot 6$ |  |  |  |
| ＂ 13 | 229 | V（Deo Dongri） | D 01322.9 | 4 | I．8 | $4 \cdot 8$ | 1654 | 91 | 055 | ＋ 511 | 1725 |  |  |  |
| ＂ 14 | 234 | $\dagger$ Pátan | D 0314.0 | 6 | 4.3 | 4.1 | 962 | 32 | －033 | ＋120．2 | $1725 \cdot 6$ | 1726．6 | 1727 | $\S$ |
| ＂ 13 | 134 | V（Deo Dongri） | D○ $1150 \cdot 8$ | 4 | 1．6 | $4 \cdot 8$ | 962 | 3 | －33 | ＋120：2 | 175 | 726 | 172 | $\mathcal{S}$ |


| Astronomical D | Date | Number and Name of Station | Obeerved Vertical Angle |  | Height in feet |  |  | TerrestrialRefraction |  |  | Height in foet of 2nd Station above Mean Sea Level |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1888－88 | Mean of Times of obeer： vation |  |  |  | ช | $\begin{aligned} & \text { 若 } \\ & \text { 置 } \end{aligned}$ |  | 宫 |  |  | $\begin{array}{\|c} \text { Trigonor } \\ \text { Ress } \end{array}$ | metrical ults |  |  |
|  |  |  |  |  |  | 者 |  | A | ค |  | $\begin{array}{\|c} \begin{array}{c} \text { By each } \\ \text { deduc- } \\ \text { tion } \end{array} \end{array}$ | Mean | Result |  |
|  | \％m |  | － 11 |  |  |  | ＂ |  |  |  |  |  |  | foet |
| Jan． 8 | 136 | ＊Parnakhera | D $0449^{\circ} \mathrm{2}$ | 4 | － 8 | $4 \cdot 8$ | 886 |  |  |  | 1728．6 |  |  |  |
| ＂ 16 | 118 | V（Deo Dongri） | D 0 8 82.7 | 4 | 1•7 | $4 \cdot 8$ | 886 | 44 |  | $+507$ | 1728 |  |  |  |
| ＂ 1 | 220 | II（Dhamnár） | D 0700.7 | 6 | 0.9 | $4 \cdot 8$ |  | 40 |  | $+57 \cdot 6$ | $35^{\circ} 2$ |  |  |  |
| ＂ 18 | 155 | VI（Lohári） | D 01029.0 | 6 | 1．8 | $4 \cdot 8$ | 117 | 40 |  | $+576$ | 1735 |  |  |  |
| ＂ 6 | 137 | III（Nigrun） | D o 536.7 | 4 | 1.8 1.8 | $4 \cdot 8$ | 1245 | 50 | － 040 | ＋147＊ | 1733.5 | 1735＊3 | 1736 | 13.4 |
| ＂ 18 | 127 | VI（Lohári） | D 01339.4 | 4 | 1．8 | $4 \cdot 8$ | 1245 | 50 | O40 | ＋17 4 | 1 | 735 | ． |  |
| 》 8 | 133 | ＊Parnakhera | D 020.5 | 4 | 1．8 | 4.8 | 655 | 33 |  | $+59.2$ | 1737 1 |  |  |  |
| ＂ 18 | 128 | VI（Lohári） | D○ 878 | 4 | $2 \cdot 1$ | $4 \cdot 8$ | 655 | 33 |  |  |  |  |  |  |
| \＃ 16 | 116 | V（Deo Dongri） | D 0466 | 4 | ＋4．9 | $4 \cdot 8$ | 1124 | 53 | － 047 | ＋154．5 | 188ı $\cdot 1$ |  |  |  |
| ＂11，12 | 149 | VII（Dhanora） | D○13 1．9 | 10 | 1．8 | $\dagger 2: 4$ |  |  |  |  |  | 188 |  | $18 \cdot 0$ |
| \％ 18 | 148 | VI（Lohári） | D 0516.5 | 6 | 1．8 | $4 \cdot 8$ |  |  |  |  | $1882 \cdot 3$ |  |  |  |
| Feb． 14 | 126 | VII（Dhanora） | D ○ 13 26.9 | 6 | I．8 | 4.7 | 1221 | 54 | － 044 | ＋1470 | $1882 \cdot 3$ |  |  |  |
| Doc．13，Jan． 16 | 145 | V（Deo Dongri） | D 0 5 5 4．2 | 8 | $2 \cdot 2$ | $4 \cdot 8$ |  | 26 | －047 | $-12.0$ | 1714．6 |  |  |  |
| Jan． 13 | 137 | VIII（Gurla） | D o $336 \cdot 8$ | 8 | 1•9 | $4 \cdot 8$ | 553 |  | － 04 | －120 | 1746 | 1715：2 | 1716 | $6 \cdot 7$ |
| \＃11，12 | 147 | VII（Dhanora） | D 01310.5 | 8 | $2 \cdot 2$ | ＋2．4 |  |  |  | －165．9 | 1715.8 |  |  |  |
| ＂ 13 | 144 | VIII（Gurla） | D 0217.6 | 6 | ＋4．7 | $4 \cdot 8$ | 992 | 37 | 037 | $-1659$ | 1715 |  |  |  |
| \％ 110,12, Feb． 14 | 1 36 | VII（Dhanora） | D 01019.4 | 12 | 1．6 | 1.2 | 822 | 36 | － 044 | －99．0 | $1782 \cdot 7$ |  |  |  |
| ＂26，＂ 9 | 141 | IX（Karsod） | D 0226.5 | 8 | $+2 \cdot 1$ | $4 \cdot 8$ |  |  |  |  |  |  |  |  |
| ＂$\quad 13$ | 141 | VIII（Gurla） | D o 319.9 | 6 | 1．7 | 4.8 | 766 | 30 | －039 | ＋60＊4 | $1775 \cdot 6$ | 17794 | 1781 | 5 |
| ＂ 26,29 | 140 | IX（Karsod） | D o $839^{\circ}$ | 8 | $2 \cdot 4$ | $4 \cdot 8$ | 766 | 3 |  | $+604$ | 1775 | 178 |  | 5 |
| ＂ 23 | 132 | XI（Kaula－ka－Máta） | D O 13 2•0 | 4 | 1．7 | $4 \cdot 8$ | 869 | 53 | －061 | $-167 \cdot 5$ | $1780 \cdot 0$ |  |  |  |
| \＃26，29 | 20 | IX（Karsod） | E O O 2.9 | 8 | $1 \cdot 4$ | $4 \cdot 8$ | 869 | 53 |  | 167 5 |  |  |  |  |
| ＂ 18 | 241 | VI（Lohári） | D o $755{ }^{\circ} 7$ | 6 | $2 \cdot 5$ | $4 \cdot 8$ | 1642 | 85 | $\cdot 052$ | ＋211．9 | $1947{ }^{\circ} 2$ |  |  |  |
| ＂ 23 | 213 | XI（Kaula－ka－Máta） | D $01642 \cdot 5$ | 4 | 1．8 | $4 \cdot 8$ |  |  |  | ＋2119 |  |  |  |  |
| » 11，12 | 140 | VII（Dhanora） | D o o 48．5 | 8 | $2 \cdot 5$ | ＋2．4 | 594 | 5 | －008 | ＋ $66 \cdot$ | 19477 | $1947{ }^{\circ}$ | 1948 | $0 \cdot 5$ |
| \％ 23 | 134 | XI（Kaula－ka－Máta） | D $0848 \cdot 5$ | 4 | I．8 | $4 \cdot 8$ | 594 |  |  |  |  |  |  |  |
| 》 26，29 | 20 | IX（Karsod） | E ○ O 2．9 | 8 | 1.4 | ．4．8 | 869 | 53 | －06r | $+167 \cdot 5$ | $1946 \cdot 7$ |  |  |  |
| n 23 | 132 | XI（Kaula－ka－Máta） | D 013 2．0 | 4 | $1 \cdot 7$ | $4 \cdot 8$ |  |  |  |  |  |  |  |  |
| \％ 13 | 137 | VIII（Gurla） | D o 333.8 | 6 | $2 \cdot 2$ | 4.8 | 650 | 25 | －038 | ＋ $30 \cdot 0$ | $1745 \cdot 2$ |  |  |  |
| ＂30，31 | 120 | X（Jalálkheri） | D○ 641.2 | 8 | $2 \cdot 4$ | $4 \cdot 8$ |  |  |  |  |  | $1747 \times 7$ | 1749 | $3 \cdot 8$ |
| ＂ 26,29 | 133 | IX（Karsod） | D o $813^{\circ} \mathrm{O}$ | 8 | $2 \cdot 2$ | $4 \cdot 8$ | 934 | 44 | －047 | － 29.2 | $1750 \cdot 2$ |  |  |  |
| ＂30，31 | 123 | X（Jalálkheri） | D 0673 | 8 | 1．5 | $4 \cdot 8$ | 934 | 44 |  | －292 | 1750 |  |  |  |
| 》 25，26 | 29 | IX（Karsod） | D ○ 742.7 | 8 | $2 \cdot 0$ | $4 \cdot 8$ | 651 | 22 |  | － $48 \cdot 0$ | 1731．4 |  |  |  |
| Feb． 8 | 155 | ＊Kwála | D 0242.5 | 6 | 1．5 | $4 \cdot 5$ |  |  |  |  |  |  |  |  |
| Jan．23，Feb． 15 | 149 | XI（Kaula－ka－Máta） | D 014 58．8 | 10 | $2 \cdot 1$ | $4 \cdot 8$ | 1046 | 35 | －033 | $-208 \cdot 4$ | $1738 \cdot 8$ | 1734.4 | 1736 | 4.5 |
| Feb． 8 | 152 | ＊Kwála | D 0127.3 | 6 | $1 \cdot 7$ | $4 \cdot 5$ |  |  |  |  |  |  |  |  |

[^18]| Astronomical Date |  | Number and Name of Station | Observed Vortical Angle |  | Height in feet |  | $\begin{aligned} & \text { 品 } \\ & \text { 若 } \\ & \text { H } \\ & 0 \end{aligned}$ | TerrestrialRefraction |  |  | Height in feet of 2nd Station above Mean Sea Level |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1883 | Mean of Times of obser－ vation |  |  |  | ${ }^{\text {E }}$ |  |  |  |  |  | $\begin{array}{r} \text { Trigono } \\ \text { Res } \end{array}$ | metrical ults |  |  |
|  |  |  |  |  |  | 莒 |  | $\underset{\sim}{5}$ | ค |  | $\begin{array}{\|c} \text { By each } \\ \text { deduc- } \\ \text { tion } \end{array}$ | Mean | Result |  |
|  | $\boldsymbol{h} m$ |  | － 1 |  |  |  | ＂ |  |  |  |  |  |  | foet |
| Mar． 16 | 127 | ＊Baloda | D ○ 535.4 |  | 1.4 |  |  |  |  |  |  |  |  |  |
| ＂ 19 | 25 | ＊Kwála | D 0242.8 | 4 | 4．0 | $4 \cdot 5$ | 453 |  | ．031 | － 17.8 | $1733{ }^{\circ}$ |  |  |  |
| Jan．29，Feb． 9 | 144 | IX（Karsod） | D $0644^{\circ} \mathrm{L}$ | 8 | 1．5 | $4 \cdot 8$ |  |  |  |  |  |  |  |  |
| Feb．10，12 | 126 | －Baloda | Do 342．7 | 8 | 1•3 | $4 \cdot 6$ | 643 | 18 | $\cdot 028$ | － 28.7 | 1750＇7 |  |  |  |
| ＂ 16 | 123 | XI（Kaula－ka－Máta） | D ○ 1541.9 | 6 | 4．1 | 4.8 |  |  |  |  |  |  |  | ＇2 |
| ＂10，12 | 113 | ＊Baloda | E○ 557.5 | 8 | $1 \cdot 7$ | 4.6 | 613 | 21 | －034 | $-196 \cdot 3$ | 1750＊9 | 1751．5 | 1753 | 2 |
| Mar．$\quad 19$ | 25 | ＊Kwála | D 0242.8 | 4 | 4.0 | 4.5 |  |  |  |  |  |  |  |  |
| ＂ 16 | 127 | ＊Baloda | D ○ 535.4 | 4 | $1 \cdot 4$ | $4 \cdot 6$ | 453 |  |  | ＋17．8 | ${ }^{1752} 9$ |  |  |  |
| ＂ 17 | 130 | XI（Kaula－ka－Máta） | D ○ 1339.5 | 6 | 4.3 | $4 \cdot 8$ |  |  |  |  |  |  |  |  |
| ＂ 15 | 150 | ＊Samalia | E 0． 0 9．0 | 4 | 3．0 | $4 \cdot 9$ | 849 | 23 | $\cdot 027$ | $-173.4$ | 1773.8 |  |  |  |
| Feb． 12 | 225 | ＊Baloda | D $0251 \cdot 3$ | 6 | ＋3．2 | $4 \cdot 6$ |  |  |  |  |  | $1772 \cdot 3$ | 1774 | 5 |
| ＂ 21 | 224 | ＊Samalia | Do $517 \times 2$ | 6 | 4．1 | ＋0．2 | 365 | －51 | － 140 | $+19^{\circ}$ | 1770•7 |  |  |  |
| ＂15，16 | 137 | XI（Kaula－ka－Máta） | Doil 43.5 | 8 | $\ddagger 5^{\circ} 5$ | $4 \cdot 8$ |  |  |  |  |  |  |  |  |
| ＂ 17 | 146 | ＊Jalodia | E 0 O 29\％ | 4 | 4．3 | $\pm{ }^{+} \cdot 0$ | 740 | 37 | －050 | －124．2 | $1823{ }^{\circ}$ |  |  |  |
| ＂ 12 | 157 | ＊Baloda | D ○ $040 \cdot 8$ | 8 | $\ddagger 5^{\circ} 5$ | 4.6 |  |  |  |  |  | 1822．9 | 1825 | $8 \cdot 8$ |
| ＂ 17 | 155 | －Jalodia | D 09001 | 4 | 4．1 | $\ddagger{ }^{\circ} \mathrm{O}$ | 511 | －29 | ． 057 | ＋71．3 | 1822．8 |  |  |  |
| ＂10，12 | 124 | ＊Baloda | D o 3 57．9 | 8 | $2 \cdot 5$ | 4.6 |  |  |  |  |  |  |  |  |
| ＂ 23 | 154 | ＊Nagora | D o 716.6 | 4 | 4．1 | $4 \cdot 8$ | 646 |  | $\cdot 014$ | ＋ $32 \cdot 2$ | 1783.7 |  |  |  |
| ＂ 22 | 215 | ＊Samalia | D $0311 \times$ | 6 | 1.4 | to． 2 |  |  |  |  |  | 1782.5 | 1784 | 5．8 |
| ＂ 23 | 125 | ＊Nagora | D 0514.9 | 4 | $\dagger 2 \cdot 8$ | $4 \cdot 8$ | 446 | －16 | －036 | ＋9．0 | $1781 \cdot 3$ |  |  |  |
| ＂ 9 | 136 | IX（Karsod） | D ○ 833.8 | 4 | $2 \cdot 3$ | $4 \cdot 8$ |  |  |  |  |  |  |  |  |
| ＂ 27 | 28 | XII（Harnása） | D $01042 \cdot 9$ | 6 | $2 \cdot 3$ | 4.5 | 1225 | 39 | $\cdot 032$ | ＋ $39^{\circ}$ | 1818.4 |  |  |  |
| ＂ 8 | 155 | ＊Kwála | D） 288.5 | 6 | $2 \cdot 3$ | $4 \cdot 5$ |  |  |  |  |  |  |  |  |
| ＂ 27 | 212 | XII（Harnása） | D 0938.8 | 6 | $2 \cdot 1$ | 4•5 | 718 | II | －015 | $+79.2$ | 1813.6 | 18159 | 1818 | $10 \cdot 2$ |
| ＂ 23 | 222 | －Nagora | D o 418.4 | 4 | $2 \cdot 3$ | $4 \cdot 8$ |  |  |  |  |  |  |  |  |
| ＂ 27 | 27 | XII（Harnása） | Do $724^{\circ} \mathrm{I}$ | 4 | 3＇9 | 4.5 | 705 | 6 | $\infty$ | ＋33．1 | 1815\％ |  |  |  |
| ＂21，22 | 237 | －Samalia | E 028.8 | 8 | 1．9 | to＇ 2 |  |  |  |  |  |  |  |  |
| Mar．9，10 | 150 | XIII（Indráwan） | Do 9 3．5 | 8 | $2 \cdot 5$ | 4.5 | 372 | －2I | ． 056 | $+59.3$ | 1831．6 |  |  |  |
| ＂ 13 | 150 | ＊Jalodia | D ○ $239^{\circ} 4$ | 4 | 11＇3 | $4 \cdot 6$ |  |  |  |  |  |  |  |  |
| 9，10 | 229 | XIII（Indráwan） | D $0432 \cdot 2$ | 8 | 4.6 | $4 \cdot 5$ | 414 | －26 | －063 | ＋8．2 | 183 I －1 | $1832{ }^{\circ}$ | 1834 | $7 \cdot 5$ |
| Feb．－ 23 | 210 | ＊Nagora | D o 146.4 | 4 | 1.9 | $4 \cdot 8$ |  |  |  |  |  |  |  |  |
| Mar． 9 | 155 | XIII（Indráwan） | D○ 8772 | 4 | $2 \cdot 2$ | 4.5 | 540 | －18 | －033 | ＋50．7 | $1833^{\circ}$ |  |  |  |
| Feb．$\quad 27$ | 146 | XII（Harnása） | E O O 34.3 | 4 | 4.5 | 4.5 |  |  |  |  |  |  |  |  |
| Mar．6，7 | 152 | XIV（Mograba） | D $02544^{\text {I }}$ | 8 | 3.6 | $4 \cdot 6$ | 1673 | 83 | $\cdot 050$ | ＋647 3 | $2463 \cdot 2$ |  |  |  |
| ＂${ }^{\text {a }}$ | 236 | XIII（Indráwan） |  | 4 | $9^{\circ} 0$ | 4.5 | 1626 | 60 | － 037 | $+627.8$ |  | 2461 5 | 2464 | $\bigcirc$ |
| ＂6，7 | 153 | XIV（Mograba） | D $02541 \cdot 5$ | 8 | 3.0 | 4.6 | 1626 | 60 | －037 | ＋627＊8 | $2459 * 8$ |  |  |  |

[^19]| Astronomical | Dato | Number and Name of Station | Observed Vertical Anglo |  | Height in feet |  |  | Terrestrial Refraction |  | $\begin{gathered} \text { Height of } \\ \text { 2nd Station - 1st Station } \\ \text { in feet } \end{gathered}$ | Height in feet of 2nd Station above Mean Sea Level |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1883 | Mean of Times of obser－ vation |  |  |  | T | 若 |  | 若 |  |  | $\begin{gathered} \text { Trigonol } \\ \text { Rest } \end{gathered}$ | metrical <br> ults |  |  |
|  |  |  |  |  |  | 禀 |  | 品 | － |  | By each deduc－ | Mean | Result |  |
|  | $\hbar \mathrm{m}$ |  | $1,0,0$ |  |  |  | $"$ | － |  |  |  |  |  | feet |
| Feb． 27 | 27 | XII（Harnása） | E 014 49．3 | 4 | 2．8 | $4 \cdot 5$ |  | 70 | $\cdot 049$ | ＋1073 ${ }^{\circ}$ | 2889 ${ }^{\text {I }}$ |  |  |  |
| Mar． 2 | 25 | XV（Singárchori） | D $03617 \cdot 8$ | 8 | $4 \cdot 3$ | $4 \cdot 5$ | 1425 | 70 |  | ＋1073 | $288{ }^{-1}$ |  |  |  |
| 》 5，6，7 | 20 | XIV（Mograba） | E 0315.5 | 10 | 1＇9 | $4 \cdot 6$ |  |  |  |  |  |  |  |  |
| ＂ 2 | 132 | XV（Singárchori） | D○ 2113 | 4 | $4 \cdot 5$ | $4 \cdot 5$ | 1190 | 64 |  | ＋ $426 \cdot$ | $2888 \cdot 1$ |  |  |  |
| 》 28 | 218 | XIV（Mograba） | D 05049 I | 4 | $4 \cdot 7$ | $4 \cdot 6$ |  |  |  | $-1612 \cdot 3$ | 849.2 | 849．2 |  | 0 |
| Apr．$\quad 3,4$ | 211 | XVII（Thíkri） | EO3111．2 | 8 | $4 \cdot 3$ | 4.9 | 1335 | 79 | $\bigcirc 59$ | $-16123$ | 8492 | 849 | 85468 -3.5 | 0 |
| Mar．$\quad 20$ | 31 | XIII（Indráwan） | D $01117^{\circ} \mathrm{C}$ | 4 | 11．8 | $4 \cdot 5$ |  |  |  |  | 1826．8 |  |  |  |
| ＂ 23 | 251 | XVI（Gumánpur） | D ○ $1057^{\circ} \mathrm{O}$ | 4 | $10 \cdot 7$ | $4 \cdot 5$ | 1320 | 7 |  |  | $1826 \cdot 8$ |  |  |  |
| ＂5，6，7 | 1 57 | XIV（Mograba） | D $02525^{\prime} 9$ | 16 | $2 \cdot 5$ | $4 \cdot 6$ |  |  |  |  |  |  |  | 53 |
| ＂ 23 | 149 | XVI（Gumánpur） | E 0043.6 | 4 | 4.6 | $4 \cdot 5$ | 1649 | 85 | 052 | － 634.0 | $1829^{\circ}$ |  |  |  |
| ＂ 24 | 214 | XVI（Gumánpur） | D 0110.6 | 4 | 4.2 | 4.5 |  |  |  |  |  |  |  |  |
| Apr．$\quad 7$ | 231 | XVIII（Báwangaz） | D $02020 \cdot 0$ | 6 | $1 \cdot 7$ | $4 \cdot 8$ | 2123 | 124 |  |  |  |  |  |  |
| Mar．$\quad 7,28$ | 21 | XIV（Mograba） | D 02054.5 | 10 | 4.2 | 4.6 |  |  |  |  |  | 9 | 2112 | $\dagger$ |
| Apr． 7 | 25 | XVIII（Báwangaz） | D $0940 \cdot 5$ | 4 | 4.2 | $4 \cdot 8$ | 2092 | 128 |  | － $346 \cdot 0$ | 21176 |  |  |  |
| ＂8，4 | 143 | XVII（Thíkri） | E 0840.2 | 8 | 4.2 | 4.9 | 1876 |  |  |  | 6．${ }_{2}$ |  |  |  |
| ＂ 7 | 125 | XVIII（Báwangaz） | D $03646 \cdot 0$ | 4 | 4.2 | $4 \cdot 8$ |  | 96 |  |  |  |  |  |  |
| ＂ 4 | 152 | XVII（Thíkri） | E 03955.6 | 6 | $3^{\circ} 0$ | 4.9 |  |  |  |  | 2618．8 |  |  |  |
| ＂ 12 | 115 | XIX（Jalálabad） | D $058 \quad 5.2$ | 4 | 4.2 | $4 \cdot 5$ | 1225 | 70 | $\cdot 057$ | ＋1767．6 | $2618{ }^{\prime}$ |  |  |  |
| ＂ 7 | 141 | XVIII（Báwangaz） | D $0755^{\circ} \mathrm{2}$ | 4 | 3.0 | $4 \cdot 8$ |  |  |  |  |  | $2621 \cdot 3$ | 2613 | $2 \cdot 5$ |
| ＂12，13 | 240 | XIX（Jalálabad） | D 023 50．7 | 8 | 4.2 | 4.5 | 2154 | 125 | －058 | ＋ 5057 | 2623 | 26213 | 2613 | 2.5 |
| （1） | 211 | XX（Bábákuvar） | DO131t1 | 10 | $1 \cdot 9$ | $4 \cdot 8$ | 1662 |  |  |  | $2621 \cdot 4$ |  |  |  |
| （2） | 210 | XIX（Jalálabad） | D 01121.3 | 10 | 1．3 | $4 \cdot 8$ | 1662 | 99 |  | 45 I | 26214 |  |  |  |
| Apr．$\quad \mathbf{3 , 4}$ | 149 | XVII（Thíkri） | E ○ 1019.8 | 8 | 1．9 | 4.9 | 2263 |  |  |  | $2665 \cdot 3$ |  |  |  |
| 》 24 | 134 | XX（Bábákuvar） | D $044 \begin{array}{ll}\text { 4．3 }\end{array}$ | 6 | 5.4 | $4 \cdot 5$ | 2263 | 121 | －053 | ＋1814 1 | 26653 |  |  |  |
| ＂$\quad 7$ | 124 | XVIII（Báwangaz） | E 0228.3 | 6 | $1 \cdot 9$ | $4 \cdot 8$ |  |  |  | ＋ 549.8 | 2667．7 | $2666 \cdot 4$ | 2658 | $1 \cdot 0$ |
| n 20 | 20 | XX（Bábákuvar） | D 023 44．3 | 6 | 4.2 | $4 \cdot 5$ | 1440 | 74 | 051 | ＋ 5498 | 26677 | 2666 － | 2658 | 10 |
| （2） | 210 | XIX（Jalálabad） | D 011213 | 10 | $1 \cdot 3$ | $4 \cdot 8$ |  |  |  | ＋45． |  |  |  |  |
| （1） | 211 | XX（Bábákuvar） | D○13 11．1 | 10 | 1.9 | $4 \cdot 8$ | 1662 | 99 |  | ＋ $45^{\circ} 1$ | 12666 3 |  |  |  |
| Dec． 9 | 211 | XIX（Jalálabad） | E○ 218.7 | 8 | $2 \cdot 0$ | $5 \cdot 1$ |  |  |  |  |  |  |  |  |
| Nov． 21 | 156 | XXI（Ȧrgaon） | D 02256.2 | 8 | $2 \cdot 0$ | $5 \cdot 1$ | 1389 | 80 |  | ＋516．1 | $13137 \cdot 4$ |  |  |  |
| Dec．$\quad 3$ | 221 | XX（Bábákuvar） | D o 933.6 | 6 | 2.0 | 5＇1 |  |  |  |  |  |  |  | 0.8 |
| Nor． 19 | 211 | XXI（Ȧrgaon） | D 02337.5 | 6 | 17 | $5^{11}$ | 2297 | 156 | －068 | ＋ $475 \cdot 3$ | 31417 | 3139.6 | 3129 | $0 \cdot 8$ |
| 》 25 | 2 II | XXII（Ajnád） | Eoi9 6．1 | 4 | 2.0 | $5^{11}$ |  |  |  | $+1487 \cdot 4$ | 43139.7 |  |  |  |
| 19 | 26 | XXI（Árgaon） | D 04255.4 | 6 | 177 | $5 \cdot 1$ | 1630 | 104 |  | $+1487^{\circ} 4^{\prime}$ | 431397 |  |  |  |
| Dec．$\quad 9$ | 231 | XIX（Jalálabad） | D ○ 31 36．2 | 8 | 1．8 | 5．1 |  |  |  | －969＊9 | $1651 \cdot 4$ |  |  |  |
| Nov． 28 | 227 | XXII（Ajnád） | EO $530 \cdot 4$ | 6 | 1．8 | $5 \cdot 1$ | 1776 | 109 |  | $-969^{\circ} 9$ |  |  |  |  |


| Astronomical Dato |  | Number and Name of Station | Observed Vertical Angle |  | Height in feet |  |  | TerrestrialRefraction |  |  | Height in feet of 2nd Station above Mean Sea Lovel |  |  | 宮 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1884 | $\left\|\begin{array}{c} \text { Mean of } \\ \text { Times } \\ \text { of obser- } \\ \text { vation } \end{array}\right\|$ |  |  |  | 3 | $\stackrel{\rightharpoonup}{\mathrm{O}}$ |  | 范 |  |  | Trigonometrical Results |  | Final Result |  |
|  |  |  |  |  | \％ | 音 |  | 品 | $\left\lvert\, \begin{gathered} \text { E. } \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}\right.$ |  | $\begin{gathered} \text { By each } \\ \text { deduc• } \\ \text { tion } \end{gathered}$ | Mean |  |  |
|  | $h m$ |  | －＇＂ |  |  |  | ＂ |  |  |  |  |  |  | feet |
| Dec．$\quad 3$ | 229 | XX（Bábákuvar） | D ○ 39 46．3 | 4 |  | 511 | 1089 | 62 |  | －1013．3 | $1653 \cdot 1$ | $1652 \cdot 2$ | 1641 | 0.7 |
| Nov． 28 | 24 | XXII（Ajnád） | E 023 27．0 | 4 | 1•7 | 5．1 |  |  |  |  |  |  |  |  |
| 19 | 26 | XXI（Ȧrgaon） | D $04255^{\prime} 4$ | 6 | 1.7 | 5．1 | 1630 | 104 |  | －1487＊4 | $1652 \cdot 2$ |  |  |  |
| ＂ 25 | 211 | XXII（Ajnád） | EO19 6．1 | 4 | $2 \cdot 0$ | $5 \cdot 1$ | 1630 | 104 |  | $-14874$ | 1652 |  |  |  |
| ＂19，21 | 149 | XXI（Árgaon） | D 05434.9 | 6 | $3 \cdot 5$ | 5．1 | 1540 |  |  | －1962．0 | 1177.6 |  |  |  |
| Apr． 17 | 135 | XXIV（Dhanvár） | E $03156 \cdot 4$ | 4 | $1 \cdot 7$ | 5．1 | 1540 | 94 |  | －1962 | 1177 |  |  |  |
| Nov．25，28 | 214 | XXII（Ajnád） | D 02425.3 | 8 | $3 \cdot 5$ | $5 \cdot 1$ | 2431 | 149 |  | － $473 \cdot 3$ | 1178.9 | $1178 \cdot 3$ | 116481 | $2^{\circ} 0$ |
| Apr． 17 | 220 | XXIV（Dhanvár） | D $01112 \cdot 6$ | 8 | $2 \cdot 1$ | $5^{11}$ | 2432 | 149 |  | －473 3 | 1178 | 1178 |  |  |
| 22 | 144 | XXIII（Valvádi） | D 01024.2 | 6 | $2 \cdot 3$ | 4.4 | 1493 |  |  |  |  |  |  |  |
| 17 | 144 | XXIV（Dhanvár） | ＇D $01210 \cdot 7$ | 6 | $3 \cdot 3$ | 5．1 | 1493 | 72 |  |  |  |  |  |  |
| Nov． 19 | 220 | XXI（Ȧrgaon） | D $04612 \cdot 6$ | 6 | $4 \cdot 1$ | $5 \cdot 1$ | 2338 |  |  |  |  |  |  |  |
| Apr． 26 | 152 | XXIII（Valvádi） | E 01154.6 | 6 | 1•7 | $4 \cdot 4$ | 2338 | 142 | －061 | －2000＇6 | $1139^{\circ}$ |  |  |  |
| Nov．25，28 | 28 | XXII（Ajnád） | D $\bigcirc 23$ 48．4 | 6 | $4 \cdot 1$ | $5 \cdot 1$ | 2111 | 124 |  |  |  |  |  | $2 \cdot 0$ |
| Apr． 22 | 134 | XXIII（Valvádi） | D 0719.2 | 4 | 1．8 | $4 \cdot 4$ | 2111 | 124 |  | － 513. | 11392 | 1139 ＇ | $-2.8$ | 20 |
| ＂ 17 | 1 44 | XXIV（Dhanvár） | D $01210 \cdot 7$ | 6 | $3 \cdot 3$ | $5^{11}$ |  |  |  |  |  |  |  |  |
| ＂ 22 | 144 | XXIII（Valvádi） | D 01024.2 | 6 | $2 \cdot 3$ | $4 \cdot 4$ | 1493 | 72 | － 04 | － $39 \cdot 2$ | II39 1 |  |  |  |
| Nov．25，28 | 217 | XXII（Ajnád） | D ○ 715.4 | 6 | $1 \cdot 3$ | $5{ }^{11}$ |  |  |  | ＋ $605 \cdot 6$ | 2257＊8 |  |  |  |
| May 2 | I 56 | XXV（Anakvádi） | D 02540 1 | 4 | 1．8 | $4 \cdot 8$ | 2233 | 132 |  | ＋605 6 | 22578 |  |  |  |
| Apr． 23 | 138 | XXIII（Valvádi） | E $01026 \cdot 9$ | 4 | $2 \cdot 0$ | 4.4 |  |  |  |  |  | $2256 \cdot 8$ | $2243 \cdot 94$ | $3 \cdot 2$ |
| May 2 | 140 | XXV（Anakvádi） | D 0358.5 | 4 | $5 \cdot 0$ | $4 \cdot 8$ | 1662 | 91 | C55 |  | 22557 |  |  |  |
| Apr． 22 | 29 | XXIII（Valvádi） | E 029 1．3 | 4 | 1．7 | 4.4 |  | 76 |  |  | 2788•1 |  |  |  |
| ＂ 8 | 216 | XXVI（Sirsála） | D $05018 \cdot 3$ | 4 | $3 \cdot 3$ | $5^{\circ} \mathrm{O}$ | 1424 | 76 | 053 | ＋1663 3 | $2788 \cdot 1$ |  |  |  |
| ＂ 17 | 25 | XXIV（Dhanvár） | E 02833.5 | 6 | 1.7 <br> 1.8 | $5 \cdot 1$ | 1410 |  | －055 | ＋1623＊9 | $2788 \cdot 7$ | 2789 ${ }^{\circ} 6$ | 2790 | 0.8 |
| ＂ 10 | 153 | XXVI（Sirsála） | D $04940 \cdot 2$ | 6 | 1．8 | $5^{\circ} 0$ | 1410 | 77 | 055 | ＋16239 | 2788 | 2789 | 279 |  |
| ＂ 2 | 151 | XXVII（Sátmála） | D 017 59 1 | 4 | $3 \cdot 8$ | $5 \cdot 3$ | 1461 |  |  |  |  |  |  |  |
| ＂8，9 | 155 | XXVI（Sirsála） | D o 358.7 | 6 | $3 \cdot 3$ | $5 \cdot 0$ | 1461 | 74 |  |  |  |  |  |  |
| ＂ 23 | 20 | XXIII（Valvádi） | E $03450 \cdot 8$ | 4 | 1．8 | 4.4 | 1456 | 81 | 056 | ＋1958．4 | $3083 \cdot 2$ | 3083 2 | 3084 | $0 \cdot 0$ |
| ＂ 3 | 26 | ＊A | D） $5^{6} 30 \cdot 1$ | 4 | 4．1 | $5 \cdot 3$ | 1456 | 81 |  | $+19584$ |  |  | 3084 | －0 |
| ＂ 3 | 223 | ${ }^{\text {＊}}$ A | E 03412.6 | 2 | $5 \cdot 3$ | $5 \cdot 3$ |  | $\bigcirc$ |  | $+8.8$ |  |  |  |  |
| 3 | 147 | XXVII（Sátmála） | D $03421 \cdot 6$ | 2 | $5 \cdot 3$ | $5 \cdot 3$ | 9 | 0 |  |  |  |  |  |  |
| May $\quad 2$ | 125 | XXV（Anakvádi） | D 023 314 |  | 4.6 | $4 \cdot 8$ |  |  |  |  |  |  |  |  |
| A pr．$\quad 3$ | 122 | XXVII（Sátmála） | D 02921.2 | 4 | 1•8 | $5 \cdot 3$ | 2159 | 126 | $\cdot 058$ | ＋ 8511 | 3094.8 | 3092 2 | 3093 | 5.0 |
| 8，9 | 155 | XXVI（Sirsála） | D） 358.7 | 6 |  | $5^{\circ} 0$ | 1461 |  |  | ＋301．3 | 3089 7 |  |  |  |
| 2 | 151 | XXVII（Sátmála） | D $01759^{\circ} \mathrm{I}$ | 4 | $3 \cdot 8$ | $5 \cdot 3$ | 1461 | 74 |  |  | 30897 |  |  |  |
| ＂ 8 8 | 157 | XXVI（Sirsála） | D） 122.8 | 6 | $1 \cdot 9$ | 5．0 | 1660 | 82 |  | ＋ 23.5 |  |  |  |  |
| Mar．11，14 | 144 | XXVIII（Pophla） | D 0.1258 .3 | 6 | $3 \cdot 8$ | $5 \cdot 1$ | 1660 | 82 |  |  |  | 2816•3 | 2818 | $1 \cdot 3$ |

＊This is an auxiliary station for the determination of height only，and its data are not published in this Volume．

| Astronomical Date |  | Number and Name of Station | Observed Vortical Anglo |  | Height in feet |  |  | Terrestrial Refraction |  |  | Hoight in foet of 2nd Station above Mean Bea Level |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1884 | Mean of <br> Times <br> of obeor－ <br> vation |  |  |  | 3 | 若 |  | 营 |  |  | $\underset{\text { Rea }}{\text { Trigono }}$ | metrical ulta |  |  |
|  |  |  |  |  |  | 莒 |  | ． |  |  | $\begin{array}{\|l} \text { By each } \\ \text { deduc- } \\ \text { tion } \end{array}$ | Mean | Result |  |
|  | $h$ m |  | －，＂ |  |  |  | ＊ |  |  |  |  |  |  | foet |
| Apr． 2 | 129 | XXVII（Sátmála） | D $01754{ }^{\circ} 5$ |  | $1 \cdot 9$ | $5 \cdot 3$ | 1586 | 73 |  | 7 | 2819.5 |  |  |  |
| Mar． 14 | 128 | XXVIII（Pophla） | Do 6 4．8 | 6 | $8 \cdot 5$ | 5．1 |  | 73 |  | 7 | 2819 5 |  |  |  |
| Apr． 9 | 129 | XXVI（Sirsála） | D 02625.4 | 6 | $1 \cdot 3$ | 5＊0 |  |  |  |  |  |  |  |  |
| Mar． 8 | 131 | XXIX（Rajur） | D 0248.7 | 6 | $3 \cdot 0$ | $5 \cdot 1$ | 1932 | 92 |  | $670 \cdot 4$ | $2119^{\circ}$ |  |  |  |
| ＂ 11 | 128 | XXVIII（Pophla） | D 02747.9 | 6 | $1: 7$ | 5．1 | 1304 | 68 |  |  |  |  |  | $20 \cdot 3$ |
| 》 6 | 124 | XXIX（Rajur） | E 0813.9 | 4 | $4 \cdot 3$ | 5．1 | 1304 | 68 |  | 6901 | 2 |  |  |  |
| Apr．$\quad 2$ | 115 | XXVII（Sátmála） | D 013 31．0 | 4 | $2 \cdot 5$ | $5 \cdot 3$ |  | 48 |  |  |  |  |  |  |
| Mar． 25 | 121 | XXX（Yerúl） | D $0634^{\circ} \mathrm{C}$ | 4 | $5 \cdot 8$ | $5 \cdot 1$ | 1297 | 48 |  | $130 \cdot 8$ | $2961 \cdot 4$ |  |  |  |
| 》 11 | 221 | XXVIII（Pophla） | D 0.45 .8 | 6 | $1 \cdot 7$ | 5．1 |  |  |  |  |  |  |  |  |
| n 25，29 | 27 | XXX（Yerúl） | D 01234.3 | 6 | $1 \cdot 8$ | 5．1 | 1096 | 54 |  | ＋ $136 \cdot 9$ | 2953 2 |  |  |  |
| 11 | 158 | XXVIII（Pophla） | D 026 9．0 | 4 | $2 \cdot 5$ | 5．1 |  |  |  |  |  |  |  |  |
| Feb． 21 | 159 | XXXI（Jámkhed）． | E 0412.2 | 6 | $4 \cdot 3$ | $5 \cdot 1$ | 1454 | 71 |  |  | $67^{7}$ |  |  |  |
| Mar． 29 | 143 | XXX（Yerúl） | D 02815.7 | 4 | $3 \cdot 3$ | $5 \cdot 1$ |  |  |  |  |  | $2171^{\circ} 2$ | 2174 | $3 \cdot$ |
| Feb． 23 | 142 | XXXI（Jámkhed） | Do $215 \%$ | 6 | $1 \cdot 6$ | $5 \cdot 1$ | 2030 | 107 |  | －782．5 | 2174＊8 |  |  |  |
| Mar． 6 | 215 | XXIX（Rájur） | D ○ $320 \cdot 0$ | 6 | 3.0 | 5•1 |  |  |  |  |  |  |  |  |
| 》 4 | 28 | ＊Chaura Dongar | D ○ 437.7 | 4 | 1．6 | $5 \cdot 0$ | 477 | 12 |  | $8 \cdot 4$ | 2131－1 |  |  |  |
| Feb． 25 | 135 | XXXI（Jámkhed） | D o 912.7 | 6 |  |  |  |  |  |  |  | $2135{ }^{\circ}$ | 2138 | 0.5 |
| Mar． 4 | 1 34 | ＊Chaura Dongar | D $07 \begin{array}{lll} & 7 \cdot 2\end{array}$ | 4 | $2 \cdot 5$ | 5＊0 | 1061 | 46 |  | $32 \cdot 3$ | $2138 \cdot 9$ |  |  |  |
| 6 | 139 | XXIX（Rájur） | D 01644.4 | 6 | 1•8 | $5 \cdot 1$ | 1966 | 92 |  |  | 2016．0 |  |  |  |
| ＂ 1 | 137 | XXXII（Ȧhirmal） | D 013 3．1 | 6 | 1•8 | 5．0 | 1966 | 92 |  | － $106 \cdot 7$ | $2016{ }^{\circ}$ |  |  |  |
| Feb． $2 \dot{0}$ | 1 33 | XXXI（Jámkhed） | D 014 16．1 | 4 | $2 \cdot 0$ | 5．1 | 1469 | 87 |  | －147 ${ }^{\circ}$ |  |  |  | $5 \cdot 0$ |
| 27 | 132 | XXXII（Áhirmal） | Do $\mathbf{7 2 7}^{\text {1 }}$ | 4 | $2 \cdot 0$ | 5\％0 | 1469 | 87 |  | $-147^{\circ}$ | 2024 | $2020 \cdot 5$ | 2024 | 50 |
| Mar． 4 | 159 | ＊Chaura Dongar | D $01436 \cdot 6$ | 6 | $3 \cdot 5$ | 5＊0 |  |  |  |  |  |  |  |  |
| Feb． 28 | 148 | XXXII（Āhirmal） | D ○ 957.7 | 6 | 1．8 | $5 \cdot 0$ | 1649 | 91 |  | － 113.6 | 20214 |  |  |  |
| n 17 | 212 | XXXI（Jámkhed） | D 01343.0 | 4 | $2 \cdot 3$ | $5^{11}$ | 1883 |  |  |  |  |  |  |  |
| ＂5，6，9 | 223 | XXXIII（Mathuri） | D 014008 | 10 | $4 \cdot 2$ | 5．0 | 1883 | 112 |  |  |  |  |  |  |
| ＂$\quad 29$ | 247 | XXXII（Áhirmal） | D 01519.4 | 6 | $2 \cdot 0$ | 5．0 | 2401 | 148 | －062 | ＋161．2 | 2181．7 | $2183{ }^{\circ} \mathrm{I}$ | 2188 | $\dagger$ |
| ＂ 9 | 248 | XXXIII（Mathuri） | D 01953.4 | 6 | 1．8 | 5\％ | 2401 | 148 |  | ＋ 1612 | 2 21 | 2183 |  | $\dagger$ |
| ＂ 12 | 224 | XXXIV（Dhaigaon） | E 0231.4 | 4 | $2 \cdot 3$ | 5．0 |  | 65 |  |  |  |  |  |  |
| ＂4，5 | 22 | XXXIII（Mathuri） | D $02545^{\prime} 1$ | 6 | $7 \cdot 3$ | 5．0 | 1523 | 65 |  |  |  |  |  |  |
| Mar．27，29 | 215 | XXX（Yerúl） | D 04145 | 6 | $5 \cdot 3$ | 5•1 |  |  |  |  |  |  |  |  |
| Feb． 14 | 214 | XXXIV（Dhaigaon） | E $01535^{\circ}$ | 6 | $4 \cdot 3$ | 5．0 | 1690 | 80 |  |  | $1548 \cdot 0$ |  |  |  |
| ＂ 17 | 127 | XXXI（Jámkhed） | D $025 \mathbf{2 0 . 2}$ | 4 | $5 \cdot 1$ | 5•1 | 1629 | 68 |  | $\mid-617 \cdot 5$ |  | $1548 \cdot 8$ | 1553 | $2 \cdot 0$ |
| 14 | 133 | XXXIV（Dhaigaon） | E 0022.0 | 6 | $2 \cdot 2$ | 5．0 |  |  |  |  |  | 1548 | 1553 |  |
| 》 4，5 | 22 | XXXIII（Mathuri） | D $02545^{1} 1$ | 6 | $7 \cdot 3$ | 5．0 |  |  |  | $-636 \cdot 3$ | 1544－8 |  |  |  |
| ＂ 12 | 224 | XXXIV（Dhaigaon） | EO $231 \cdot 4$ | 4 | $2 \cdot 3$ | 5．0 | 1523 | 65 |  | $-636 \cdot 3$ | $1544 \cdot 8$ |  |  |  |

[^20]| Astronomical Dato |  | Number and Name of Station | Observed Vertical Angle |  | Height in feet |  |  | Terrestrial Refraction |  |  | Height in feet of 2nd Station above Mean Sea Level |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1884 | Mean of <br> Times <br> of obser－ <br> vation |  |  |  | ］ | $\begin{aligned} & \text { \# } \\ & \text { O } \\ & \text { a } \end{aligned}$ |  | $\begin{aligned} & \text { 若 } \\ & \stackrel{\rightharpoonup}{\mathbf{8}} \end{aligned}$ |  |  | Trigono | metrical ults |  |  |
|  |  |  |  |  | \％ | 崽 |  | $\begin{aligned} & \text { ⿷匚 } \\ & \text { ـ } \end{aligned}$ |  |  | By each deduc． tion | Mean | Result |  |
|  | h m |  | $\bigcirc{ }^{\circ} 1$ |  |  |  | $"$ |  |  |  |  |  |  | foet |
| Feb． 2 | 211 | XXXIII（Mathuri） | $\text { Eo } 429^{\circ} 2$ | 4 | 1－8 | 5＊0 | 962 | 61 |  |  |  |  |  |  |
| Jan． 27 | 155 | ＊Tarkha | $\text { DO } 1836 \cdot 8$ | 4 | $4^{\circ} 3$ | $5 \cdot 0$ | 962 | 61 | －063 | ＋ $328{ }^{\circ}$ | 25113 |  |  |  |
| Feb． 12 | 150 | XXXIV（Dhaigaon） | E O II 39.0 | 4 | I． 8 | $5^{\circ} 0$ |  |  |  |  |  |  |  |  |
| Jan． 31 | 159 | ＊Tarkha | D 03316.8 | 6 | 7＾3 | $5^{\circ} 0$ | 1451 | 78 | －054 | ＋962 1 | $2510^{\circ} 9$ |  |  |  |
| Feb． 2 | 152 | XXXIII（Mathuri） | E $\bigcirc 1243 \cdot 3$ | 4 | $4^{\circ 1}$ | 5＇0 |  | 67 |  |  | $2922 \cdot 6$ |  |  |  |
| Jan．23，25 | 212 | XXIII（Chincholi） | D $030 \quad 5 \cdot 7$ | 6 | $4 \cdot 3$ | $5 \cdot 0$ | 1173 | 67 | －057 | $739 \times 5$ | $2922 \cdot 6$ |  |  |  |
| ＂ 27 | 216 | ＊Tarkha | E O 1516．8 | 6 | $4^{\circ} 1$ | $5^{\circ} \mathrm{O}$ | 678 |  |  |  |  |  |  | $10 \cdot 6$ |
| ＂1883－84 ${ }^{25}$ | 26 | XXIII（Chincholi） | $\text { D } \circ 2549^{\circ} 7$ | 4 | 4．2 | $5 \cdot 0$ | 678 | 24 | －35 | ＋410＇2 | 29213 | 29227 | 2928 | $10 \cdot 6$ |
| Nov． 17 | 228 | XXIV（Ágargaon） | D 01659.7 | 4 | $4 \cdot 4$ | 9＊5 |  |  |  |  |  |  |  |  |
| Jan． 25 | 225 | XXIII（Chincholi） | D 0733.3 | 4 | 8．7 | $5^{\circ} 0$ | 1649 | 89 |  | － 2247 | $2924{ }^{\prime}$ |  |  |  |
| Feb． 4 | 215 | XXXIII（Mathuri） | Do 0－0．1 | 4 | 8•7 | $5^{\circ} 0$ | 2116 |  |  | ＋964．7 | $3147 \cdot 8$ |  |  |  |
| Nov． 17 | 223 | XXIV（Ágargaon） | Do31 $7^{\circ} 2$ | 4 | $4^{\cdot 1}$ | $9 \cdot 5$ | 2116 | 125 | － 05 | ＋ 9647 | 3147 |  |  |  |
| Feb． 12 | $\begin{array}{rr}2 & 7 \\ 2 & 8\end{array}$ | XXXIV（Dhaigaon） | E 02012.9 | 4 | $8 \cdot 7$ $7 \cdot 7$ | 5＊0 | 1671 |  | －054 | $+1600 \cdot 9$ | 3149.7 | $3148 \cdot \mathrm{r}$ | 3188.95 | 12＊$\dagger$ |
| Nov． 17 | 218 | XXIV（Ȧgargaon） | D 045 0．1 | 4 | 7＊7 | $9 \cdot 5$ | 1671 | 91 | － 54 | ＋1600 9 | 31497 | 3148 | ats | 12 |
| Jan． 25 | 225 | XXIII Chincholi） | D o $733^{\circ} 3$ | 4 | $8 \cdot 7$ | 5．0 | 1649 | 89 | $\cdot 054$ | ＋ 224.7 | $3146 \cdot 7$ |  |  |  |
| Nov． 17 | 228 | XXIV（Ágargaon） | D $01659^{\circ} 7$ | 4 | $4 \cdot 4$ | $9 \cdot 5$ | 1649 | 89 | － 54 | ＋ 2247 | 3146 |  |  |  |

Nore．－Stations XXIII（Chincholi）and XXIV（Agargaon）appertain to the Bombay Longitudinal Series of the Southern Trigon．
＊This is an auxiliary station for the determination of height only，and its data are not published in this Volume．
$\dagger$ When the vertical angles were measured the height of the upper mark was 16：43 feet above the bench－mark mentioned in the description of the atation． Since then the height has been reduced to 12 feet as given in the last column．

## Description of Spirit-levelled Points.

When determining the Spirit-levelled heights, given on pages 67_a to 70_G, the levelling staff stood on the surfaces hereafter described.
XV (Singárchori) On the upper mark-stone.

XVII (Thíkri) On a rock at the foot of the rectangular protecting pillar, height $=851 \cdot 77$ feet. To this value, $2 \cdot 88$ feet (the height of the upper surface of the rectangular protecting pillar above this rock) being added, the height of the upper surface of the protecting pillar was found to bee $854 \cdot 65$ feet.

XXIII (Valvádi)
On a stone at the side of the circular pillar, height $=1124.56$ feet. To this value, 3.01 feet (the height of the upper surface of the rectangular protecting pillar above this stone) being added, the height of the upper suirface of the protecting pillar was found to be $1127 \cdot 57$ feet.
$\left.\begin{array}{l}\text { XXIV (Dhanvár) } \\ \text { XXV (Anakvádi) }\end{array}\right\}$ On the upper mark-stone.
XXIV (Ágargaon)
On a bench-mark ( $\odot$ ) at the foot of the station, height $=3141.95$ feet. To this value, $12 \cdot 0$ feet (the height of the upper mark-stone above this B. M.) being added, the height of the upper mark-stone was found to be 3153.95 feet.

For further particulars of these stations, see pages 6 _ $_{\text {a }}$ to $8 c_{\text {- }}$.

Nors.-Station XXIV (Ágargaon) appertains to the Bombay Longitudinal Series.

March, 1890.
W. H. COLE,

In charge of Computing Office.

## KHANPISURA MERIDIONAL SERIES.

PRINCIPAL TRIANGULATION. AZIMUTHAL OBSERVATIONS.

## At XIII (Indráwan)

 March and April 1847 ; observed by Lieutenant H. Rivers with Dollond's 15-inch Theodolite.

Star observed
Mean Right Ascension 1847.0
Mean North Polar Distance 1847\%
Local Mean Times of Elongation, March 29
a Ursæ Minoris (West and East).
$1^{14} \quad 4^{\text {m }} \quad 9^{\text {a }}$
$1^{\circ} 30^{\prime} \quad 22^{\prime \prime} \cdot 85$
$\left\{\begin{array}{lll}\text { Western } & 6^{\mathrm{h}} & 3^{6^{m}} \\ \text { Eastern } & 18 & 39\end{array}\right.$



Abstract of Astronomical Azimuth observed at XIII (Indráwan) 1847.

1. By Eastern Elongation of a Ursæ Minoris.

| Face <br> Zero | $\begin{aligned} & \mathrm{L} \\ & 0^{\circ} \end{aligned}$ | $\begin{gathered} \mathbf{R} \\ 180^{\circ} \end{gathered}$ | $\begin{gathered} \mathrm{L} \\ 10^{\circ} \end{gathered}$ | $\begin{gathered} \mathrm{R} \\ 190^{\circ} \end{gathered}$ | $\begin{gathered} \mathrm{L} \\ 20^{\circ} \end{gathered}$ | $\begin{gathered} \mathbf{R} \\ 200^{\circ} \end{gathered}$ | $\begin{gathered} \mathbf{L} \\ 30^{\circ} \end{gathered}$ | $\begin{gathered} \mathbf{R} \\ 210^{\circ} \end{gathered}$ | $\begin{gathered} \mathrm{L} \\ 40^{\circ} \end{gathered}$ | $\begin{gathered} \hline \mathbf{R} \\ 220^{\circ} \end{gathered}$ | L 50 | $\begin{gathered} \mathbf{R} \\ 230^{\circ} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Date | March 29 |  | March 30 |  | March 31 |  | April 1 |  | April 2 |  | April 4 |  |
|  | " ${ }^{\circ}$ |  | " " |  | " |  | " " |  | " |  | " |  |
| Observed difference | 1918.11 | $26 \cdot 41$ | $\begin{array}{ll} 21 \cdot 35 & 19 \cdot 41 \\ 19 \cdot 81 & 20 \cdot 22 \\ 21.62 & 18 \cdot 67 \\ 17 \cdot 71 & 17 \cdot 78 \end{array}$ |  | $\begin{aligned} & 17.47 \\ & 13.60 \\ & 13.84 \\ & 15.71 \end{aligned}$ | $\begin{aligned} & 23 \cdot 34 \\ & 20 \cdot 15 \\ & 20 \cdot 80 \\ & 23 \cdot 83 \\ & 25 \cdot 10 \end{aligned}$ | $\begin{aligned} & 16 \cdot 20 \\ & 15.05 \\ & 13.94 \\ & 15.77 \end{aligned}$ | $\begin{aligned} & 24.09 \\ & 22.74 \\ & 21.61 \\ & 20.33 \end{aligned}$ | $\begin{array}{r} 17.64 \\ 13.53 \\ { }_{16} 6.06 \\ { }_{1} 15.94 \\ { }_{16} 6.97 \\ { }_{17} 7.08 \end{array}$ | $26 \cdot 07$ <br> $26 \cdot 12$ <br> $28 \cdot 34$ <br> 25.35 <br> 20.07 <br> $26 \cdot 05$ | $\begin{aligned} & 15 \cdot 84 \\ & 13.19 \\ & 15.02 \\ & 16.76 \end{aligned}$ | 24.36 |
| of Circle-Readings, |  | 24.31 |  |  | $17 \cdot 98$ |  |  |  |  |  |  |
| Ref. M. - Star |  | $22 \cdot 09$ |  |  | 27.22 |  |  |  |  |  |  |
| reduced to Elongation |  | $20 \cdot 35$ |  |  | 29.04 |  |  |  |  |  |  |
|  |  |  | 1712 |  |  |  |  |  |  |  |  | $27 \cdot 44$ |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| Means | 18.75 | $23 \cdot 29$ | 19.52 | 19.02 |  | $15 \cdot 16$ | $22 \cdot 64$ | $15 \cdot 24$ | 22-19 | 16.20 | 25.33 | 15:20 | $25^{\circ} 21$ |
| - | , |  |  |  |  |  | * |  |  |  |  |  |  |
| Means of both faces - ${ }^{2}$ | 321 |  |  |  |  |  | . 90 |  | 72 |  |  |  | 21 |
| Az. of Star fr. S., by W. 181 | $37 \quad 56$ |  | 56 |  |  | -93 |  | 23 |  |  |  |  |
| Az. of Ref. M. " 179 | $34 \quad 35$ |  | 37 |  |  | - 03 |  | 51 |  |  |  | -6 |

2. By Western Elongation of a Ursæ Minoris.


| Astronomical Azimuth of Referring Mark ... ${ }^{\text {a }}$ by Western | ... | ... | 179 | 34 | 37*34 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | ... | ... | " |  | $39^{\cdot 62}$ |
|  | $\ldots$ | - |  |  | $38 \cdot 48$ |
| Angle Referring Mark and XII (Harnása) see page 19-g. ante | $\ldots$ | ... | +93 | 59 | $23^{\circ} 93$ |
| Astronomical Azimuth of Harnása by observation | ... | ... | 273 | 34 | $2 \cdot 41$ |
| Geodetical Azimuth of $\quad$ ly calculation from that adopted (Vol. II, page 141) at Kaliánpur, see page 61 _g. ante | ... | ... | 273 | 34 | $2 \cdot 85$ |
| Astronomical - Geodetical Azimuth at XIII (Indráwan) | ... | ... | - |  | 0.44 |

[^21]
## At XXIII (Valvádi)

Lat. N. $20^{\circ} 44^{\prime} 27^{\prime \prime} \cdot 73$; Long. E. $75^{\circ} 13^{\prime} 34^{\prime \prime} \cdot 30=\begin{gathered}h \\ 5\end{gathered} \frac{m}{0} 54^{s} \cdot 3$; Height above Mean Sea Level, 1125 feet.
December 1846; observed by Lieutenant H. Rivers with Dollond's 15 -inch Theodolite.

| Star observed | $\epsilon$ Ursæ Minoris (East and West). |
| :---: | :---: |
| Mean Right Ascension 1846.0 | $17^{\text {b }} \quad 1^{\text {mu }} 55^{\circ}$ |
| Mean North Polar Distance 1846.0 | $7^{\circ} 43^{\prime} \quad 7^{\prime \prime} \cdot 70$ |
| Local Mean Times of Elongation, December 6 | $\left\{\begin{array}{l} \text { Eastern } \\ 18^{\mathrm{h}} 12^{\mathrm{m}} \\ \text { Western } \\ 5 \end{array} 5^{0}\right.$ |



\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} \& \& \multirow[t]{2}{*}{} \& \multicolumn{4}{|c|}{face left} \& \multicolumn{4}{|c|}{pact right} \\
\hline \&  \& \& Observed Horizontal Angle: Diff. of Readings Ref. Mark - Star \&  \& Reduction in Arc to Time of Elongation \& Reduced Observation Ref. Mark - Star at Elongation \& Observed Horizontal Angle Diff. of Readings Ref. Mark - Star \&  \& Reduction in Arc to Time of Elongation \& \begin{tabular}{l}
Reduced Observation \\
Ref. Mark - Star at Elongation
\end{tabular} \\
\hline \multirow{4}{*}{Dec. 10} \& \multirow{4}{*}{W.} \& \multirow[t]{4}{*}{} \& 0 \& \(\begin{array}{ll}\text { m } \& 8\end{array}\) \& \multirow[t]{4}{*}{\[
\left|\begin{array}{cc}
0 \& 1 \cdot 81 \\
0 \& 0.23 \\
0 \& 6 \cdot 10 \\
0 \& 9.57 \\
0 \& 12.49
\end{array}\right|
\]} \& \(\bigcirc\), " \& - , \& \(m\) \& , " \& - \\
\hline \& \& \& \multirow[t]{3}{*}{} \& - 55 \& \& \multirow[t]{3}{*}{} \& \multirow[t]{3}{*}{r
\(+\quad 95037.67\)
5046.66
5011.34
4959.67} \& 1040 \& \[
\begin{array}{r}
+\circ 31 \cdot 87 \\
023 \cdot 96
\end{array}
\] \& + \(951 \begin{array}{rr}9.54 \\ 10.62\end{array}\) \\
\hline \& \& \& \& 440
5
5 \& \& \& \& \& \multirow[t]{2}{*}{\[
\begin{array}{rr}
\circ \& 57 \cdot 82 \\
1 \& 9.29
\end{array}
\]} \& \multirow[t]{2}{*}{\(8 \cdot 96\)} \\
\hline \& \& \& \& 5191
641 \& \& \& \& 1546 \& \& \\
\hline \multirow[t]{3}{*}{" 10} \& \multirow[t]{3}{*}{E.} \& \multirow[t]{3}{*}{\[
\begin{array}{cc}
180 \& 0 \\
\& \& 0 \\
0 \& 0
\end{array}
\]} \& \multirow[t]{2}{*}{\[
\left\lvert\, \begin{array}{r}
-63714 \cdot 00 \\
-\quad 3739.33
\end{array}\right.
\]} \& \multirow[t]{2}{*}{\(\begin{array}{lll}22 \& 17 \\ 20 \& 17 \\ \& 17\end{array}\)} \& \multirow[t]{2}{*}{\[
\begin{array}{r}
218 \cdot 17 \\
1 \quad 54 \cdot 56
\end{array}
\]} \& - \(63932 \cdot 17\) \& \multirow[t]{3}{*}{- \(633220 \cdot 67\)} \& 742 \& - 016.58 \& \\
\hline \& \& \& \& \& \& \(\begin{array}{r}39 \\ 33 \cdot 89 \\ \hline 2 \cdot 19\end{array}\) \& \& \begin{tabular}{l}
5159 \\
0 \\
\hline
\end{tabular} \& \[
\begin{array}{cc}
0 \& 10.02 \\
0 \& 0.04
\end{array}
\] \& \[
\begin{array}{r}
-63937 \cdot 25 \\
\quad 30 \cdot 68 \\
0 \quad 36 \cdot 04
\end{array}
\] \\
\hline \& \& \& \(\begin{array}{ll}39 \& 3 \cdot 33 \\ 38 \& 46 \cdot 33\end{array}\) \& 914
12120 \& \[
\begin{aligned}
\& \mathrm{O} 23 \cdot 86 \\
\& 042 \cdot 61
\end{aligned}
\] \& \(27 \cdot 19\)
\(28 \cdot 94\) \& \& 155 \& - 1.02 \& \[
36 \cdot 04
\] \\
\hline \multirow[t]{4}{*}{, 11} \& \multirow[t]{4}{*}{W.} \& \multirow[t]{4}{*}{\[
\begin{array}{cc}
180 \& 0 \\
\& \& \\
\circ \& \circ
\end{array}
\]} \& \multirow[t]{4}{*}{\[
\begin{array}{r}
\left.+\begin{array}{rl}
5111 \cdot 00 \\
5110 \cdot 34 \\
50 \\
50 \& 50 \cdot 67 \\
50 \& 41 \cdot 00
\end{array}\right)
\end{array}
\]} \& \multirow[t]{4}{*}{\[
\begin{array}{r}
319 \\
432 \\
9 \\
911 \\
10 \quad 39
\end{array}
\]} \& \multirow[t]{4}{*}{} \& \multirow[t]{4}{*}{\[
\begin{array}{r}
+95114 \cdot 06 \\
16 \cdot 07 \\
14 \cdot 17 \\
12 \cdot 61
\end{array}
\]} \& \(+\quad 951\)

51 6.338 \& $$
\begin{array}{lr}
4 & 8 \\
2 & 53
\end{array}
$$ \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
+04 \cdot 80 \\
0 \\
0
\end{array}
$$
\]} \& + 9 51 $\begin{array}{r}11 \cdot 13 \\ 90101\end{array}$ <br>

\hline \& \& \& \& \& \& \& 51
49

49 \& $$
\begin{array}{r}
253 \\
1638
\end{array}
$$ \& \& 9.01

10.83 <br>

\hline \& \& \& \& \& \& \& $4937 \cdot 34$ \& \multirow[t]{2}{*}{$\begin{array}{rrr}18 & 1 \\ 19 & 33\end{array}$} \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 130.49 \\
& 146.49
\end{aligned}
$$} \& \multirow[t]{2}{*}{} <br>

\hline \& \& \& \& \& \& \& 4924.34 \& \& \& <br>

\hline \multirow[t]{6}{*}{, 11} \& \multirow[t]{6}{*}{E.} \& \multirow[t]{6}{*}{$$
\begin{array}{cc}
190 & 0 \\
\& & 0
\end{array}
$$} \& \multirow[t]{6}{*}{} \& \multirow[t]{2}{*}{- 57} \& \multirow[t]{2}{*}{$-0.0 .25$} \& \multirow[t]{6}{*}{- $63928 \cdot 92$

$.30 \cdot 58$
$31 \cdot 10$
31.96

32.43} \& \multirow[t]{3}{*}{$$
\begin{array}{r}
-638 \\
-\quad 7 \cdot 33 \\
38 \\
\\
\\
38 \\
\\
\hline 90 \cdot 60
\end{array}
$$} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 1733 \\
& 1519
\end{aligned}
$$

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
1 \\
-125.72 \\
1 \\
\hline
\end{array}
$$ 5^{\circ} 33

\]} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
-63933 \cdot 05 \\
34 \cdot 33 \\
34 \cdot 74
\end{array}
$$
\]} <br>

\hline \& \& \& \& \& \& \& \& \& \& <br>

\hline \& \& \& \& 6 \% \& - $10 \cdot 10$ \& \& \& $$
\begin{array}{ll}
15 & 19 \\
13 & 56
\end{array}
$$ \& \& <br>

\hline \& \& \& \& 723 \& - 15.30 \& \& $3815 \cdot 33$ \& 1651 \& $$
\begin{array}{ll}
1 & 19 \\
1 & 30^{\circ} \\
1 & 32 \\
1 & 45 \\
103
\end{array}
$$ \& <br>

\hline \& \& \& \& 832 \& - $20 \cdot 43$ \& \& \multirow[t]{2}{*}{$3746 \cdot 67$} \& \multirow[t]{2}{*}{1921} \& \multirow[t]{2}{*}{14519} \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 34 \cdot 70 \\
& 31 \cdot 86
\end{aligned}
$$} <br>

\hline \& \& \& \& \& \& \& \& \& \& <br>
\hline , 12 \& W. \& \& + 95122.66 \& $\bigcirc 9$ \& +00.01 \& + 9522.67 \& + 95043.33 \& 916 \& + ○ 23.94 \& + 951727 <br>

\hline \& \& $$
\begin{gathered}
\& \\
10
\end{gathered}
$$ \& 51 21.33 \& 14 \& $\bigcirc 0 \cdot 31$ \& 21.64 \& + $5032 \cdot 67$ \& 10 18 \& + 029.57 \& +

+ 

2.24
3.86 <br>
\hline \& \& \& $5121 \cdot 0$ \& 21 \& - 1.13 \& $22 \cdot 13$ \& 5029.00 \& 1111 \& - $34 \cdot 86$ \& 3.86 <br>
\hline \& \& \& 4929.67 \& $\begin{array}{lll}19 & 18\end{array}$ \& 1 43.63 \& 13.30
18.07 \& 5023.00 \& 12 \& - $40 \cdot 24$ \& $3 \cdot 24$ <br>
\hline \& \& \& 49 21.00 \& \& 157.07 \& \& \& \& \& <br>
\hline , 13 \& E. \& 1701 \& $-63836 \cdot 33$ \& 1349 \& - 053.21 \& - 63929.54 \& - 63928.00 \& 432 \& - 0 5.74 \& - 63933.74 <br>

\hline \& \& \& \& $3842 \cdot 33$ \& 1225 \& $$
\begin{aligned}
& 0.99 \\
& \hline 42.99
\end{aligned}
$$ \& $25 \cdot 32$ \& $3930 \cdot 00$ \& 318

1
1 \& - 3.04
0 \& 33.04
35.23 <br>

\hline \& \& \& $39 \quad 9 \cdot 34$ \& 743 \& $$
\circ 16 \cdot 69
$$ \& 26-03 \& 3934.67 \& \& - 0.56 \& <br>

\hline , 14 \& E. \& $\begin{array}{ccc}150 & 0 \\ \text { \& } & \\ 330 & 0\end{array}$ \& \[
$$
\begin{array}{r}
63848 \cdot 33 \\
-\quad 3854 \cdot 66
\end{array}
$$

\] \& $\begin{array}{rrr}12 & 9 \\ 10 & 57\end{array}$ \& \[

$$
\begin{array}{r}
-041 \cdot 16 \\
-\quad 33 \cdot 44
\end{array}
$$

\] \& \[

-639 \underset{29}{29} $$
\begin{aligned}
28 \\
20
\end{aligned}
$$
\] \& - 63931.33

3723.33 \& $\begin{array}{rr}1 & 29 \\ 21 & 32\end{array}$ \& \[
$$
\begin{array}{rr}
-0 & 0.62 \\
2 & 10.25
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
-63931 \cdot 95 \\
33 \cdot 58
\end{array}
$$
\] <br>

\hline
\end{tabular}

Abstract of Astronomical Azimuth observed at XXIII (Valvádi) 1816.

1. By Eastern Elongation of $\epsilon$ Ursa Minoris.

| $\begin{aligned} & \text { Face } \\ & \text { Zero } \end{aligned}$ |  | L $140^{\circ}$ | R 320 | L 150 | $\mathbf{R}$ $330^{\circ}$ | L 160 | R 340 | L 170 | $\mathbf{R}$ 350 | L $180^{\circ}$ | R $0^{\circ}$ | L 190 | R 10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Date |  | December 6 |  | December 7 |  | December 8 |  | December 13 |  | December 10 |  | December 11 |  |
|  |  | ${ }^{\prime \prime}$ |  | " |  | " |  | " |  | " |  | " |  |
| Observed difference |  |  |  | $26.29 \quad 33.84$ |  | $27.91 \quad 30 \cdot 63$ |  | ${ }^{2} 8.97{ }^{*} 34.44$ |  | $\begin{array}{ll}32 \cdot 17 & 37 \cdot 25\end{array}$ |  | 28.92 $33 \cdot 05$ |  |
| of Circle-Readings, |  | $\begin{aligned} & 28 \cdot 36 \\ & 34 \cdot 66 \end{aligned}$ | $\begin{aligned} & 3 \mathrm{I} \cdot 95 \\ & 34 \cdot 38 \end{aligned}$ | $\begin{array}{r}25.65 \\ * 26.87 \\ \hline 25\end{array}$ | 33.68 | $29.63 \quad 31.27$ |  | ${ }^{2} 23.20{ }^{*} 34 \cdot 00$ |  | $33.89 \quad 30 \cdot 68$ |  | $30 \cdot 58 \quad 34 \cdot 33$ |  |
| Ref. M.-Star |  |  |  |  | ${ }^{*} 29 \cdot 33$ | 28-15 | 36.14 | ${ }^{29} 54$ | $33 \cdot 74$ | $27 \cdot 19$ | $36 \cdot 04$ | $3 \mathrm{I} \cdot \mathrm{Io}$ | 34.74 |
| reduced to Elongation |  | $\begin{aligned} & 34 \cdot 66 \\ & 35 \cdot 14 \end{aligned}$ | $\begin{aligned} & 34 \cdot 3^{8} \\ & 29^{\circ} \\ & \hline \end{aligned}$ | ${ }^{*} 25 * 48$ * $30 \cdot 96$ |  | 25.44 | $\begin{aligned} & 30.03 \\ & 28 \cdot 66 \end{aligned}$ | $\begin{aligned} & 25 \cdot 32 \\ & 26 \cdot 03 \end{aligned}$ | 33.04 | 28-94 | $32 \cdot 35$ | $\begin{array}{r} 31 \cdot 96 \\ 32 \cdot 43 \end{array}$ | $\begin{aligned} & 35 \cdot 07 \\ & 34 \cdot 70 \\ & 31 \cdot 86 \end{aligned}$ |
|  |  |  |  |  |  |  |  |  | $35^{\circ} 23$ |  |  |  |  |
| Means |  | $32 \cdot 6032 \cdot 18$ |  | 26-07 | 31'95 | 27.78 | 31*35 | 26.61 | 34*09 | 30. 55 | $34 * 08$ | 31.00 | 33.96 |
|  | - | ' | " | " |  | " |  | " |  | " |  | " |  |
| Means of both faces - |  | 391535 | $\begin{aligned} & 2 \cdot 39 \\ & 2 \cdot 93 \end{aligned}$ | 29.01 |  | $\begin{aligned} & 29.57 \\ & 23.68 \end{aligned}$ |  | $30 \cdot 35$ |  | $32 \cdot 31$ |  | 32.48 |  |
| Az. of Star fr. S., by W. | 188 |  |  | $23.31$ |  |  |  | $25 \cdot 55$ |  | 24.43 |  | $24 \cdot 80$ |  |
| Az. of Ref. M. " | 181 | 35 | - $54{ }^{\text {¢ }}$ | $54 \cdot 30$ |  | $\begin{aligned} & 23 \cdot 68 \\ & 54 \cdot 11 \end{aligned}$ |  | .55*20 |  | 52-12 |  | 52.32 |  |

2. By Western Elongation of $\epsilon$ Ursæ Minoris.

| $\begin{aligned} & \text { Face } \\ & \text { Zero } \end{aligned}$ |  | $\begin{gathered} \mathrm{L} \\ 140^{\circ} \end{gathered}$ | $\begin{gathered} \mathbf{R} \\ 320^{\circ} \end{gathered}$ | $\begin{gathered} \mathrm{L} \\ 150^{\circ} \end{gathered}$ | R 330 | $\begin{gathered} \mathrm{L} \\ 160^{\circ} \end{gathered}$ | R 340 | L 170 | R 350 | $\begin{gathered} \mathrm{L} \\ 180^{\circ} \end{gathered}$ | k $0^{\circ}$ | L 190 | $\begin{aligned} & \mathrm{R} \\ & 10^{\circ} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Date |  | December 7 |  | December 8 |  | December 9 |  | December 10 |  | December 11 |  | December 12 |  |
|  |  | $\begin{aligned} & 21 \cdot 66 \\ & 23.26 \\ & 17.18 \\ & 20.92 \end{aligned}$ | " | " | " | " | " | " | * | " | " | " | " |
| Observed difference |  |  |  | $\begin{aligned} & 16.77 \\ & 22.54 \\ & 15.85 \\ & 16.10 \end{aligned}$ | $\begin{array}{r} 7.21 \\ 12.44 \\ -13.67 \end{array}$ | 18.55 | $10 \cdot 45$ | $16 \cdot 14$ |  | 14.06 | 11'13 | $22 \cdot 67$ |  |
| of Circle-Readings, |  |  | 18.86 |  |  | 17.02 | 11.47 | 18.90 | 10.62 | 16.07 | 9 - ${ }^{\text {O }}$ | 21.64 | $2 \cdot 24$ |
| Ref. M.-Star |  |  | 15.75 |  |  | 11.44 | 14.76 | 17.76 | 9.16 | $14 \cdot 17$ | 10.83 | 22.13 | $3 \cdot 86$ |
| reduced to Elongation |  |  | 14.44 |  |  | 14.70 15 | 17.62 18.39 | 19.57 16.49 | 8.96 | 12.61 | 7.83 10.83 | 13.30 18.07 | 3.24 |
|  |  |  |  |  |  | 15.08 | 18.39 | 16.49 |  |  | 10.83 | 18.07 |  |
| Means |  | 20.76 | 16.75 | 17.82 | 11.11 | 15.36 | 14.54 | 17.77 | 9.57 | $14 \cdot 23$ | 9•93 | 19.56 | $4 \cdot 15$ |
|  | - | , " |  |  |  | " |  | " |  | " |  | " |  |
| Means of both faces |  | $\begin{array}{ll}51 & 1 \\ 44 & 3 \\ 35 & 5\end{array}$ | $8 \cdot 85$ |  |  | $\begin{aligned} & 14 \cdot 9 \\ & 36.13 \\ & 51.13 \end{aligned}$ |  | 13.6735.76 |  | $12 \cdot 08$35.39 |  | 11.8635.01 |  |
| Az. of Star fr. S., by W. | 171 |  |  | $\begin{aligned} & 14.46 \\ & 36.51 \\ & \hline \end{aligned}$ |  |  |  |  |  |  |  |  |  |
| Az. of Ref. M. " | 181 |  |  |  |  | $49^{\circ} 43$ | $47 \cdot 47$ |  | 46.87 |  |  |  |


| Astronomical Azimuth of Referring Mark ... | $\ldots$ |  |  | 35 | 53 " 10 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\ldots$ |  |  |  | 0. 24 |
|  | ... |  |  |  | 67 |
| Angle Referring Mark and XXII (Ajnád) see page 27_ar ante | .. |  | 14 | 43 | $45 \cdot 78$ |
| Astronomical Azimuth of Ajnád by obserration ... <br> Geodetical Azimuth of $\quad$ by calculation from that adopted (Vol. II, page 141) at Kaliánpur, see page 61 _a. $_{\text {. }}$ ante |  |  | 166 | 52 | $5 \cdot 89$ |
|  | ... |  | I66 | 52 | $1 \cdot 21$ |
| Astronomical-Geodetical Azimuth at XXIII (Valvádi) |  |  | + |  | 4.68 |

[^22] allowing for star's change of place. The date so adopted appears at the head of the column, and the reduced obserration is preceded by an asterisk.
opiviesty, Google

PRINOIPAI TRIANGUIAATION—EEIANPISURA MMEIDIONAI EHRIHES


Fig. No. 4
 Scale 1 Onch $=24$ Afilise $\frac{1}{1520640}$


Seale 1 That $=12$ Atike a $\frac{1}{\text { Y60320 }}$

## Fig. Na .6



Shath ITrat $=24$ Atile e $\frac{1}{1520640}$

## SINGI MERIDIONAL SERIES.

## SINGI MERIDIONAL SERIES.

## INTRODUCTION.

The Singi Meridional Series of the South-West Quadrilateral is the great chain of principal triangles that follows the meridian of $73^{\circ} 30^{\prime}$ from the parallel of $19^{\circ}$ to that of 2412․ It traverses the British districts of Ahmednagar (Ahmadnagar), Thána, Násik, and Surat, and several of the Native States subject to the Rewa Kántha (Revákántha) and Meywar (Mewár) Political Agencies: it consists of one tetragon, two quadrilaterals, two compound figures, and eighteen single triangles, and extends over a meridional distance of $\mathbf{3 9 0}$ miles.

Its side of origin is Lakarwás (XXXII)-Tána (xxry) of the Karáchi Longitudinal Series, and it closes on the side Singi (xxx)-Parner (xxvi) of the Bombay Longitudinal Series: from this it will be seen that in the simultaneous reduction of the South-West Quadrilateral, the Series under review had to be fitted in between a finally fixed side of the North-West Quadrilateral and one similarly determined of the Southern Trigon: on the completion of this reduction it was found that the errors which had actually been dispersed between the two fixed terminals were as follows:-

The great compound figure, covering a length of 150 miles, that forms the southern portion of this triangulation, was originally termed the North Konkan Coast Series:'when its extension to the northward in 1860 was undertaken, it was re-named after the station of Singi of the Bombay Longitudinal Series: the "Singi Series" however only included the present chain of triangles as far north as the parallel of $23^{\circ}$, where it is cut by the Guzerat
(Gujarat) Longitudinal Series at right angles, and the northern portion that lies between the Karáchi and Guzerat Longitudinal Series was for years known as the Oodeypore (Udepur) Meridional Series. But when the simultaneous reduction of the South-West Quadrilateral was undertaken in 1884, the Oodeypore and Singi were merged into one great Meridional Series, and called after the latter.

In the latter part of 1827, Captain J. Jopp, the Deputy Surveyor General of Bombay, who was then employed in compiling maps of different portions of that Presidency, proposed to the Surveyor General, Colonel J. A. Hodgson, to carry a Trigonometrical Survey over such portions of Bombay territories as had not yet been triangulated; his object being to correct and unite the independent detailed surveys of portions of the country which were already in his hands, as well as any others which might be subsequently made. This proposal having been, after certain explanations, assented to and recommended by the Surveyor General, met with the sanction of the Government of India; and on the 15th March 1828, Lieutenant R. Shortrede, of the 14th Bombay European Regiment, an Officer of considerable talent and mathematical knowledge, who had already been employed in the Deccan (Dakshin) Survey, was appointed to superintend the execution.

Immediately on hearing of the newly proposed survey of Bombay, Captain Everest asked the Government of India to place it under his orders; his request was however refused owing to the objections of the Local Government. The latter had for some time previous felt the want of a good map of their Presidency and had started the new survey for the sole purpose of supplying one : their unwillingness to surrender the control of it can thus be easily understood: Everest had the reputation of subordinating the requirements of geography to those of geodesy, and the revenue officials of Bombay felt that if once they handed over the management of their survey to him the geographical wants of their province would be sacrificed to science and their establishment carried off to measure some distant " arc of meridian". Having failed to obtain the control of the Bombay Survey, Everest next urged that at any rate it should be made to emanate from a side of his own triangulation, a series of which had been carried westward from the Great Arc along the parallel of Bombay to within 150 miles of Poona (Puna); and he pointed out that unless this was done much confusion must ensue when the future junction was effected. The Bombay Surveyors again objected, and Shortrede was directed to make his triangulation depend on a base-line of his own which he was to measure with a steel chain by Cary that had never been compared against any recognised standard of length.

Lieutenant Shortrede selected a site for his base on the Kárla plain about 40 miles east of Bombay, and occupied himself during the rains of 1828 in preparing the requisite apparatus: in the month of November he proceeded to the spot, and, with the assistance of Captains Jopp and Grafton, commenced the measurement on the 12th of December, 1828, and finished it on the 16th of January, 1829. The base was 4.065 miles in length, and had the defect of a break in the measurement, caused by the river Indráyani, whose abrupt banks and uneven rocky bed prevented the measurement from being carried directly across:

Shortrede determined the length of this portion by measuring a small supplementary base along one bank of the river perpendicular to the main alignment and by then observing the horizontal angle at the outer extremity of this auxiliary line between the ramrods of his two guns one of which he had stuck in the ground on either side of the river. The remainder of the season after the completion of the Kárla Base-line and the next three years were occupied in extending a network of triangles over the whole country from Latitude $18^{\circ}$ to $21^{\circ}$, and from Longitude $73^{\circ}$ to $75^{\circ}$.

After the Government of India had refused to sanction the transfer of the Bombay survey to the control of Captain Everest, the latter had laid the case before the Court of Directors themselves, and in 1831 the Governor General received orders from England to unite all the Trigonometrical Surveys in India under one head. Everest's first act on taking over his new charge was to call for a report on Shortrede's Base-line. On discovering what had been done he immediately wrote to Shortrede pointing out the absurdity of having a break in the middle of a base and suggested the advisability of at once selecting a new site and making an entirely new measurement; this letter was not received by Shortrede till three months after it had been written; he had been proud of his performances and was extremely hurt : he answered that he considered his base as accurate as any of the G. T. Survey, and that as far as the "break" was concerned he had Colonel Lambton's G. T. Base-line at Bangalore (Bĕngalúr) as a precedent. Six months afterwards he learnt from Colonel Everest for the first time, that the base-line at Bangalore which he had so faithfully imitated had been commenced on an open, unbroken plain, and that the break in its length was solely caused by the action of the natives, who, in the course of the measurement, had set to work and deliberately excavated a series of large tanks in the actual alignment : to his intense mortification he discovered too from the sarcastic letter of his chief that Lambton himself had rejected this very Bangalore measurement shortly after its execution on account of the break in its continuity.

Shortrede's triangulation supplied ample food for another prolonged and bitter controversy between the two Surveyors. Everest could hardly allude to it with temper: a suggestion made by the Surveyor General to incorporate it with the G. T. Survey he received with horror and dismissed with scorn. Every detail of the work was found fault with, and numberless changes were introduced: but in these days the postal arrangements were so defective that three months would often elapse between the despatch of a letter from Bengal and its arrival at Bombay, and as may be expected under such conditions of correspondence no great improvements were possible. In October, 1831, Everest wrote to Shortrede that it was useless to continue work until they had had a personal interview, and pressed him to come round to Calcutta where one of the great Base-lines was about to be measured. Shortrede, conscious now of his deficiencies, was only too anxious to go. Unfortunately it was necessary for him, although he was under the orders of the Superintendent of the G. T. Survey, to ask permission of the Government of Bombay; fearing that an application by letter would be answered and refused by some irresponsible Under-Secretary, he asked and obtained a personal interview with Lord Clare, the Governor: the reasons he advanced in favor of his
proposed journey were numerous and weighty; his experience he said of trigonometrical work had hitherto been confined to petty triangulation executed for military purposes in which no great accuracy was necessary, whilst of the methods in vogue with the G. T. Survey which had taken 30 years to develope he was entirely ignorant: he wished now to learn the innermost details of scientific surveying from the only man in India who could teach him: if too he were to go at once, he would be able to assist at the measurement of the Calcutta Base-line and become acquainted with the use of the compensation bars: and what was more important still he would be able to take his chain with him and compare it with Everest's standard. Lord Clare replied that such grounds appeared quite insufficient to warrant the Bombay Government in sending one of their officers to another Presidency, and that until he received a direct order from Lord William Bentinck he should refuse his consent. In 1834 when Shortrede resigned his appointment, all his work was discarded, and, except as a guide in the selection of stations for the later triangulation, it has never been made any use of.

In November, 1841, when the Bombay Longitudinal Series was approaching completion, Colonel Everest decided to run a Meridional Series northwards from Bombay towards Surat: the triangulation party employed in this Presidency was under Lieutenant W. S. Jacob of the Bombay Engineers, and to him the execution of the new project was to be entrusted. By the aid of charts of Shortrede's triangulation, the angles of which were regarded as true to within ten seconds of arc, Jacob was enabled at Bider, where the great Base-line was being measured, to select an approximate series for the North Konkan without going into the field. His design was submitted to Everest for approval in January, 1842, and received final sanction in the following summer. Arrangements were accordingly made to break ground after the recess season, but towards the close of the hot weather Lieutenant Jacob's health entirely gave way: since 1834 when he was first appointed to the Survey in succession to Lieutenant Shortrede, he had been almost continuously employed in peculiarly pestilential tracts of country and had now become a perfect wreck from malaria: he proceeded to England on medical certificate, and his connection with the Survey Department terminated: he was succeeded on December 14th, 1842, by Lieutenant Harry Rivers of the Bombay Engineers, an officer of great mathematical ability who had been appointed to the Trigonometrical Survey only three months previously.

Shortly before Christmas Rivers took the field: from Karanja-Singi* as his side of

Season 1842-43.

## Presonnel.

Lieutenant H. Rivers, Bombay Ingineera, 2nd Assistant, G. T. Survey.
Mr. J. Fraser, Sub-Assistant, 1st Claes.
" T. Sanger, " origin he commenced carrying a narrow series of single triangles due northwards along the Coast and having observed a set of circumpolar star observations to $\delta$ Ursæ Minoris and 51 Cephei for azimuth at Kalsubai reached Párnera in February without difficulty or interruption. Smoke now began to rise from all the neighbouring jungles, and several days passed without a heliotrope being visible. Finding that the smoke became daily

[^23]denser and that the haze and fog from the sea seemed to be gradually increasing, Rivers quitted Párnera after a halt of three weeks without finishing his observations. As the season was now well advanced he thought it better to waste no more time in the low lands on the coast, but to proceed to the stations on the line of the ghâts which he hoped were at too high an altitude to be affected by the atmospheric density of the plains: he therefore entered the hills, and commenced observing from mountain tops: but the work even now was most unsatisfactory for not only was the heliotrope at Surat completely obscured by the smoke and haze on the plains, but even the few hill stations, that were mutually visible, were so foggy and indistinct, that all the observations taken were of but little value. At his last Hill Station of Raura all the heliotropes were visible except the one at Párnera, which lay very low and in the thickest part of the smoke. It was useless to continue working under such circumstances, as the smoke and haze were known to gradually increase without intermission till the commencement of the rainy season, and so towards the end of March Rivers set out for Poona : the movements of the party were greatly hampered by the large percentage of sick : two out of the three sub-assistants, the hospital-assistant, and 20 men were all down with fever at Parnera, and at Raura Rivers himself succumbed. During the recess season the observations taken in the latter half of February and in March were found to yield such poor results that the stations of Raura and Rupgarh had to be cut out from the principal series and incorporated as secondary points.

In November, 1843, Lieutenant Rivers was deputed to take up the triangulation of the South Konkan Coast Series, and consequently no observations were taken during the winter of 1843-44 upon the Series under review. Mr. DaCosta was, however, despatched in December to Surat and instructed to carry on the approximate work northward : it is fatal, we have now learnt, to enter the jungles of this neighbourhood before the end of February, and every party that has ever attempted to work here in the winter months has failed. Mr. DaCosta and his men were no more successful than others, and they had not been in the Surat districts three weeks before they were all without exception severely attacked by fever. Mr. DaCosta strove hard to carry out the work that had been entrusted to him, and it was long before he would retreat from the jungles, but he eventually became so crippled with illness that he had to move into Surat: by March he had sufficiently recovered to take the field again, and the jungles had now become fairly healthy, but the season of haze and smoke had re-commenced and nothing in the way of approximate work was feasible. Lieut. Rivers himself had reached Poona from the Southern Konkan on March 5th, and left it for Surat on March 14th; his intentions were to visit the unfinished stations of the former season and to complete the observations of those few angles, that had only been partially observed : he seems to have thought that the haze and smoke of the preceding year had been of abnormal density and were not likely to be met with again to such an extent. He had no sooner arrived at Parnera than he found out his mistake: the density of the atmosphere was just the same as when he was here before; he remained now three weeks but never succeeded once in obtaining a glimpse of a single heliotrope: on April 9 th he set out for Mahábaleshvar, where he had established his recess quarters.

In October, 1844, Messrs. Fraser and Sanger were again despatched to Párner in the

Season 1844-45.
Prisonnel.
Lieutenant H. Rivers, Bombay Engineors, 2nd Asoistant, G. T. Surrey.
Mr. J. Fraser, Sub-Assistant, 1nt Clase.
$\begin{array}{lll}\text { "T. Banger, } \\ \text { " J. DaCosta, } & \text { n } & \text { 2nd } \\ \text { " }\end{array}$ hopes that with their greatly increased experience of the country they would now succeed in carrying the approximate series northward through the Gaikwar's dominions: fresh obstacles however arose, which had not been foreseen. The inhabitants threw every impediment in the way of the surveyors: the patels (headmen) of the villages refused to supply them with food or forage : the owners of the land forbade the erection of signals, and the guards of the forts, which were generally situated on natural prominences, refused admittance to any one connected with the Survey party : in many instances bodies of signalmen were beaten and otherwise maltreated. The British Resident at the Court of the Gáikwár was appealed to in vain for assistance; he apparently possessed no influence and was unwilling to move in the matter. His Highness himself was convinced that the two Englishmen were not traversing his dominions for the sole purpose of looking through a small telescope, and his inability to discover their ulterior designs greatly irritated him. His repeated refusals to help them, are clear evidence that he approved if he did not encourge the malevolence of his subjects: when at last at the request of the Bombay Government be did put forth his authority, all vexatious hindrances ceased and the progress of the survey was nowhere impeded. A month's work however had been lost.

Rivers left Poona at the same time as his assistants and proceeded to Mirya a principal station of the South Konkan Coast Series, where he took a complete set of astronomical observations for the direct determination of azimuth : he then set out for Párnera, which he reached on November 7th. The atmosphere was now clear and all the heliotropes were visible, but it was the malarious season: Mr. Fraser's party had been attacked with fever almost as soon as they had arrived, and the percentage of their sick had steadily increased week by week. Though Mr. Fraser himself had been among the first to succumb, and was labouring under severe illness for the greater part of the time, he succeeded before Christmas in selecting two good quadrilaterals to the northward. By the first of January to such an extent had the ravages of the disease spread that not a single man of his detachment remained unscathed. Lieutenant Rivers's contingent fared no better; within six weeks of their arrival nine-tenths of their number were in hospital, and before the year 1845 had fairly commenced the whole party were crippled. Rivers completed the observations of the two angles at Párnera, and then proceeded southwards to the Gambirgarh and Kalsubai stations at which five angles had to be remeasured owing to the poor results of the former season having been rejected: so much was he delayed by illness and hampered by the number of sick that the measurement of these six angles was all he succeeded in doing throughout November and December. What was worse he had but slight prospects of improving upon this rate of progress in the future: the fever as yet had shewn no signs of abating, the natives he had newly enrolled to replace those disabled by sickness had almost to a man succumbed to the disease, and several deaths had occurred in his party. Every day too brought the smoky season nearer, and he had learnt full well by this time that any work
to be done must be done before then. In this dilemma Rivers took a step on his own responsibility, that was severely censured afterwards by Sir Andrew Waugh : he decided that no triangulation to the north of Surat could possibly be carried out, and so determined to abandon all idea of it and to make no further attempt: in its stead he commenced widening his short chain of single triangles that stood completed between Singi and Párnera by adding on another similar chain along its eastern flank : his work thus lost the character of a meridional series and assumed that of a network. During January he observed at Párner and Hewargaon; during February he completed the observations at Hewargaon and at Kalsubai, Sinnar, and Bhorgarh, and during March at Ankai and Sáler : at the last-named station observations were taken to Polaris for the direct determination of azimuth. Pilwa was completed and Tarbhan was reached before the end of the season, but the work at the latter could not be completed : the haze had set in and hills but 15 miles distant were invisible: the heliotrope at Dopári was obscured and nothing was seen of the huge fire that was lighted there nightly which, it was hoped, would serve as a signal. Upon the return of the party to their recess quarters in Poona, Mr. Fraser was for some days the only man sufficiently free from fever to be able to attend office, whilst the condition of the signalmen and menials seems to have been lamentable. Towards the end of the recess season Lieutenant Rivers asked to be allowed to again attack the Singi Series, but permission was refused. Sir Andrew Waugh was unwilling to expose his assistant for two consecutive years to such a pestilential climate as that of the Surat districts, and insisted on giving him a turn in some more healthy tract. Rivers and his party were accordingly directed to discontinue work on the Singi meridian and to take up instead the triangulation of the neighbouring series, known as the Khánpisura Meridional.

In October, 1845, when marching from Poona to the scene of his new work, he visited Singi en route, and observed there the angles between Párner and Hewargaon and between Hewargaon and Kalsubai, both of which had been omitted in the previous season, when the doubling of the original Singi chain was undertaken: he was occupied by this four days and then left for Khánpisura. Towards the end of February, 1846, Rivers took advantage of an opportunity that occurred to visit Dopári where three angles had to be observed : the measurement of these formed the last occasion that he was employed on the Singi Meridional Series. The great compound figure, the largest by far in the whole triangulation of India, now stood completed with the exception of the one angle at Tarbhan between Dopári and Pilwa.

The instrument employed by Lieutenant Rivers on the Singi Meridional Series was the same 15 -inch Theodolite by Dollond* that was used in the observations of the Bombay Longitudinal and South Konkan Coast Series. It was constructed on a design and under the direction of Captain Kater, and possessed, like all Dollond's instruments, a very fine telescope : but the horizontal circle was one of the first that had ever been engine-divided and

[^24]proved of an inferior order, giving angles differing to the extent of $13^{\prime \prime \prime}$ on different parts of thè limb. The microscopes too were not adjustable for "run", and corrections varying with the temperature had therefore to be applied to the recorded readings of the angles. The method of changing zero pursued by Lieutenant Rivers gave readings at every $20^{\circ}$ of the limb instead of at every $10^{\circ}$ according to the recognised system in force in the G. T. Survey, a deviation from established practice which resulted in a much larger triangular error than that which obtained with the same instrument on the Bombay Longitudinal Series.

The triangulation of the Singi Meridional Series, after Lieutenant Rivers gave it up in 1845, remained in abeyance for upwards of 15 years when work was resumed on it by Lieutenant (now Major-General) C. T. Haig of the Bombay Engineers, the present Deputy Surveyor General in charge of Trigonometrical Surveys.

Lieutenant Haig first arrived in India in July, 1856, and served with the Bombay Sappers and Miners in the Persian War of 1856-57, and with the Rajputana (Rajputana) Field Force during the mutiny as Staff Officer of Engineers. He was appointed a Second Assistant in the Great Trigonometrical Survey in September, 1859, and joined the Bombay Triangulation Party at Rájkot a few weeks later. This Party had been employed for some years under Captain Nasmyth of the Bombay Engineers on the Káthiáwár (Káthiávad) triangulation, their recess quarters being at Rájkot. On arrival there Lieutenant Haig found orders awaiting him to join the Okhámandal Field Force with which Captain Nasmyth was also serving, and for the next two months both officers were employed as military engineers at the siege of Dwárka. On the fall of that place in December, 1859, they rejoined the Bombay Survey Party in Káthiáwár, where they remained for the rest of the winter. On March 10th, 1860, Captain Nasmyth proceeded on furlough and Lieutenant Haig assumed charge of the Party : work was continued in Káthiáwar till April 25th, when the field season was brought to a close: the Party marched to their recess quarters at Rajkot, where they remained during the summer under Mr. DaCosta, whilst Lieutenant Haig joined Major J. T. Walker's Party at Murree (Marri). The programme of work laid down for the Bombay Party during the field season of 1860.61 was to take up the Guzerat Longitudinal Series at the side WardhariGhoráráo, carry it eastward until it met the Khánpisura Meridional Series, and then to return and work southwards from a side of this new work down the meridian of $73 \frac{1}{2}^{\circ}$ to meet Rivers's portion of the so-called North Konkan Series*.

The head-quarters of the Party quitted Rájkot on November 15th, 1860, and reached Wardhari on the 30th. Mr. Mc Gill had taken the field about a month previously to lay out the approximate work : the stations of Játhrábhor, Kágarol and Rencha, which are situated at the junction of the Singi and Guzerat Series had been selected several years previously. Up to the end of December, 1860, Mr. DaCosta was employed

Iieutenant C. T. Haig, Bombay Engineers, 2nd Assistant.
Mr. J. DaCosta, Civil 2nd Assistant.
„ J. Mc Gill, Senior Sub-Assistant.
") G. A. Anding, 3rd Class Sub-Assistant. on the Káthiáwar triangulation : he then left for the Deccan to take up the approximate

[^25]work of the Mangalore (Mangalúr) Meridional Series, on which he remained employed till the close of the field season. At the beginning of the season the progress of the Party met with some serious checks : in the approximate chart furnished to Lieutenant Haig the ray between Játhrábhor and Ghoráráo was laid down, but after several days had been spent in felling trees it was found to be impracticable. Another delay was caused by a mistake of the mason; instead of repairing the old Rencha station, he built a new station at another village also called Rencha, and the signalman shewed his heliotrope to Ghoráráo from this latter. Lieutenant Haig himself too went to this new station and did not find out his mistake until he had put up his instrument.

On arriving at Bhor Lieutenant Haig found the ray Bhor-Patángri impossible owing to a large hill intervening : having observed all the other rays he went to Patangri and selected a new station there: whilst the pillar was being built he visited Játhrábhor and Kágarol; and then went back to Ghoráráo and observed there the correct ray to Rencha: Kágarol, Patángri, and Bhor were then revisited and on January 20th, 1861, the Kágarol Hexagon at the junction of the two Principal Series was finished.

In the meanwhile Mr. McGill had been carrying the approximate series southwards on the Singi meridian: his progress was excellent until he reached Kesarwa, when he and all his Party were prostrated with jungle fever: he had to retire to Broach (Bharúch) and was unable to resume his work during the field season. Mr. McGill's absence necessitated a change of programme, as he was the only officer available for the approximate work : he had trusted to be able to select all the stations of the Singi Series and to also get well on with the approximate work of the Guzerat Longitudinal Series to the east of the Singi meridian before Lieutenant Haig had finished the observations of the Kágarol Hexagon*, and this he would have done, if all had gone right. As it was, Lieutenant Haig found no approximate work ready for him on the Guzerat Longitudinal Series; his first idea now was to select his stations himself, as well as observe the angles, and this he began doing : but his progress proved so slow, that towards the end of January he gave it up and returned to Bhor with the object of observing at the stations of the new Meridional Series already selected: the observations at Kandálwa, Páwágarh, and Masábár were taken without difficulty, and Karáli was reached on February 6th : the atmosphere now became hazy and dense, and smoke began to rise from the jungles. The ray Karáli-Kesarwa had to be rejected, as after it had been observed on three pairs of zeros the heliotrope at Kesarwa became invisible. The Sidpur ray from Karali was very difficult of observation, and detained the Party a week. At Sidpur itself, which is situated in the Rajpipla state in the very heart of the smoky area, there was a further delay of ten days owing to the difficulty of observing the Bábásiraj heliotrope, and the station of Kesarwa was not reached till February 28th : it was here that Mr. McGill 'had been taken ill and consequently no approximate work existed beyond.

The stations of Bábásiraj, Kesarwa and Páthal had been selected in 1815 by Lieutenant Rivers and had been intended by him to form with Dopári a huge quadrilateral. As

[^26]however the rays Dopári-Kesarwa, Dopári-Bábásiraj and Páthal-Bábásiráj were all over fifty miles in length, Lieutenant Haig did not attempt to observe them and abandoned his predecessor's quadrilateral as impracticable. The selection of smaller figures proved a difficult matter owing to the intervention of high hills, on which no points could be discovered that gave suitable triangles: the stations of Ságbára and Álamwári were the best that could be found in spite of the invisibility of the latter from Páthal. By the time that all the stations had been decided on, the smoky season had commenced in good earnest and progress was naturally slow. At Ságbára the Páthal ray alone occupied fifteen days and Álamwári was not reached till April 5th. Three weeks later however all the angles at Páthal and Álamwári as well as those that had been omitted by Lieutenant Rivers at Dopári and Tarbhán* had been observed, and the connection with the old work of 1845 thus stood thoroughly completed. The Singi Series had at last been carried through the difficult and fever-stricken tracts of the Rajpipla state that had so baffled the efforts of the earlier surveyors. Lieutenant Haig's party had by no means got off scot free: at Kesarwa no less than 60 per cent of his men were on the sicklist, and by the close of the season there was hardly a native in the party who had not at one time or another been a sufferer. The jungles in this tract seem absolutely fatal to enter before the middle of February, and Mr. McGill made a great mistake in trying to penetrate them in December: there is a local proverb in these parts to the effect that the Dang jungles should be feared like a musket ball, a proverb that testifies as much to the martial ardour of the people as it does to the unhealthiness of the forests.

The Bombay Party under Lieutenant Haig passed the recess season of 1861 at Poona

Season 1861-62. Personnei.

Lieutenant C. T. Haig, Bombay Engineera, 1st Assistant.
Mr. J. DaCosta, Civil 2nd Assistant.
„ J. McGill, Junior Civil 2nd Assistant.
" G. A. Anding, 3rd Class Sub-Assistant. and in October following again took the field. The first stations visited were Játhrábhor and Patángri of the Singi Meridional Series, and an attempt was made to prolong the Guzerat Longitudinal Series eastwards from the side that joined them. The plan however was found im. practicable and the side Patángri-Bhor had to be substituted. At starting Lieutenant Haig himself took up the approximate work of the Guzerat Longitudinal Series and carried it eastwards to the meridian of $74 \frac{1}{2}^{\circ}:$ he here left it in charge of Mr. McGill and returned to Patángri to observe $\delta$ Ursæ Minoris for azimuth. Shortly after Christmas he commenced the final observations of the angles of the Guzerat Longitudinal Series, and these occupied the Head Quarters of the Party up to the end of February.

Mr. DaCosta in the meantime had selected the stations of the Guzerat Coast Minor Series between Surat and Cambay (Khambhat) as well as of a branch series to Baroda (Vadodra), and had taken up by the first week in January the approximate work of the Oodeypur Meridional Series: (this latter series as has been mentioned before lost its designation of Oodeypur in 1884 and now constitutes the northern section of the Singi Meridional Series). In selecting his stations Mr. DaCosta worked northwards from the side JáthrábhorPatángri of the Kágarol Hexagon, laying out only a single series of triangles.

[^27]By the end of February Mr. McGill had completed his approximate work on the Guzerat Longitudinal Series and was ordered by Lieutenant Haig to assist in selecting stations for the Series on the Oodeypur meridian : he was however not to work with Mr. DaCosta but to start from a side of the Karáchi Longitudinal Series and proceed southwards: the two surveyors were directed to keep each other thoroughly acquainted with their movements, so that they might have no difficulty in effecting a junction between their two approximate series whenever they should happen to meet. Unfortunately the country through which this series runs is inhabited by semi-barbarous races: the thieves, who form a large and recognised portion of the inhabitants of every village, assault a man for the sake of the clothes he has on his back; and if he attempts to escape bring him down with a shower of arrows utterly regardless of his life : on this account communication was attended with great risk and consequently Messrs. DaCosta and McGill were each in ignorance of the other's progress until they actually met: the bend in the Series in latitude $23^{\circ} 45^{\prime}$ is due to their inability to work in conjunction.

Mr. McGill intended to have commenced on the side Lakarwás-Bonkalore, with which Sísa and Salúmbar were to have formed a quadrilateral, but the Raja of Salúmbar, a very refractory chief, would not permit a station to be built on his hill, although directed to do so by the Political Agent: Mr. McGill had therefore to start the approximate series from the radial side Tána-Lakarwás of the Tána Hexagon.

Having completed the Guzerat Longitudinal Series, Lieutenant Haig marched northwards to Lakarwás, which he reached by the 10th of March: he was here delayed a few days by fog but after this no further interruption occurred, and he completed the final observations of the Oodeypur Meridional Series on April 25th : he had thus visited 15 stations and observed 34 angles in six weeks. A chain of single triangles now connected the Karáchi and Guzerat Longitudinal Series and the triangulation of the Singi Meridional Series stood fully completed. The head-quarters of the Party reached Poona on the 7th of May, 1862.

In consequence of the great deficiency of observations on certain rays, and of the weak character of the heights in general, the re-measurement of all the vertical angles of Rivers's section of the Singi Series was found necessary. Mr. H. E. T. Keelan, Surveyor 3rd Grade, who was then engaged in revising the heights on the Khanpisura Meridional Series, was accordingly directed to re-take the vertical observations on all rays of the Singi Series south of the side Tarbhán-Dopári. Mr. Keelan completed the revision of the Khánpisura heights on December 9th, 1884, at Jalálabad; he was then occupied some weeks in observing the vertical angles on the ray Ágargaon-Parner of the Bombay Longitudinal Series, and on January 8th, 1885, at Párner he commenced observing the Singi vertical angles: much difficulty was at times experienced in obtaining good vision of the heliotropes owing to the dense haze that set in early in February, but in spite of this Dopári was reached on April 13th. The revision of heights was completed at Bhorgarh on May 13th.

## Secondary Triangulation.

On the Southern Section of the Series between the side Tarbhán-Dopári and the Bombay Longitudinal Series some hundred secondary points exist, chiefly pagodas and forts. Several of them were stations of Shortrede's Bombay network, but the angles were all reobserved by Rivers. Between the side Tarbhán-Dopári and the Guzerat Longitudinal Series only 20 secondary points were fixed by Lieutenant Haig during the progress of the principal work in 1860-61. In the following year however Mr. DaCosta visited the stations of Páwágarh and Masábár, and managed from them by means of two triangles only to lay down the position of the Baroda Clock Tower.

A few secondary triangles were formed with sides of the Kágarol Hexagon as bases and some 10 points thus fixed. On the Oodeypur Section of the Singi Series between the Guzerat and Karáchi Longitudinal Series the positions of a few trees, temples and huts were determined, but, with the exception perhaps of the Bánswára Palace, no place or town of importance was laid down.

The great feature in the secondary work of the Singi Series is the minor triangulation on the Guzerat Coast, which was first commenced in November, 1861, when Mr. DaCosta took up the approximate work. He started from the side Tarbhán-Páthal of the Singi Series and carried a line of single triangles northwards along the coast until he effected a junction with the Sábarmati Minor Series* at the side Rhoni-Omliala in latitude 2212웅. The approximate work was all completed by the end of December, but the final observations had to be postponed till the following year. The country over which the triangulation was to pass was studded with valuable fruit trees, and exorbitant compensation was demanded by the landowners before they would permit even a bough to be lopped off. It unfortunately happened too that Mr. DaCosta could find no natural eminences for his stations, and an immense deal of ray-cutting was necessary to obtain mutual visibility. The Guzerat Coast Series was unquestionably a work of more than ordinary importance, filling up as it did the only gap of unsurveyed coast between the mouth of the Indus and Goa (Gova), but the estimated cost was so enormous, that Lieutenant Haig decided to postpone the work and refer the matter to the consideration of the Superintendent of the Great Trigonometrical Survey. Sanction to spend the necessary money was obtained in the following summer, and in November 1862 the final operations were commenced. Three months were occupied in clearing the rays, and building the stations, and on January 27th the observations of the angles were begun. The instrument used was a 12 -inch Theodolite by Troughton and Simms, and the angles were all taken on two pairs of zeros $0^{\circ}, 180^{\circ}, 30^{\circ}, 210^{\circ}$, the three angles of every triangle being observed. The series which comprises twenty-eight main secondary triangles was completed on the 23rd of March. It determines the geographical positions of Surat, Broach and Cambay, of ten minor towns and ports, and of several conspicuous hills and buildings which proved useful in the subsequent topographical survey of the tracts; it crosses the Tápti, Narbada, Mahi, Kím, and Dhádhar rivers.

[^28]Early in the season of 1861-62 when Mr. DaCosta was engaged on the approximate work of the Guzerat Coast Series, he selected the stations for a branch series, which was to be carried eastwards from the Guzerat Coast Triangulation to fix Baroda : as much clearing was however necessary on the rays of this branch, and great expense would be incurred, the plan was abandoned, and no observations taken. Baroda was afterwards fixed as has been mentioned above by triangles carried westward from a principal side of the Singi Meridional Series.

## S. O. BURRARD,

 In charge Computing Office.SINGI MERIDIONAL SERIES.

## PRINCIPAL TRIANGULATION. ALPHABETICAL LIST OF STATIONS.


-

SINGI MERIDIONAL SERIES.
PRINCIPAL TRIANGULATION. NUMERICAL LIST OF STATIONS.

| XXIX <br> (Of the Karách | Longita | itadinal 8 | Series). |  |  |  |  | Tána. | XXI | - |  | - | - |  |  | - |  | Masábár. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\underset{\text { (Of the Karicheb }}{\text { XXXII }}$ | i Longita | $\because \text { itudinal }$ | Serios). | - |  |  |  | Lakarwás. | XXII | - |  | - | - |  | - | - |  | Karáli. |
| I | - | - | - | - | - |  |  | Anjini. | XXIII | - |  | - | - |  | - | - |  | Sidpur. |
| II | - | - | - | - | - | - |  | Sísa. | XXIV | - |  | - | - |  | - | - |  | Bábásiráj. |
| III | - | - | - | - |  |  |  | Tukwása. | XXV | - |  | - | - |  | - | - |  | Kesarwa. |
| IV | - | - | - | - |  | - |  | Dúngarpur. | XXVI | - |  | - | - |  |  | - |  | Ságbára. |
| V | - | - | - | - |  |  |  | Sagwára. | XXVII | - |  | - | - |  |  | - |  | Ãlamwári. |
| VI | - | - | - | - |  |  |  | Lohária. | XXVIII | - |  | - | - |  |  | - |  | Páthal. |
| VII | - | - | - | - |  |  |  | Ãmjio. | XXIX | - |  | - | - |  |  | - |  | Dopári. |
| VIII | - | - | - | - |  |  |  | Kua. | XXX | - |  | - | - |  |  | - |  | Tarbhán. |
| IX | - | - | - | - |  |  |  | Deokotla. | XXXI | - |  | - | - |  |  | - |  | Pilwa. |
| X | - | - | - | - |  |  |  | Tembla. | XXXII | - |  | - | - |  |  | - |  | Sáler. |
| XI | - | - | - | - |  |  |  | Uchak. | XXXIII | - |  | - | - |  |  | - |  | Párnera. |
| XII | - | - | - | - | - |  |  | Játhrábhor. | XXXIV | - |  | - | - |  |  | - |  | Bhorgarh. |
| XIII | - | - | - | - | - |  |  | Patángri. | XXXV | - |  | - | - |  |  | - |  | Ankai. |
| XIV | - | - | - | - |  |  |  | Kágarol. | XXXVI | - |  | - | - |  |  | - |  | Gambirgarh. |
| XV | - | - | - | - |  |  |  | Wardhari. | XXXVII | - |  | - | - |  |  | - |  | Sinnar. |
| XVI | - | - | - | - | - |  |  | Ghoraráo. | XXXVIII | . |  | - | - |  |  | - |  | Hewargaon. |
| XVII | - | - | - | - | - |  |  | Bhor. | XXXIX | - |  | - | - |  |  | - |  | Kalsubai. |
| XVIII | - | - | - | - | - | - |  | Rencha. | XL | - |  | - | - |  |  | - |  | Kamandrug. |
| XIX | - | - | - | - |  |  |  | Kandálwa. | $\underset{\text { (Of the Bombay }}{\text { XXVI }}$ | y Lon | gita | $\text { udinal } \mathrm{a}$ | Series) |  |  | - |  | Párner. |
| $\mathbf{X X}$ | - | - | - | - |  |  |  | Páwágarh. | $\underset{\text { (Of the Bombay }}{\mathbf{X X X X}}$ |  |  | $\dot{a}$ inal | Seriese |  |  | - |  | Singi. |

## SINGI MERIDIONAL SERIES.

## PRINCIPAL TRIANGULATION. DESCRIPTION OF STATIONS.

All the Principal Stations of this Series are situated on hills or rising ground: those numbered I to XVI and XVIII to XXVII, consist of circular, isolated and perforated pillars of masonry, 2 to 6 feet in height, each of which carries marks (©) engraved on stone at top and at ground level. Around these pillars, and level with their summits, platforms of earth and rubble have been constructed for the accommodation of the observatory tent. An aperture through each platform and pillar was specially left for reference to the ground level mark. At Station XVII there is only one mark (॰) which is engraved on the rock in situ , and for the observatory tent a temporary platform of wood and bamboos was erected. The two stations of the Karachi Longitudinal Series from which this triangulation emanates, have solid pillars of masonry, surrounded by platforms of stones: the pillars carry marks at top, bottom and intermediately. The remaining stations of this Series together with the two of the Bombay Longitudinal Series on which this triangulation terminates, were constructed under the direction of Lieutenant Rivers, and consist in general of solid, masonry pillars with one or more marks sunk in the ground and having their upper surfaces flush with the ground level. Above these pillars, solid structures of loose stone masonry, about 1 to 4 feet in height, were erected with another mark laid at the surface.

The following descriptions have been compiled from those given by the Officers who executed the Series, supplemented as regards adjacent villages, \&c., from the Topographical Survey maps of the country traversed. Some details regarding the heights and the construction of the stations have been gathered from annual reports, contingent bills, and other records of the Series, but in several instances the information required is unavoidably meagre or is even wholly absent, because no record of the facts now wanted for incorporation appears to have been kept by the Executive Officer. The local Sub-divisions in which the several stations are situated, have been derived, when practicable, from the latest Annual Reports furnished by the district officers to whose charge the stations are committed.
XXIX. (Of the Karáchi Longitudinal Series). Tána Hill Station, lat. $24^{\circ} 43^{\prime}$, long. $74^{\circ} 14^{\prime}$ —observed at in 1851 and 1862 -is situated on the highest point of a well-known, isolated hill, about a mile $W$. of the road from Akola to Tána. The station platiorm is built near and to the south of the site of some ruined buildings upon which there are now a few sacred stones: estate of the Tána Rajj, under the Meywar (Mewár) Residency.

The station of 1851 consists of a platform of the usual construction, $2 \cdot 53$ feet in height, enclosing a solid, isolated pillar of masonry in which are placed three mark-stones, one at top, another at the level of the foundation, and the third 2 feet above the latter. It was visited in 1862 in the course of the Singi Meridional Series operations, but no statement of its condition or of any alteration then made is forthcoming. The directions and distances of the circumjacent villages are :-Tána S.S.E., miles $1 \frac{3}{4}$; Intáli S.W. by W., miles $4 \frac{1}{8}$; Daulatpur W., mile 1; Raepuria N.E., miles $2 \frac{\pi}{4}$; and Kanerkhera E.N.E., mile $\frac{3}{4}$.
XXXII. (Of the Karáchi Longitudinal Series). Lakarwás Hill Station, lat. $24^{\circ} 32^{\prime}$, long. $73^{\circ} 52^{\prime}$ observed at in 1851 and 1862-is situated on the range of hills forming the eastern defence of the city of Oodeypore (Udaipur), about $1 \frac{1}{2}$ miles S.E. by S. of the large village of Lakarwás on a road from Kánpur to Korabar, which crosses the range to the north, and 2 miles $S$. of the ruined gate called "Sejah-ka-Darwáza" which is one of the approaches to Oodeypore. The station is in the lands of the village of Lakarwás, zilla Girwa, tahsil Oodeypore, under the Meywar Residency.

The station of 1851 consists of a platform of the usual construction, 2.80 feet in height, enclosing a solid, isolated pillar of masonry which contains three mark-stones, one at the surface, the second 1 foot below and the third at the level of the foundation. It was visited in 1862 in the course of the Singi Meridional Series operations, but no statement of its condition or of any alteration then made is forthcoming. The directions and distances of the circumjacent villages are :-Karget N.E. by N., miles 24; Dhámdar S., miles 2; Umra W. by S., miles $2 \frac{3}{4}$; and Maton N.W., miles 3.
I. Anjini Hill Station, lat. $24^{\circ} 15^{\prime}$, long. $74^{\circ} 11^{\prime}$-observed at in 1862 -is situated on a high hill named Anjini Máta, about $\frac{1}{8}$ a mile S. of the southernmost part of the scattered village of Anjini, and 4 miles E. by N. of Karauli which is $6 \frac{1}{2}$ miles N. by E. of the town of Salúmbar. The platform is a few feet E. of the portion of the hill dedicated to the Mata (goddess). The station is in the lands of the village of Anjini belonging to the Salúmbar Ráo.

The station consists of a platform of earth and rubble enclosing an isolated and perforated pillar of masonry 3.06 feet in height : an aperture gives access to the lower mark. The directions and distances of the circumjacent villages are :-Birirokhera S.S.E., miles $2 \frac{1}{2}$; Kánpur W. by S., miles $2 \frac{3}{4}$; Urwária W. by N., miles $3 \frac{3}{4}$; and Taláo N.W. by N., miles $2 \frac{1}{2}$.
II. Sisa Hill Station, lat. $24^{\circ} 12^{\prime}$, long. $73^{\circ} 46^{\prime}$-observed at in 1862 -is situated on the southern extremity of a hill locally known as Sísa Magra, about a mile N.E. by E. of the Parshád Dak Bungalow on
the high road from Kherwara to Oodeypore. The ascent to the station commences from the western side, and is very steep. The station is in the lands of the village of Parshad, territory of the Rána of Oodeypore.

The station consists of a platform of earth and rubble enclosing an isolated and perforated pillar of masoury 4.37 feet in height, with mark-stones at top and bottom : an aperture gives access to the lower mark.
III. Tukwása Hill Station, lat. $23^{\circ} 56^{\prime}$, long. $74^{\circ} 6^{\prime}$-observed at in 1862 -is situated on a hill locally known as Túnk-ka-Magra having the village of Tukwása at its northern foot, and about $1 \frac{8}{4}$ miles S.W. by W. of the town of Áspur. The station is in the lands of the village of Tukwása, Dúngarpur state.

The station consists of a platform of earth and rubble enclosing an isolated and perforated pillar of masonry 4.94 feet in height, with mark-stones at top and bottom : an aperture gives access to the lower mark. The directions and distances of the circumjacent villages are :-Gara (Moriána) E. by S., miles $1 \frac{1}{2}$; Wásúndar S.W. by S., mile $\frac{3}{4}$; Sakáni W., miles $3 \frac{1}{\frac{1}{2}}$; and Amartia N.N.W., miles 2.
IV. Dúngarpur Hill Station, lat. $23^{\circ} 50^{\prime}$, long. $73^{\circ} 45^{\prime}$-observed at in 1862 -is situated on the northern tower of some old fortifications on a hill locally known as Dún-ka-Magra, close to and immediately south of the palace and town of Dúngarpur. The station is in the lands of the town of Dúngarpur, Dúngarpur state.

The station consists of a platform of earth and rubble enclosing an isolated and perforated pillar of masonry 3.58 feet in height, with mark-stones at top aud bottom : an aperture gives access to the lower mark.
V. Sagwára Hill Station, lat. $23^{\circ} 41^{\prime}$, long. $74^{\circ} 2^{\prime}$-observed at in 1862-locally known as Naia Magra, is situated on a hill about $1 \frac{3}{4}$ miles N.W. of the town of that name. The foot-path leading to the station commences from the south-east. The station is in the lands of the village of Sagwára, Dúngarpur state.

The station consists of a platform of wood, earth and rubble enclosing an isolated and perforated pillar of masonry 4.60 feet in height: an aperture gives access to the lower mark. The directions and distances of the circumjacent villages are :-Gamra N.E., miles $1 \frac{1}{4}$; Madkola S. by E., miles $1 \frac{3}{4}$; Gowári S. by W., miles 2 ; Udepur S.W. by S., miles 3 ; and Pádra N. by W., miles $2 \frac{1}{2}$.
VI. Lohária Hill Station, lat. $23^{\circ} 46^{\prime}$, long. $74^{\circ} 15^{\prime}$-observed at in 1862 -is situated on a hill locally called Khanio, about $\frac{3}{4}$ of a mile W.N.W. of the large village so called, and $2 \frac{1}{2}$ miles S.S.E. of the Baneshwar temple on an island at the confluence of the Mahi and Som rivers. The station which is ascended from the east, is in the lands of the village of Lohária, thána Bánswára, territory of the Rajja of Bánswára.

The station consists of a platform enclosing an isolated and perforated pillar of masonry 2.75 feet in height above the lower mark which is engraved on a rock imbedded in the hill: an aperture gives access to the lower mark. The directions and distances of the circumjacent villages are:-Káli-ka-Pâra N.E., miles $1 \frac{1}{2}$; Vichháwára E.N.E., miles 1 ̣̂ ; Pároda W. by S., miles 24 ; Wási W.N.W., mile $\frac{3}{4}$; and Karána N. by W., miles $1 \frac{1}{4}$.
VII. Ámjio Hill Station, lat. $23^{\circ} 32^{\prime}$, long. $74^{\circ} 16^{\prime}$-observed at in 1862-is situated on a long, flat hill, about $1 \frac{1}{2}$ miles E.N.E. of village so called, and $3 \frac{1}{2}$ miles N.W. by W. of Bodia which is 2 miles S.S.E. of Partapor town. To the north and east, distant about a mile, are numerous Bhíl huts. The station is nearly on the centre of the hill but not on the highest part which is a little to the east and obstructs the view in that direction. The station is in the lands of the village of Ámjio, thána Bánswára, territory of the Rája of Bánswára.

The station consists of a platform of wood, earth and rubble enclosing an isolated and perforated pillar of masonry 4 feet in height above the lower mark : an aperture gives access to the lower mark. The directions and distances of the circumjacent villages are :-Gamdi W.S.W., miles 2; Vakhatpur W., miles 3; Mándarda W.N.W., miles 2t ; and Gara (Sujaji) N.N.W., miles 2.
VIII. Kua Hill Station, lat. $23^{\circ} 29^{\prime}$, long. $73^{\circ} 57^{\prime}$-observed at in 1862 -is situated on a low hill forming part of a range running N.N.E. and S.S.W., about 2 miles N. of Kua village. The station is in the lands of the village of Kua, Dúngarpur state.

The station consists of a platform of wood, earth and rubble enclosing an isolated and perforated pillar of masonry 4.95 feet in height, with mark-stones at top and bottom : an aperture gives access to the lower mark.
IX. Deokotla Hill Station, lat. $23^{\circ} 19^{\prime}$, long. $74^{\circ} 12^{\prime}$-observed at in 1862 -is situated on a conspicuous peak at the eastern end of a short range of hills running E. and W., about $\frac{1}{8}$ of a mile S.W. of Deokotla village, and 2 miles $S$. by $W$. of the large village of Shergarh : territory of the Rája of Bánswára.

The station consists of a platform of wood, earth and rubble enclosing an isolated and perforated pillar of masonry 5 feet in height : an aperture gives access to the lower mark. The directions and distances of the circumjacent villages are :-Tanda N. by E., miles $1 \frac{1}{2}$; Tejpur W.S.W., miles 3; and Phalwa (scattered huts) W., miles 4.
X. Tembla Hill Station, lat. $23^{\circ} 15^{\prime}$, long. $73^{\circ} 55^{\prime}$-observed at in 1862 -is situated on the highest part of a range of low hills running N. and S., about $\frac{3}{4}$ of a mile W. by N. of Tembla village, and $3 \frac{3}{4}$ miles N. of the town of Sunth. The station is in the lands of the village of Tembla, thána and state Sunth, Rewa Kántha (Revákántha) Political Agency.

The station consists of a platform 5 feet in height (most probably of the same construction as those at the adjacent stations) enclosing an isolated and perforated pillar of masonry, with mark-stones at top and bottom : an aperture gives access to
the lower mark. The directions and distances of the circumjacent villages are:-Sagvaria S.E. by E., mile 1; Pfderim S.S.E., mile 1; Kureta S. by W., mile 1; Kerámul S.W. by S., miles $1 \frac{1}{2}$; and Nathukáka (hamlet) W., miles $1 \frac{13}{4}$.
XI. Uchak Hill Station, lat. $23^{\circ} 3^{\prime}$, long. $74^{\circ} 4^{\prime}$-observed at in 1862 -is situated on a hill locally so called, S. of the village of Moli, and about 2 miles E. of Bánpur : Sanjeli estate, Rewa Kántha Political Agency.

The station consists of a platform of earth and rubble enclosing an isolated and perforated pillar of masonry $5 \cdot 15$ feet in height, and has an aperture for access to the lower mark. The nearest villages are Chakisva and Doki.
XII. Játhrábhor Hill Station, lat. $23^{\circ} 2^{\prime}$, long. $73^{\circ} 43^{\prime}$-observed at in 1860,1861 and 1862 -is situated on a range of hills, about $1 \frac{1}{8}$ miles $W$. of Jathrabhor village. The station is in the lands of the village of Játhrábhor, thána and state Lúnáváda, Rewa Kántha Political Agency.

The station consists of a platform of earth and rubble enclosing an isolated and perforated pillar of masonry 5 feet in height, and has an aperture for access to the lower mark. The directions and distances of the circumjacent villages are :-Sukatimba (hamlet) S. by W., mile $\frac{8}{4}$; Boria N.W., miles $1 \frac{1}{4}$; and Chari N., miles $1 \frac{3}{4}$.
XIII. Patángri Hill Station, lat. $22^{\circ} 52^{\prime}$, long. $73^{\circ} 56^{\prime}$-observed at in $1861-62$-is situated on a high, flat-topped hill forming portion of a range, about $\frac{1}{2}$ a mile S.S.E. of village of Patángri, and 5 miles N. by E. of Rebári at the seventeenth mile-stone of the high road from the town and Railway Station of Godhra to Dohad. The station is in the lands of the village of Patángri, thána and state Báriya, Rewa Kántha Political Agency.

The station consists of a platform of earth and rubble enclosing an isolated and perforated pillar of masonry 2 feet in height, with mark-stones at top and bottom : an aperture gives access to the lower mark. The directions and distances of the circumjacent villages are :-Pála N., miles 2 ; Devi E.N.E., miles $1 \frac{1}{4}$; Pasáyata E., miles $1 \frac{1}{2}$; Jámodra E.S.E., miles $2 \nmid \frac{1}{4}$; Dhabuka S.E., mile $\frac{1}{2}$; Navagám S.W., miles 24 ; and Mátaria Vejma N.W. by W., miles $1 \frac{9}{4}$.
XIV. Kágarol Hill Station, lat. $22^{\circ} 53^{\prime}$, long. $73^{\circ} 42^{\prime}$-observed at in $\mathbf{1 8 6 0 - 6 1 - i s}$ situated on a low isolated hill also known as Pipalia-ni-Dungri, and 8 miles N.N.E. of the town and Railway Station of Godhra. The station is in lands of the village of Pipalia, sub-division Godhra, district Panch Maháls.

The station consists of a platform of earth and rubble enclosing an isolated and perforated pillar of masoury 5 feet in height, and has an aperture for access to the lower mark. The directions and distances of the circumjacent villages are :-Pati (hamlet) N., miles 3; Vijápur N.N.E., miles $1 \frac{3}{4}$; Navagám E.S.E., miles $1 \frac{1}{4}$; Sámpa S.E. by S., miles $2 \frac{1}{4}$; Mitháli S. by W., miles 2; Dokva W.S.W., mile 1; and Shehera N. by W., miles $4 \frac{1}{4}$.
XV. Wardhari Hill Station, lat. $23^{\circ} 6^{\prime}$, long. $73^{\circ} 30^{\prime}$-observed at in 1860 -is situated on a hill, about $\frac{1}{3}$ of a mile $E$. of village so called. The station is in the lands of the village of Wardhari, thana and state Lúnáváda, Rewa Kántha Political Agency.

The station consists of a platform of earth and rubble enclosing an isolated and perforated pillar of masonry 5.83 feet in height, and has an aperture for access to the lower mark. The directions and distances of the circumjacent villages are :-Ved N. by W., mile $\frac{3}{4}$; Jitpur N.E. by E., mile 1 ; Dhesia E. by S., mile 1 ; Bhimpur S.S.W., miles $1 \frac{1}{3}$; and Karáchhla W. by S., miles $2 \frac{1}{2}$.
XVI. Ghoráráo Hill Station, lat. $22^{\circ} 52^{\prime}$, long. $73^{\circ} 24^{\prime}$-observed at in 1859 and 1860 -is situated on a ridge of hills, about $1 \frac{1}{3}$ miles N.N.E. of Kuni village on the right bank of the Mahi river, 6 miles S. by E. of Bálásinor (Vádáshinor) town, and $4 \frac{1}{3}$ miles N. by E. of Páli Railway Station on the B. B. and C. I. Line. The station is in the lands of the village of Kuni, táluka Thásra, district Kaira (Kheda).

The station consists of a platform of earth and rubble enclosing an isolated and perforated pillar of masonry 5 feet in height, and has an aperture for access to the lower mark. The directions and distances of the circumjacent villages are:-Nadisar E.N.E., miles 2 $\frac{1}{2}$; Sangol E.S.E., miles 1 $\frac{1}{4}$; Sonipur S., miles 2; Rasúlpur Parál W. by S., miles 2 $\frac{1}{4}$; Parál W., miles 2; and Menpura N.W. by W., miles $1 \frac{1}{2}$.
XVII. Bhor Hill Station, lat. $22^{\circ} 40^{\prime}$, long. $73^{\circ} 52^{\prime}$-observed at in $1860-61$ and 1862 -is situated on the southern of two rocks on the high hill of Bhálápur, and about 6 miles S.W. by W. of the town of Báriya. The station is in the lands of the village of Bhor, thána and state Báriya, Rewa Kántha Political Agency.

As regards the construction of the station the following is all that is forthcoming:-"The platform for the observatory was made of bamboos resting on logs of wood fixed in the crevices of the rocks, and the mark is made on the rock". The directions and distances of the circumjacent villages are:-Gholáv N., miles 3; Kálidungri E.N.E., miles $1 \frac{3}{4}$; Virol E. by S. miles $1 \frac{3}{4}$; Kakalpur S. by W., miles $1 \frac{1}{2}$; and Khánpala W.N.W., miles $1 \frac{1}{4}$.
XVIII. Rencha Hill Station, lat. $22^{\circ} 42^{\prime}$, long. $73^{\circ} 39^{\prime}$-observed at in $1860-61$-is situated on a small isolated hill locally known as Vagh Dungar, and about $3 \frac{1}{4}$ miles E. by N. of the large village of Vejalpur on the high road from Kalol to Godhra. The station is in the lands of the village of Richhia, sub-division Kálol, district Panch Maháls.

The station consists of a platform of logs of wood covered over with earth, enclosing an isolated and perforated pillar of masonry 5 feet in height, with marks at top and bottom, and has an aperture for access to the lower mark which is cut on the rock. The directions and distances of the circumjacent villages are:-Richhia N., mile $\frac{1}{4}$; Chaláli S.E., miles 2 ; Arádra S., miles $3 \frac{1}{2}$; and Nádarkha W. by N., miles 2.
XIX. Kandálwa Hill Station, lat. $22^{\circ} 28^{\prime}$, long. $73^{\circ} 50^{\prime}$-observed at in 1861 -is situated on a high
range of hills of the same name, which runs E. and W., about 3 miles S.W. of the village of Puneh. The station is in the lands of the village of Kandálva, thána Karáli, Chhota Udepur state, Rewa Kántha Political Agency.

The station consists of a platform of earth and rubble enclosing an isolated and perforated pillar of masonry 5 feet in height, with mark-stones at top and bottom, and has an aperture giving access to the lower mark.
XX. Páwágarh Hill Station, lat. $22^{\circ} 28^{\prime}$, long. $73^{\circ} 33^{\prime}$-observed at in 1861 -is situated on the second highest part of the well-known hill of this name, a few yards $S$. of a temple dedicated to the goddess Kálka Máta. The village of Chámpáner (which was once a flourishing town) is to N.E. from which the ascent to the station is by a path about 4 miles in length. The station is in the lands of the village of Chámpaner, subdivision Hálol, district Panch Maháls.

The station consists of a platform of earth and rubble enclosing an isolated and perforated pillar of masonry 2 feet in height, with mark-stones at top and bottom, and has an aperture for access to the lower mark.
XXI. Masábár Hill Station, lat. $22^{\circ} 19^{\prime}$, long. $73^{\circ} 45^{\prime}$-observed at in 1861 -is on a peak of a high and steep hill having the village of Masábar a short distance from its N.E. foot; the hill is locally known as Masábario Dungar and more commonly as Mahábár. The station is in the lands of the village of Masábár, sub-division Jámbughod̉a, district Panch Maháls.

The station consists of a platform of earth and rubble 3 feet in height, enclosing an isolated and perforated pillar of masonry, and though no mention of any marks is made, it may be assumed that the usual marks must have been inserted in the pillar as at the adjacent stations. The nearest villages are Khudsár, Duma and Pipia.
XXII. Karáli Hill Station, lat. $22^{\circ} 10^{\prime}$, long. $73^{\circ} 54^{\prime}$-observed at in 1861 -is situated at the western end of a short range of hills running E. and W., about a mile S.S.E. of Karáli village, and 2 miles N. of the village of Timarva Nava on the right bank of the Heran river. The station is in the lands of the village of Karáli, Chhota Udepur state, Rewa Kántha Political Agency.

The station consists of a platform of earth and rubble enclosing an isolated and perforated pillar of masonry 5 feet in height, with an upper and lower mark-stone : an aperture gives access to the lower mark. The directions and distances of the circumjacent villages are :-Karsan N.E. by N., miles $1 \frac{3}{4}$; Gamária (hamlet) E. by S., miles $1 \frac{1}{2}$; Rundhi Juni S.S.E., mile 1; Pherkua S.W. by W., miles $2 \frac{3}{4}$; Daulatpura W. by N., miles $1 \frac{1}{2}$; and Ghoraj N.W., miles 2.
XXIII. Sidpur Station, lat. $22^{\circ} 4^{\prime}$, long. $73^{\circ} 31^{\prime}$-observed at in 1861 -is situated on the western bank of the Orsang river, and about a mile S.S.E. of Sidpur village: pargana Dabhoi, Gáikwár territory.


#### Abstract

The station consists of a platform of earth and rubble enclosing an isolated and perforated pillar of masonry 4.83 feet in height, with mark-stones at top and bottom : an aperture gives access to the lower mark. When visited in 1876-77 by Captain Baird, R.E., in the course of the levelling operations, he found the station to consist of "a circular pillar 5 feet high over which is a covering pillar $3 \frac{1}{2}$ feet high, the upper mark-stone of which was found intact". The directions and distances of the circumjacent villages are :Kántoli N., mile 1 ; Bhiloria W., miles $1 \frac{1}{4}$; Ãsádara S.E. by S., miles $1 \frac{1}{4}$; Akoti S.S.W., miles $1 \frac{1}{2}$; and Chanváda S.W., mile 1. XXIV. Bábásiráj Hill Station, lat. $21^{\circ} 47^{\prime}$, long. $73^{\circ} 57^{\prime}$-observed at in 1861 -is situated on the highest hin which has the hamlet of Amba at its eastern foot, about 8 miles S. of the Narbada river, and 2 miles S. by E. of the village of Pipalkota: Mevás state of Káthi, district Khándesh.

No information whatever as regards the construction of this station is given in the records of this Series. The district officer reports that "There is no masonry pillar but only a platform $3 \frac{1}{2}$ feet in height".


XXV. Kesarwa Hill Station, lat. $21^{\circ} 46^{\prime}$, long. $73^{\circ} 26^{\prime}$-observed at in 1861 -is on the summit of a high hill forming one of a range running $W$. and $S$., about $2 \frac{1}{4}$ miles S.E. of the village so called. The station is in the lands of the village of Kesváda, thána Nándod of the Rájpipla state, Rewa Kántha Political Agency.

The station consists of a platform of bricks and mud cement enclosing an isolated and perforated pillar of masonry 4 feet in height, with mark-stones at top and bottom, and has an aperture for access to the lower mark. The directions and distances of the circumjacent villages are:-Gared N., miles 14; Chatváa N.E., miles 2; Handi Dhochki E. by N., miles 2; and Dabhál W.by N., miles $4 \frac{1}{2}$.
XXVI. Ságbára Hill Station, lat. $21^{\circ} 34^{\prime}$, long. $73^{\circ} 49^{\prime}$-observed at in 1861 -is situated about 8 miles N . of the Tápti river, and some 12 miles N . by E . of a small fort of Vájpur on the right bank of the Tápti : thána Ságbára of the Rájpipla state, Rewa Kántha Political Agency.

No details of the construction of the station platform and pillar are forthcoming.
XXVII. Álamwári Hill Station, lat. $21^{\circ} 35^{\prime}$, long. $73^{\circ} 33^{\prime}$-observed at in 1861 -is about 8 miles N.W. of Bárader, and 10 miles E.S.E. of Netrang: Rájpipla state, Rewa Kántha Political Agency.

No details of the construction of the station platform and pillar are forthcoming.
XXVIII. Páthal Hill Station, lat. $21^{\circ} 22^{\prime}$, long. $73^{\circ} 17^{\prime}$-observed at in 1861 -is situated on one of a group of hills called Khumbaria on the western skirts of the Dáng jungles, about 2 miles N.E. of the village so
called, and 6 miles N.E. of Areth on the high road and at the seventeenth mile-stone from Kím to Mándvi. The station is in the lands of the village of Kálmoi, táluka Mándvi, district Surat.

The station was originally, established in 1846. It was visited and repaired in 1861. . When visited in 1863 it was described as follows :-"No pillar was built, a masonry platform 1 foot in height having the usual mark-stones in the foundation and on its surface, indicates the site of the station". The directions and distances of the circumjacent villages are:-Parvat E.N.E., miles lí; Regáma E. by S., miles 3; Kálmoi S. by W., mile $\frac{3}{4}$; and Lindia N.W., mile 1.
XXIX. Dopári Hill Station, lat. $21^{\circ} 5^{\prime}$, long. $73^{\circ} 46^{\prime}-$ observed at in 1846 and 1861 -is situated at the centre of a long ridge, and on the boundary between the Khándesh collectorate and the Songad táluka of Gaikwar's territory. A small village Bhoreh is about $2 \frac{1}{2}$ miles to N.E.

The station as originally built in 1846 is described as follows :-"A mark was made on the rock below and a platform built up to the surface with another stone at top". When visited in 1861 it was repaired, but nothing exists to shew the state it was found nor the repairs then effected. When visited in April 1885, the platform was found partly destroyed, but a mark 1 foot below the surface of the existing remains was found undisturbed; this mark is 0.8 of a foot below the surface of the hill. A scattered group of huts within a circle of a mile lie 3 miles to S.W. The nearest centre is called Tarpara, $\frac{1}{4}$ of a mile further is Leotara, and at another $\frac{1}{4}$ of a mile lies Dhabda. About 6 miles $S$.W. by W. is the site called Mendha, and 7 miles $S$.W. is the Gáikwar tháua station of Saudervail.
XXX. Tarbhán Station, lat. $21^{\circ} 1^{\prime}$, long. $73^{\circ} 6^{\prime}$-observed at in 1845 and 1861 -is situated on rising ground, about $3 \frac{1}{4}$ miles S.S.W. of Sarbhon, and $1 \frac{1}{4}$ miles S.E. of Párdi Vágha, both on the road from Navsári to the town of Bárdoli. The station is in the lands of the village of Sarbhon, táluka Bárdoli, district Surat.

The station as originally built in 1845 consisted of a platform enclosing a circular, isolated pillar of brick masonry "c with three stones for the feet of the instrument and a central one for the mark. A second stone is at the surface of the ground " 2.67 feet below this". When visited in 1861 it was repaired. It was again visited in April 1885 and found to be in good preservation. The directions and distances of the circumjacent villages are:-Tarbhán N., mile $\frac{3}{3}$; Varoli N.E. by N., miles $1 \frac{7}{3}$; Kavita E.S.E., miles $1 \frac{1}{2}$; and Kharad S. by E., mile 1.
XXXI. Pilwa Hill Station, lat. $20^{\circ} 39^{\prime}$, long. $73^{\circ} 26^{\prime}$-observed at in 1845 -is situated on a hill so called, about 20 yards $S$. of a conspicuous tree. There are no villages near the station, a few scattered huts called Chauronia where a market is held every Sunday lie about a mile to S.W., and a similar collection called Mankonia 2 miles to N.W.: Bánsda (Vánsda) state, Surat Agency.

The station was originally established by the Bombay Trigonometrical Survey. "A platform has been built over the "old mark and another station stone at its surface plumbed over the former at the height of $2 \cdot 25$ feet". When visited in March 1885, it was found to consist of a platform of loose stones 1 foot high, enclosing three large flat stones placed triangularly for the theodolite stand; between these stones, and at a depth of 2 inches, is a circle and dot on a stone apparently undisturbed.
XXXII. Sáler Hill Station, lat. $20^{\circ} 43^{\prime}$, long. $73^{\circ} 59^{\prime}$-observed at in 1845 -is in the fort of Sáler at the western end of a remarkable, narrow ridge about $\frac{1}{8}$ a mile in length, and having along its southern face an almost perpendicular drop of about 1000 feet: the eastern end is rather higher, and is capped with rock, but the space being extremely confined and occupied by symbols dedicated to the worship of Pareshram, the station could not be established here on account of the strong objections of the people : táluka Báglán, district Násik.

The station is denoted by two marks, one at the surface of the ground and the other 1.96 feet below firmly fixed in the muram (a kind of gravel). When visited in April 1885, three dressed stones, triangularly imbedded for the theodolite stand, were found around the mark-stone of the station which was undisturbed and on a level with the surface of the hill: there is no platform. The directions and distances of the circumjacent villages are :-Chichli N.W. by W., miles $2 \frac{1}{2}$; Bhilpara S.W., mile 1; Mahardar S.S.E., miles $1 \frac{1}{4}$; Vagamba N.E., miles $2 \frac{1}{4}$; and Sáler S., mile $\frac{1}{8}$.
XXXIII. Párnera Hill Station, lat. $20^{\circ} 33^{\prime}$, long. $72^{\circ} 59^{\prime}$-observed at in 1844 -is situated on the raised mound running along the middle length of the fort which is on a small isolated hill. It is about $1 \frac{1}{4}$ miles E. of the B. B. and C. I. Railway line level crossing, and $2 \frac{1}{8}$ miles N. of the town of Párdi. The station is in the lands of the village of Párnera, táluka Bulsár (Valsád), district Surat.

No pillar was built. The station of 1844 was denoted by two mark-stones, "one at the surface level and the other below". It was visited in 1876-77 by Captain Baird, R.E., who stated that "a mark $\odot$ is cut on the rock in situ". When again visited in March 1885, three large flat stones placed triangularly for the theodolite stand were found around the mark-stone which was apparently undisturbed : there is no platform. The directions and distances of the circumjacent villages are:-Parnera N., mile $\frac{1}{2}$; scattered huts (no name) S., mile $\frac{1}{2}$; and Chichváda (scattered huts) W. by N., mile $\frac{1}{2}$.
XXXIV. Bhorgarh Hill Station, lat. $20^{\circ} 7^{\prime}$, long. $73^{\circ} 47^{\prime}$-observed at in 1845-locally known as Bhorgad, is situated on a table-land, 179 feet $S$. W. of a conspicuous tree, and about 2 miles W. by N. of the hill fort of Rámsej immediately $E$. of the road to Násik. The station is in the lands of the village of Ramsej, táluka Dindori, district Násik.

The station consists of a platform and has two marks, the one at the surface is $2 \cdot 40$ feet above the lower which was established by the Bombay Trigonometrical Survey. When visited in May 1885, the platform was fouud in good repair, and the upper
mark, $2 \cdot 40$ feet above the rocky surface of the hill, apparently undisturbed. The directions and distances of the circumjacent villages are :-Tongaldara E.S.E., miles $1 \frac{1}{8}$; Rávalgaon W.N.W., miles $2 \frac{3}{3}$; Rásegaon N. by E., miles $2 \frac{3}{4}$; and Goalvádi S.S.E., miles 2 .
XXXV. Ankai Hill Station, lat. $20^{\circ} 11^{\prime}$, long. $74^{\circ} 29^{\prime}$-observed at in 1845 -locally known as Chándkha Bovas Dúngar, is situated on a conical knoll, in the centre of the fort of Ankai which is about $\frac{3}{4}$ of a mile E. of the road from Sawargaon to the Railway Station of Manmád on the G. I. P. Railway, this road is skirted by the Dhond and Manmád Railway. The station is in the lands of the village of Ankai, táluka Yeola (Yevla), district Násik.

In 1845 the station consisted of a platform, and had two marks, the one at the surface was 3.67 feet above the lower cut on the rock which agreed in position with some appearance of a mark found on the rock on which a pole had been erected in 1832. When visited in 1881 by the Levelling Party, no upper mark was found ; a beuch-mark, with the inscription B. O M., was cut on a stone of the platform. When again visited in April 1885, a platform of dressed stones, 10 feet square and 22 inches high, was found but no uppermark. A search was made for the lower mark, but none having been found, the central portion of the platform was rebuilt and the bench-mark stone fixed in the centre of and level with the upper surface of the platform, the outer and upper edges of which were in perfect preservation having been built with dressed stones set in good mortar. The directions and distances of the circumjacent villages are :-Anakvádi (on the road to the Manmád Railway Station) N. by W., miles $1 \frac{1}{3}$; Visápur W., miles 34 ; Dhanakvádi S.S.W., miles 3 ; Vánjarvádi N.E. by N., miles $2 \frac{2}{3}$; Chándgohán E.S.E., miles 2; and Kasúr S.E. by S., miles 34 .
XXXVI. Gambírgarh Hill Station, lat. $20^{\circ} 3^{\prime}$, long. $73^{\circ} 6^{\prime}$-observed at in 1843 and 1844 -is named after the old and now entirely destroyed fort of Gambirgarh, and is situated on the highest part of the hill (S.E. extremity) which is crowned with immense, perpendicular masses of basaltic rock, rising 100 feet and more in some places. It is in a thinly populated and very wild part of the Thána district. The station is in the lands of the village of Váyaloli, táluka Dáhánu, district Thána.

The station of 1843 and 1844, was described as follows:-"The stone at the surface has been plumbed over the lower which is $2 \cdot 23$ feet below it". When visited in March 1885, a slight trace of a platform about 6 or 8 inches above the surface of the hill with three large flat stones planted triangularly were found. Between these stones and at the bottom of a triangular well, 1.71 feet deep, a mark with circle and dot was found engraved on the rock apparently in sitt.
XXXVII. Sinnar Hill Station, lat. $19^{\circ} 53^{\prime}$, long. $74^{\circ} 3^{\prime}$-observed at in 1845 -locally known as Dhagya Dúngar, is situated on the centre of three knolls on a range of hills, about 3 miles N. of the town of Sinnar, and $\frac{3}{4}$ of a mile N. of a two domed temple on the southern knoll. The station is in the lands of the village of Máparvádi, táluka Sinnar, district Nạ́sik.

The station consists of a stone platform having two marks, one at its surface and the other 1.35 feet below it which is engraved on the rock. When visited in 1885 the platform was found newly repaired, the upper mark-stone undisturbed and appareutly in position: the platform which is on a level with the upper mark-stone, is $1 \cdot 5$ feet above the surface of the hill. The directions and distances of the circumjacent villages are:-Máparvádi S.S.W., miles $1 \frac{1}{4}$; Málegaon W.S.W., miles 2k; Deshvandi N. by W., miles $2 \frac{1}{2}$; and Vadagaon Pimpri E.N.E., miles $3 \frac{3}{3}$.
XXXVIII. Hewargaon Hill Station, lat. $19^{\circ} 29^{\prime}$, long. $74^{\circ} 16^{\prime}$-observed at in 1845 -is situated on a small knoll on a table-land, and is about 400 feet higher than the ridge which in a manner connects it with the Báleshvar hill on the west "and runs eastward for a distance of some 20 miles," about 6 miles S . by E . of the town of Sangamner at the junction of the Pravara river with the Malungi stream : taluka Sangamner, district Ahmednagar (Ahmadnagar).

The station cousists of a stone platform and has two marks, the one at the surface is 1.67 feet above the other. When visited in January 1885, the station was found in good preservation and the upper mark undisturbed. The directions and distances of the circumjacent villages are :-Hewargaon N.N.W., miles $2 \frac{1}{4}$; Nimgaon N. by E., miles $2 \frac{1}{2}$; Jámgaon N.E. by E., miles $4 \frac{1}{4}$; Ambhor W., miles $3 \frac{1}{\frac{1}{3}}$; Modalvádi S., miles $1 \frac{1}{\frac{1}{3}}$; Chándnapur W.N.W., miles $2 \frac{1}{\frac{1}{3}}$; and Jhola N.W., miles 3.
XXXIX. Kalsubai Hill Station, lat. $19^{\circ} 36^{\prime}$, long. $73^{\circ} 45^{\circ}$-observed at in 1842,1844 and $1845-$ is situated on a hill so called which rises abruptly on its western side, and is on the boundary between the Násik and Ahmednagar districts. It is about 10 miles E. of the general line of the Western Gháts, and 12 miles S.E. of the Igatpuri (Vigatpuri) Dak Bungalow on the G.I.P. Railway Line from Bombay to Jubbulpore (Jabalpur). A temple lies to the N. by E., the S.W. and S.E. angles of which are $15 \cdot 44$ feet and 22.89 feet respectively. The station is in the lands of the village of Bári, táluka Akola, district.Ahmednagar.

The station was originally denoted by a circle and dot engraved on' the rock : no pillar was built. When risited in February 1885, the station was found in good repair and to consist of a platform, 4 feet 3 inches above the lower mark cut on the rock in sitú, surrounding a perforated masonry pillar 3 feet in diameter. The directions and distances of the circumjacent villages are :Indor N., miles $2 \frac{1}{3}$; Vásádi N.N.E., miles $3 \frac{1}{4}$; Varanguz E., miles 4 ; Pánjra S. by E., miles $2 \frac{1}{2}$; aud Ambavádi W.N.W., miles $2 \mathcal{3}$.
XL. Kámandrug Hill Station, lat. $19^{\circ} 23^{\prime}$, long. $73^{\circ} 0^{\prime}$-observed at in 1843 -is situated on the eastern and lower point of a double peaked hill connected by a curving narrow ridge which leads on to a high plateau to the north; this plateau in 1885 was being prepared for a sanitarium for the Railway employes of the district. The station is in the lands of the village of Káman, taluka Bassein (Vasai), district Thána.

Of the station built in 1843, no description is forthcoming except that two mark-stones were left, one at the surface
of the ground and the other $2 \cdot 21$ feet below it. When visited in 1885 , no platform or pillar was found but only three large flat stones imbedded flush with the hill top, between which and at the depth of $2 \cdot 25$ feet below their upper surface a mark, circle and cross-lines, was found at the bottom of a well.
XXVI. (Of the Bombay Longitudinal Series). Párner Hill Station, lat. $19^{\circ} 3^{\prime}$, long. $74^{\circ} 27^{\prime}$ observed at in 1838, 1845 and 1846-is situated on a knoll of a flat-topped hill which rises about 450 feet above the plains to the south : it is ascended by a fair path from the village of Kumbarvádi (at the $\mathbf{E}$. foot of the hill) immediately to the W. of the road from Párner to Tákle Dhokeshvar, and about $3 \frac{1}{2}$ miles N.W. of the town of Parner. The hill commands a fair view all round except towards the N.E., where it is intercepted by a Muhammadan dargáh surrounded by trees, distant 40 feet from the station. The station is in the lands of the village of Párner, táluka Párner, district Ahmednagar.

The station of 1838 is described as "marked by a cross on a large stone at the depth of 3.31 feet and again at the level of the ground by the usual circle and centre". No change appears to have been made in $18+5$ and 1846 . When visited in 1881, the station was found to consist of a perforated pillar of masonry 3 feet in diameter and $3 \cdot 17$ feet above the grouid level, surrounded by a platform of earth and stones 10 feet in diameter; " there was no mark-stone at top, but there may be one at the bottom of the perforation which is $19 \frac{1}{2}$ inches deep"; a mark was let into the upper surface of the pillar and covered over by a cairn of stones. When again visited in 1885, the station was found in good condition and the upper mark apparently undisturbed. Note.-In September 1868 the district officer reported as follows:-"No sign to be found except a hole in the ground in which there has apparently been a stone": from this it appears that the station as found in 1881 was most probably built by a Survey Party, about the years 1877-78. The directions and distances of the circumjacent villages are:-Karandi N.E. by N., miles 17 ; Háthálkhindi W. by N., miles $1 \frac{1}{4}$; Viroli N.W., miles $2 \frac{1}{4}$; and Puna (hamlet) S.S.W., mile 1.
XXX. (Of the Bombay Longitudinal Series). Singi Hill Station, lat. $18^{\circ} 57^{\prime}$, long. $73^{\circ} 42^{\prime}$-observed at in 1839, 1842 and 1845 -is situated on a sharp peak of the narrow ridge of hills, about $1 \frac{1}{4}$ miles N. by E. of the village of Argaon above which it rises about 2000 feet. The ascent is steep on all sides and towards the $S$. it is almost precipitous. The upper part of the hill is composed of porous basalt, and the lower, in some parts, is amygdaloidal rock with occasional small masses of zeolite. The station is in the lands of the village of Argaon, táluka Khed, district Poona (Puna).

The station of 1839 was denoted by a mark-stone : in 1842 an upper mark-stone was placed, but this having been disturbed another upper mark-stone was placed in 1845 at 3.08 feet above and in the normal of the mark of 1839. When visited in 1885, "the mark was found in position and apparently undisturbed. It is flush with the surface of the hill top; a ring of stones about 10 feet in diameter defining a kind of platform was found which had to be filled up and levelled for the observations. No masonry pillar exists at the station." The azimuths, directions and distances of the circumjacent villages are :-Argaon $9^{\circ}$, miles $1 \frac{1}{\frac{1}{2}}$; Kura Buzurg $156^{\circ}$, miles $\frac{1}{\frac{3}{4}}$; Kura Khurd $196^{\circ}$, miles $1 \frac{1}{2}$; Audar E. by N., miles 2; and Aunda W. by N., miles $2 \frac{1}{2}$.
J. ECCLES,

In charge of Computing Office.

## SINGI MERIDIONAL SERIES.

## PRINCIPAL TRIANGULATION. OBSERVED ANGLES.

## At XXIX (Tána)

March 1862; observed by Lieutenant C. T. Haig, R.E., with Troughton and Simms' 18-inch Theodolite No. 2.

| Angle between | Circle readings, telescope being set on I <br> $\begin{array}{llllllllllll} & 805^{\circ} & 23^{\prime} & 125^{\circ} 23^{\prime} & 15^{\circ} 34^{\prime} & 195^{\circ} 34^{\prime} & 85^{\circ} 45^{\prime} & 265^{\circ} 45^{\prime} & 155^{\circ} 50^{\prime} & 335^{\circ} 51^{\prime} & 226^{\circ} 1^{\prime} & 46^{\circ} 2^{\prime} \\ 296^{\circ} 12^{\prime} & 116^{\circ} 12^{\prime}\end{array}$ |  |  |  |  |  |  |  |  |  |  |  | $M=$ Mean of Groupe <br> $w^{w}=$ Relative Weight <br> C = Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| I \& XXXII | " | " | " | " | " | " | J ${ }^{\text {d }}$ | J 32 | ] 316 | - | " |  | $\begin{aligned} & M=35^{\prime \prime} \cdot 54 \\ & w=1 \cdot 67 \\ & \frac{1}{w}=0 \cdot 60 \\ & C=54^{\circ} 37^{\prime} 35^{\prime \prime} \cdot 54 \end{aligned}$ |
|  |  <br>  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | $36 \cdot 85$ | $36 \cdot 02$ | 38.91 | 34.60 | 36.45 | 41.54 | 32.98 | 32.80 | 33.63 | 35'77 | 32.62 | 34.32 |  |

## At XXXII (Lakarwás)

March 1862 ; observed by Lieutenant C. T. Haig, R.E., with Troughton and Simms' 18-inch Theodolite No. 2.

| Angle between | $0^{\circ} 1^{\prime}$ | $180^{\circ} 1^{\prime}$ | $70^{\circ} 11^{\prime}$ | $\begin{aligned} & \text { Circle } \\ & 250^{\circ} 11^{\prime} \end{aligned}$ | readings, <br> $140^{\circ} 22^{\prime}$ | telesco <br> $320^{\circ} 22^{\prime}$ | e being <br> $210^{\circ} 28^{\prime}$ | set on $30^{\circ} 28^{\prime}$ | XXIX <br> $280^{\circ} 39^{\prime}$ | $100^{\circ} 39^{\prime}$ | $850^{\circ} 50^{\prime}$ | $170^{\circ} 50^{\prime}$ | $M=$ Mean of Groupe <br> wo = Relative Weight <br> C = Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| XXIX \& I | " | " | " | " | " | " | " | " | " | " | " | " | $\begin{aligned} & M=18^{\prime \prime} \cdot 3^{6} \\ & w=1 \cdot 5^{8} \\ & \frac{1}{w}=0 \cdot 63 \\ & C=75^{\circ} 25^{\prime} 18^{\prime \prime} \cdot 36 \end{aligned}$ |
|  | $\begin{aligned} & h 18.40 \\ & h 18.53 \end{aligned}$ | $\begin{aligned} & h 16.50 \\ & h_{17} 56 \end{aligned}$ | $\begin{array}{ll} l & 14.76 \\ l & 14.24 \end{array}$ | $\begin{aligned} & l 16 \cdot 67 \\ & l 16.87 \end{aligned}$ | $\begin{aligned} & h 18.97 \\ & h 18.27 \end{aligned}$ | $\begin{aligned} & h 15.36 \\ & h 14.47 \end{aligned}$ | $\begin{aligned} & h 19.67 \\ & h 19.50 \end{aligned}$ | $\begin{aligned} & h 18.07 \\ & h 18.76 \end{aligned}$ | $\begin{aligned} & h 23.50 \\ & h .23 .94 \end{aligned}$ | $\begin{aligned} & h 22 \cdot 63 \\ & h 22 \cdot 17 \end{aligned}$ | $\begin{array}{ll} l & 19.57 \\ l & 19.40 \end{array}$ | $\begin{aligned} & l 16.20 \\ & l 16.60 \end{aligned}$ |  |
|  | 18.47 | $17 \% 3$ | 14.50 | 16.77 | 18.62 | 14:91 | 19.59 | 18.41 | 23.72 | 22*40 | $19 \% 49$ | $16 \cdot 40$ |  |

Note.-Stations XXIX and XXXII appertain to the Karáchi Longitudinal Series of the North-West Quadrilateral.


Nots.-Stations XXIX and XXXII appertain to the Karáchi Longitudinal Series of the North-Weat Quadrilateral.

## At II (Sisa)-(Continued).

| $\underset{\text { between }}{\text { Angle }}$ | $0^{\circ} 1^{\prime}$ | $180^{\circ} 1^{\prime}$ | $70^{\circ} 11^{\prime}$ | Circle r $250^{\circ} 12$ | readings, <br> $140^{\circ} 22^{\prime}$ | telescop $320^{\circ} 22^{\prime}$ | ee being $210^{\circ} 28^{\prime}$ | $\begin{aligned} & \text { set on } \overline{2} \\ & 30^{\circ} 28^{\prime} \end{aligned}$ | $\begin{array}{r} \text { XXXII } \\ 280^{\circ} 39^{\prime} \end{array}$ | $100^{\circ} 39^{\prime}$ |  | $170^{\circ} 50^{\prime}$ | $M=$ Mean of Groups <br> $w_{0}=$ Relative Weight <br> C = Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| I \& III | " | " | " | " | " | " | " | " | $\ldots$ | " | " |  | $\begin{aligned} M & =57^{\prime \prime} \cdot 5^{6} \\ w & =2 \cdot 43 \\ \frac{1}{w} & =0 \cdot 4 \mathrm{I} \\ C & =46^{\circ} 41^{\prime} 57^{\prime \prime} \cdot 5^{6} \end{aligned}$ |
|  | $\begin{aligned} & h 59.23 \\ & l \\ & l \end{aligned}$ | $\begin{aligned} & h 56 \cdot 74 \\ & h \\ & \\ & 56 \cdot 74 \end{aligned}$ | $\begin{aligned} & l \\ & l \\ & l \\ & 58 \cdot 10 \\ & \hline 8.94 \end{aligned}$ | $\begin{aligned} & l \\ & l \\ & l \\ & 57.36 \\ & 57 \end{aligned}$ | $l 58.87$ <br> $l 60 \cdot 10$ | $\begin{aligned} & l \\ & l \\ & l \\ & 60 \cdot 8 \cdot 10 \\ & 62 \cdot 10 \end{aligned}$ | $l 60 \cdot 04$ <br> $l 58 \cdot 17$ | $\begin{aligned} & l \\ & l \\ & l \\ & 54: 33 \\ & \hline 100 \end{aligned}$ | $\begin{aligned} & h 56 \cdot 64 \\ & h 56 \cdot 70 \end{aligned}$ | $\begin{aligned} & h 56.76 \\ & h_{57} .83 \end{aligned}$ | $\begin{aligned} & h 54 \cdot 30 \\ & h 55 \cdot 16 \end{aligned}$ | $\begin{aligned} & h 54 \cdot 43 \\ & h 56 \cdot 3 \end{aligned}$ |  |
|  | $59^{.27}$ | 56.74 | 59*02 | 57.58 | 59.48 | 61*49 | 59 ${ }^{10}$ | 54.17 | 56.67 | 57.29 | $54 * 73$ | 55.23 |  |
| III \& IV |  <br>  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =5^{\prime \prime \prime} \cdot 65 \\ w & =1 \cdot 13 \\ \frac{\mathbf{I}}{w} & =0 \cdot 88 \\ C & =49^{\circ} 33^{\prime} 56^{\prime \prime} \cdot 65 \end{aligned}$ |
|  | 55.97 | 56.34 | 59'90 | $55 \cdot 84$ | 56.64 | 51*75 | 5122 | 60*43 | $62 \cdot 56$ | 57.06 | $55^{\circ} 85$ | 56•28 |  |

## At III (Tukwása)

March 1862; observed by Lieutenant C. T. Haig, R.E., with Troughton and Simms' 18-inch Theodolite No. 2.

| $\underset{\text { between }}{\text { Angle }}$ | Circle readings, telescope being set on VI <br>  |  |  |  |  |  |  |  |  |  |  | $M=$ Mean of Groups <br> $w_{0}=$ Relative Weight <br> C - Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
| VI \& V | " " | " | " | " | " | " | " | " | " | " | " | $\begin{aligned} & M=54^{\prime \prime} \cdot 27 \\ & w=2 \cdot 04 \\ & \frac{1}{w}=0 \cdot 49 \\ & C=51^{\circ} 18^{\prime} 54^{\prime \prime} \cdot 27 \end{aligned}$ |
|  |  <br>  |  |  |  |  |  |  |  |  |  |  |  |
|  | $55^{\circ} 24 \quad 53.99$ | 54.20 | $55 \cdot 88$ | 58.60 | $53 \times 73$ | 49.32 | 5511 | 52.40 | 57.14 | $53^{\circ 00}$ | 52.65 |  |
| V \& IV |  <br>  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=41^{\prime \prime} \cdot 19 \\ & w=2 \cdot 80 \\ & \frac{1}{w}=0 \cdot 36 \\ & C=59^{\circ} 15^{\prime} 41^{\prime \prime} \cdot 19 \end{aligned}$ |
|  | $41.65 \quad 40 \cdot 01$ | 41.85 | 40'10 | $36 \cdot 85$ | 44.27 | $43 \cdot 85$ | 41.27 | 38.93 | 42.22 | 42.25 | $41^{\circ} \mathrm{OI}$ |  |
| IV \& II |  <br>  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =55^{\prime \prime} \cdot 34 \\ w & =1 \cdot 81 \\ \frac{1}{w} & =0 \cdot 55 \\ C & =60^{\circ} 47^{\prime} 55^{\prime \prime} \cdot 34 \end{aligned}$ |
|  | $55.64 \quad 54.86$ | 52.69 | $55^{\circ} 05$ | 57.58 | $53^{\circ} \mathrm{O}$ | 52.73 | 57*57 | 61.60 | 54.98 | 54.32 | 54*00 |  |
| II \& I |  <br>  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =20^{\prime \prime} \cdot 23 \\ w & =2 \cdot 62 \\ \frac{1}{w} & =0 \cdot 38 \\ C & =62^{\circ} 44^{\prime} 20^{\prime \prime} \cdot 23 \end{aligned}$ |
|  | 20'39 20'57 | 20'93 | 21•16 | 17.65 | 23.79 | 19.37 | $16 \cdot 00$ | 19.31 | 19.18 | 21.85 | 22.57 |  |

## At IV (Dúngarpur)



## At $V$ (Sagwára)

April 1862; observed by Lieutenant C. T. Haig, R.E., with Troughton and Simms' 18-inch Theodolite No. 2.

| Angle between | $0^{\circ} 1^{\prime}$ | $180^{\circ} 1^{\prime}$ | $70^{\circ} 11^{\prime}$ | Circle $250^{\circ} 11^{\prime}$ | reading <br> $140^{\circ} 22^{\prime}$ | s , telesc <br> $320^{\circ} 23^{\prime}$ | ope bein <br> $210^{\circ} 28^{\prime}$ | set on $30^{\circ} 28^{\prime}$ | $\begin{aligned} & \text { IV } \\ & 280^{\circ} 39^{\prime} \end{aligned}$ | $100^{3} 39$ | $350^{\circ} 50^{\prime}$ | $170^{\circ} 50^{\prime}$ | $\begin{aligned} & M=\text { Mean of Groups } \\ & \text { wo Relative Weight } \end{aligned}$ $C=\text { Concluded Angle }$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IV \& III | " | " | " | " | " | " | $"$ | " | " | " | " | " | $\begin{aligned} & M=48^{\prime \prime} \cdot 06 \\ & w=0 \cdot 9 \mathrm{I} \\ & \frac{1}{w}=1 \cdot 10 \\ & C=73^{\circ} 40^{\prime} 48^{\prime \prime} \cdot 06 \end{aligned}$ |
|  |  <br>  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | $49^{\prime \prime} 42$ | $48 \cdot 38$ | 45.24 | 51•28 | $46 \cdot 60$ | $40 \cdot 28$ | 47:24 | $46 \cdot 50$ | 54.50 | 51*52 | $49^{\circ} 25$ | $46 \cdot 46$ |  |
| III \& VI |  <br>  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =15^{\prime \prime} \cdot 04 \\ w & =1 \cdot 02 \\ \frac{1}{w} & =0 \cdot 98 \\ C & =57^{\circ} 23^{\prime} 15^{\prime \prime} \cdot 04 \end{aligned}$ |
|  | 11944 | 14*18 | 22.56 | 11-87 | 14.43 | 19.48 | 14.05 | 15.07 | $10 \cdot 43$ | 16.61 | 13.87 | 1652 |  |
| VI \& VII | $l 54.07 l 53.84 l 50.00 l 59.93 l 56.07 l 59.06 h 54.20 h 57.03 l 54.07 l 50.50 l 54.10 l 58.66$ <br>  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=54^{\prime \prime} \cdot 83 \\ & w=1 \cdot 07 \\ & \frac{1}{w}=0 \cdot 94 \\ & C=57^{\circ} 39^{\prime} .54^{\prime \prime} \cdot 83 \end{aligned}$ |
|  | 53.55 | 52.97 | $49^{\circ} 20$ | $60 \cdot 37$ | $56 \cdot 40$ | $58 \cdot 65$ | 53.52 | 56•18 | 53.79 | 50:28 | 54.85 | 58.23 |  |
| VII \& VIII |  <br>  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =64^{\prime \prime} \cdot 63 \\ w & =0 \cdot 93 \\ \frac{1}{w} & =1 \cdot 07 \\ C & =77^{\circ} 4^{\prime} 4^{\prime \prime} \cdot 63 \end{aligned}$ |
|  | $64 \cdot 27$ | 64•19 | 66.66 | 56.99 | 62.65 | 61.40 | 68.99 | $65^{\circ} 00$ | 68.61 | 69.02 | 65.91 | 61:88 |  |

## At VI (Lohária)



## At VII (Ámjio)

April 1862; observed by Lieutenant C. T. Haig, R.E., with Troughton and Simms' 18-inch Theodolite No. 2.


## At VIII (Kua)

April 1862; observed by Lieutenant C. T. Haig, R.E., with Troughton and Simms' 18-inch Theodolite No. 2.


## At IX (Deokotla)

April 1862; observed by Lieutenant C. T. Haig, R.E., with Troughton and Simms' 18-inch Theodolite No. 2.

| $\underset{\text { between }}{\text { Angle }}$ | $188^{\circ} 11^{\prime}$ | $8^{\circ} 11^{\prime}$ | $258^{\circ} 22^{\prime}$ | $\begin{aligned} & \text { Circle } \\ & 78^{\circ} 22^{\prime} \end{aligned}$ | readin <br> $328^{\circ} 33^{\prime}$ | gs, telesc <br> $148^{\circ} 33^{\prime}$ | $\begin{gathered} \text { ope bein } \\ 38^{\circ} 39^{\prime} \end{gathered}$ | ag set on $218^{\circ} 39^{\prime}$ | $\begin{aligned} & \text { XI } \\ & 108^{\circ} 50^{\circ} \end{aligned}$ | $288^{\circ} 50^{\prime}$ | $179^{\circ}{ }^{\prime}$ | $859^{\circ} 1^{\prime}$ | $M=$ Mean of Groupe <br> ${ }^{w}$ = Relative Weight <br> C = Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| XI \& X | " | " | " | " | " | " | " | " | " | " | " |  | $\begin{aligned} M & =16^{\prime \prime} \cdot 19 \\ w & =1 \cdot 28 \\ \frac{1}{w} & =0 \cdot 78 \\ C & =5^{\circ} 1^{\prime} 16^{\prime \prime} \cdot 19 \end{aligned}$ |
|  | $\begin{aligned} & k 20 \cdot 14 \\ & h 20 \cdot 44 \end{aligned}$ | $\begin{aligned} & 17.87 \\ & 17.57 \end{aligned}$ | $\begin{aligned} & l 18.26 \\ & l 17.67 \end{aligned}$ | $\begin{aligned} & 41003 \\ & 61097 \end{aligned}$ | $\begin{array}{ll} l & 11.63 \\ l & 10.63 \end{array}$ | $\begin{array}{ll} l & 19.04 \\ l & 19.43 \end{array}$ | $\begin{aligned} & 16.67 \\ & 18.63 \end{aligned}$ | $\begin{aligned} & l \\ & l \\ & l \\ & l \\ & 15.70 \\ & \hline \end{aligned}$ | $\begin{aligned} & h 18.63 \\ & h 18.50 \end{aligned}$ | $\begin{aligned} & h 17.00 \\ & h 16.20 \end{aligned}$ | $\begin{aligned} & 115.20 \\ & 16.47 \end{aligned}$ | $\begin{aligned} & k 13.06 \\ & k \\ & k \end{aligned}$ |  |
|  | 20.29 | 1772 | 1797 | 1180 | II'13 | 19.23 | $17 \cdot 65$ | 1510 | 18.57 | 16.60 | 15.83 | 13.20 |  |
| X \& VIII |  <br>  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=58^{\prime \prime} \cdot 18 \\ & w=1 \cdot 02 \\ & \frac{1}{w}=0 \cdot 98 \\ & C=50^{\circ} 4^{\prime} 5^{\prime \prime} \cdot 18 \end{aligned}$ |
|  | 55.38 | 52.39 | 58.90 | 59.05 | 62.17 | $57 \times 5$ | 59.28 | 65.60 | 59.19 | 55*95 | 57'53 | $55^{\circ} 62$ |  |
| VIII \& VII |  <br>  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=66^{\prime \prime} \cdot 94 \\ & w=1 \cdot 5 \mathbf{I} \\ & \frac{1}{w}=0 \cdot 66 \\ & C=70^{\circ} 43^{\prime} \quad 6^{\prime \prime} \cdot 94 \end{aligned}$ |
|  | 67.85 | 70:35 | $65 \cdot 15$ | 67.11 | 66.47 | 69*53 | 64.33 | 59*90 | 6777 | 68.68 | 6736 | $68 \cdot 77$ |  |

## At X (Tembla)

April 1862 ; observed by Lieutenant C. T. Haig, R.E., with Troughton and Simms' 18-inch Theodolite No. 2.


## At XI (Uchak)

April 1862; observed by Lieutenant C. T. Haig, R.E., with Troughton and Simms' 18-inch Theodolite No. 2.

| $\underset{\text { between }}{\text { Angle }}$ | $190^{\circ} 32^{\prime} 10^{\circ} 32^{\prime}$ | $260^{\circ} 48^{\prime}$ | Circle $80^{\circ} 43^{\prime}$ | readings, $330^{\circ} 53^{\prime}$ | telesco <br> $150^{\circ} 54^{\prime}$ | pe being $40^{\circ} 59$ | set on $220^{\circ} 59^{\prime}$ | $\begin{aligned} & \text { XIII } \\ & 111^{\circ} 10^{\prime} \end{aligned}$ | $291^{\circ} 10^{\prime}$ | $181^{\circ} 21^{\prime}$ | $1^{\circ} 21^{\prime}$ | $M=$ Mean of Groups <br> $w_{0}=$ Relative Weight <br> C = Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| XIII \& XII | " " | " | " | " | " | " | " | " | " | " |  | $\begin{aligned} & M=27^{N} \cdot 53 \\ & w=1 \cdot 56 \\ & \frac{1}{w}=0 \cdot 64 \\ & C=50^{\circ} 20^{\prime} 27^{\prime \prime} \cdot 53 \end{aligned}$ |
|  | h 26.46 h 30.80 h $25.20 h 31 \cdot 10$ | $\begin{aligned} & 30 \cdot 53 \\ & 29 \cdot 20 \end{aligned}$ | $\begin{aligned} & 22.64 \\ & 22.34 \end{aligned}$ | $\begin{array}{lll} l & 24.70 & l \\ l & 26.04 & l \end{array}$ | $\begin{aligned} & l 32 \cdot 97 \\ & l \\ & l \\ & 32 \cdot 77 \end{aligned}$ | $\begin{aligned} & 27.40 \\ & 26.47 \end{aligned}$ | $\begin{aligned} & l 28 \cdot 10 \\ & l 26 \cdot 60 \end{aligned}$ | $\begin{aligned} & h 26 \cdot 16 \\ & h 27 \cdot 40 \end{aligned}$ | $\begin{aligned} & h 26 \cdot 53 \\ & h 25 \cdot 17 \end{aligned}$ | $\begin{aligned} & h 28.20 \\ & h 28.34 \end{aligned}$ | $\begin{aligned} & 28 \cdot 67 \\ & h 26 \cdot 93 \end{aligned}$ |  |
|  | $25.83 \quad 30.95$ | 29.87 | 22.49 | 25.37 | 32.87 | $26 \cdot 93$ | 2735 | 26.78 | 25:85 | 28.27 | 27.80 |  |
| XII \& X |  <br>  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=44^{\prime \prime} \cdot 16 \\ & w=1 \cdot 12 \\ & \frac{1}{w}=0 \cdot 89 \\ & C=5^{\circ} 55^{\prime} 44^{\prime \prime} \cdot 16 \end{aligned}$ |
|  | 47\%72 $40 \cdot 18$ | 42.40 | 45.90 | $49^{\circ} 50$ | 38.26 | $45 * 45$ | 44.25 | 47`44 | $43 \cdot 82$ | $43^{\circ} 0$ | 42*03 |  |
| X \& IX |  <br>  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=34^{\prime \prime} \cdot 74 \\ & w=1 \cdot 84 \\ & \frac{1}{w}=0 \cdot 54 \\ & C=60^{\circ} 12^{\prime} 34^{\prime \prime} \cdot 74 \end{aligned}$ |
|  | $35.49 \quad 36.44$ | 34.48 | 3231 | 3232 | $40 \cdot 65$ | $30 \cdot 77$ | $33 \cdot 65$ | 33.95 | 34.95 | $35 * 53$ | $36 \cdot 29$ |  |


## At XIII (Patángri)-(Continued).

§ January 1861 ; and 9 April 1862 ; observed by Lieutenant C. T. Haig, R.E., with Troughton and Simms' 18-inch Theodolite No. 2.

| $\begin{gathered} \text { Angle } \\ \text { between } \end{gathered}$ | $0^{\circ}{ }^{\circ}$ | $180^{\circ}{ }^{\prime}$ | $10^{\circ} 12^{\prime}$ | Circle $190^{\circ} 11^{\prime}$ | cadings <br> $20^{\circ} 22^{\prime}$ | , telesco $200^{\circ} 22^{\prime}$ | pe being $30^{\circ} 28^{\prime}$ | set on $210^{\circ} 28^{\prime}$ | XVII <br> $40^{\circ} 89^{\prime}$ | $220^{\circ} 39^{\prime}$ | $50^{\circ} 50^{\prime}$ | $230^{\circ} 50^{\prime}$ | $\boldsymbol{M}=$ Mean of Groups <br> ${ }^{2} 0=$ Relative Weight <br> C = Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\underset{\text { XVIII }}{\S}$ | " | " | " | " | " | . | " | " | " | " | " |  | $\begin{aligned} M & =62^{w} \cdot 35 \\ w & =0 \cdot 64 \\ \frac{1}{w} & =\mathrm{J} \cdot 57 \\ C & =38^{\circ} 36^{\prime} \quad 2^{\prime \prime} \cdot 35 \end{aligned}$ |
|  |  <br>  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 68.30 | $65 \cdot 85$ | $63^{\circ} \mathrm{O}$ | 61/70 | $57^{16}$ | 56.52 | 56.55 | 59.63 | 60.20 | 66.10 | 67.08 | 66.09 |  |
| XIV \& XII |  <br>  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=61^{\prime \prime} \cdot 77 \\ & w=0 \cdot 90 \\ & \frac{\mathbf{1}}{w}=1 \cdot \mathbf{1 1} \\ & \boldsymbol{C}=33^{\circ} 23^{\prime} \mathbf{1}^{\prime \prime \cdot} \cdot 77 \end{aligned}$ |
|  | 57.89 | 59.47 | 63.68 | 64.60 | 64.05 | 66.92 | 63.83 | $66 \cdot 84$ | 59.93 | 56.85 | 57:28 | 59.84 |  |
| $\stackrel{\pi}{\text { XII \& XI }}$ | Circle readings, telescope being set on XII |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =22^{\prime \prime} \cdot 35 \\ w & =1 \cdot 37 \\ \frac{1}{w} & =0 \cdot 73 \\ C & =87^{\circ} 4^{\prime} 22^{\prime \prime} \cdot 35 \end{aligned}$ |
|  | $272^{\circ}{ }^{\circ} 6^{\prime}$ | $92^{\circ} 56^{\prime}$ | $343^{\circ} 7^{\prime}$ | $163^{\circ} 7^{\prime}$ | $53^{\circ} 18^{\prime}$ | $233^{\circ} 18^{\prime}$ | $123^{\circ} 24^{\prime}$ | $303^{\circ} 24^{\prime}$ | $193^{\circ} 35^{\prime}$ | $13^{\circ} 35^{\prime}$ | $263^{\circ} 45^{\prime}$ | $83^{\circ} 46^{\prime}$ |  |
|  | " | " | * | " | " | " | " | " | " | " | " | " |  |
|  |  <br>  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 23.22 | 28.07 | $23 \cdot 16$ | 24.59 | 23.68 | 24.55 | 21.84 | 19.60 | 17.82 | 20.22 | $23^{11}$ | 18.28 |  |

## At XIV (Kágarol)

** December 1860; and \| January 1861; observed by Lieutenant C. T. Haig, R.E., with Troughton and Simms' 18-inch Theodolite No. 2.

| Angle between | $71^{\circ} 52^{\prime} \quad 251^{\circ} 52^{\prime}$ | $82^{\circ} 3^{\prime}$ | Circle <br> $262^{\circ} 3^{\prime}$ | readings, $92^{\circ} 14^{\prime}$ | , telesco $272^{\circ} 14^{\prime}$ | pe being <br> $102^{\circ} 2{ }^{\prime}$ | g set on $282^{\circ} 20^{\prime}$ | XIII <br> $112^{\circ} 30^{\prime}$ | $292^{\circ} 30^{\circ}$ | $122^{\circ} 41^{\prime}$ | $302{ }^{\circ} 41^{\prime}$ | $M=$ Mean of Groups <br> $v_{0}=$ Relative Weight <br> C = Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\stackrel{\\| 1}{\text { XIIII }}$ |  <br>  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=62^{\prime \prime} \cdot 45 \\ & w=0 \cdot 95 \\ & \frac{1}{w}=1 \cdot 06 \\ & C=95^{\circ} 10^{\prime} \\ & 2^{\prime \prime} \cdot 45 \end{aligned}$ |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 62.00 58.57 | 58.30 | 63.08 | $66 \cdot 53$ | 62.83 | $67 \cdot 68$ | 65.25 | 64.60 | 6r.93 | $63 \cdot 10$ | 55.54 |  |
| $\begin{gathered} * \\ \text { XV1I \& } \\ \text { XVIII } \end{gathered}$ | Circle readings, telescope being set on XVII |  |  |  |  |  |  |  |  |  |  | $M=25^{\prime \prime} \cdot 60$ |
|  | $122^{\circ} 52^{\prime} 8022^{\circ} 52^{\prime}$ | $133^{\circ} 2^{\prime}$ | $818^{\circ} 2^{\prime}$ | $143^{\circ} 18^{\prime}$ | $323^{\circ} 13^{\prime}$ | $153^{\circ} 19^{\prime}$ | $333^{\circ} 19$ | $163^{\circ} 30^{\prime}$ | $343^{\circ} 30^{\prime}$ | $173^{\circ} 41^{\prime}$ | $353^{\circ} 41^{\prime}$ |  |
|  | h 19.17 k 22.63 <br> h 20'30 h 20 74 | " | 月 515 | " | " | " | " | " | " | " | " |  |
|  |  | $\begin{aligned} & h 26 \cdot 34 \\ & h 25 \cdot 60 \end{aligned}$ | $\begin{aligned} & h 24.50 \mathrm{~h} \\ & h 23.83 \mathrm{~h} \end{aligned}$ | $\begin{aligned} & h 27.87 \\ & h 27: 63 \end{aligned}$ | $\begin{aligned} & h 21.33 \mathrm{~h} \\ & h 21.40 \mathrm{~h} \end{aligned}$ | $\begin{aligned} & k 32 \cdot 76 \\ & k 31 \cdot 43 \end{aligned}$ | $\begin{aligned} & h 29.87 \\ & h 28.54 \end{aligned}$ | $\begin{aligned} & h 31 \cdot 13 \\ & h 31 \cdot 60 \end{aligned}$ | $\begin{aligned} & h 27 \cdot 07 \\ & h 27 \cdot 14 \end{aligned}$ | $\begin{aligned} & h 25 \cdot 37 \\ & h 24 * 46 \end{aligned}$ | $\begin{aligned} & \text { h } 21 \cdot 50 \\ & h 22.06 \end{aligned}$ | $\begin{aligned} & w=0 \cdot 73 \\ & \frac{1}{w}=1 \cdot 3^{8} \\ & C=44^{\circ} 10^{\prime} 25^{\prime \prime} \cdot 60 \end{aligned}$ |
|  | 1974 21.68 | $25 * 97$ | 24.17 | $27 \times 75$ | $21 \cdot 36$ | 32.10 | 29.20 | 31-37 | $27 \cdot 10$ | 24.92 | 21.78 |  |


| At XIV (Kágarol)-(Continued). |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Angle | Circle readings, telescope being set on XVII <br>  |  |  |  |  |  |  |  |  |  |  | $M=$ Mean of Groups $v_{0}=$ Relative Weight <br> $\stackrel{*}{\boldsymbol{w}}=\begin{gathered}\text { Relative Weight } \\ \text { Concluded Angle }\end{gathered}$ |
| XVIII \& XVI |  <br>  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=13^{\prime \prime} \cdot 37 \\ & w=0 \cdot 83 \\ & \frac{1}{w}=1 \cdot 20 \\ & C=76^{\circ} 1^{\prime} 13^{\prime \prime} \cdot 37 \end{aligned}$ |
|  | $19.99 \quad 17.42$ | $12 \cdot 70$ | 12.08 | $9 \cdot 38$ | 16.94 | $9 \cdot 12$ | 9.90 | 9.43 | 12.88 | 12.73 | 17.90 |  |
| $\begin{gathered} * * \\ \text { XVI \& XV } \end{gathered}$ |  <br>  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=49^{\prime \prime} \cdot 33 \\ & w=1 \cdot 24 \\ & \frac{1}{w}=0 \cdot 80 \\ & C=53^{\circ} 22^{\prime} 49^{\prime \prime} \cdot 33 \end{aligned}$ |
|  | 48.06 $\quad 48.43$ | 51.04 | $48 \cdot 43$ | 55\%3 | 47'74 | 51.60 | 51.68 | 50.28 | $48 \cdot 55$ | 4711 | $43 \cdot 25$ |  |
| XV \& XII |  <br>  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=59^{\prime \prime} \cdot 93 \\ & w=1 \cdot 61 \\ & \frac{1}{w}=0 \cdot 62 \\ & C=47^{\circ} 51^{\prime} 59^{\prime \prime} \cdot 93 \end{aligned}$ |
|  | $59.54 \quad 57 \times 13$ | 58.95 5 | 59.65 | 55:98 | 60.42 | 58.71 | 62'77 | 5731 | 64:19 | 59'96 | 64.53 |  |
| XII \& R.M. |  <br>  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & \hline M=11^{\prime \prime} \cdot 76 \\ & w=1 \cdot 68 \\ & \frac{1}{w}=0 \cdot 60 \\ & \boldsymbol{C}=15^{\circ} 42^{\prime} 11^{\prime \prime \prime} \cdot 76 \\ & \hline \end{aligned}$ |
|  | $11.35 \quad 1593$ | 12.44 | 13'15 | $10 \cdot 40$ | 12/71 | 7779 | 6.70 | ${ }^{12} \cdot 69$ | 1013 | 13.08 | 14775 |  |

## At XV (Wardhari)

November and December 1860; observed by Lieutenant C. T. Haig, R.E., with Troughton and Simms' 18-inch T'heodolite No. 2.


Notr.-B.M. denotes Referring Mark.

## At XVI (Ghoraráo)

December 1860; observed by Lieutenant C. T. Haig, R.E., with Troughton and Simms' 18-inch Theodolite No. 2.

| Angle between | Circle readings, telescope being set on XV |  |  |  |  |  |  |  |  |  |  |  | $M$ - Mean of Groups <br> $w_{0}=$ Relative Weight <br> C = Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $0^{\circ} 1^{\prime}$ | $180{ }^{\circ} 0^{\prime}$ | $10^{\circ} 11^{\prime}$ | $190^{\circ} 11^{\prime}$ | $20^{\circ} 22^{\prime}$ | $200^{\circ} 22^{\prime}$ | $30^{\circ} 28^{\prime}$ | $210^{\circ} 28^{\prime}$ | $40^{\circ} 39^{\prime}$ | $220{ }^{\circ} 39^{\prime}$ | $50^{\circ} 50^{\circ}$ | $280^{\circ} 50^{\prime}$ |  |
| XV \& XIV | " | " | " | " | " | " | " | " | " | " | " | " | $\begin{aligned} & M=40^{\prime \prime} \cdot 86 \\ & w=2 \cdot 25 \\ & \frac{1}{w}=0 \cdot 45 \\ & C=62^{\circ} 7^{\prime} 40^{\prime \prime} \cdot 86 \end{aligned}$ |
|  | $\begin{aligned} & \boldsymbol{k} 39 \cdot 84 \\ & \boldsymbol{k} 40 \cdot 20 \end{aligned}$ | $\begin{aligned} & h_{3} 39 \cdot 87 \\ & h_{4 r} \cdot 07 \end{aligned}$ | $\begin{aligned} & h_{42} \cdot 66 \\ & h_{42} \cdot 40 \end{aligned}$ | $\begin{aligned} & h_{42.24} \\ & h_{41} .60 \end{aligned}$ | $\begin{aligned} & h_{44 \cdot 96} \\ & h_{43} \cdot 94 \end{aligned}$ | $\begin{array}{ll} l & 35 \cdot 97 \\ l & 36.13 \end{array}$ | $\begin{array}{ll} l & 39.54 \\ l \\ 38.13 \end{array}$ | $\begin{aligned} & l \\ & l 4.34 \\ & l 3.54 h \end{aligned}$ | $\begin{aligned} & h_{41} \cdot \infty \\ & h_{40} \times 0 \end{aligned}$ | $\begin{aligned} & h 39 \cdot 23 \\ & h 39^{\circ} 53 \end{aligned}$ | $\begin{aligned} & h_{41} \cdot 66 \\ & h_{41} \cdot 70 \end{aligned}$ | $\begin{aligned} & h_{3} 39 \cdot 30 \\ & h_{41} \cdot 27 \end{aligned}$ |  |
|  | 40'02 | $40 \cdot 47$ | 42.53 | 4192 | 44.45 | 36.05 | 38.84 | 43'94 | 40'70 | 39:38 | 41.68 | 40'28 |  |
| XIV \& XVIII |  <br>  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=14^{\prime \prime} \cdot 59 \\ & w=1 \cdot 28 \\ & \frac{1}{w}=0 \cdot 78 \\ & C=39^{\circ} 14^{\prime} 14^{\prime \prime} \cdot 59 \end{aligned}$ |
|  | 10\%70 | 12.85 | 14.42 | 10•88 | 18.43 | 16.02 | 18.50 | 18.25 | $17 \times 33$ | 14:36 | 1172 | 11.65 |  |

At XVII (Bhor)
*December 1860; and $\dagger$ January 1861; observed by Lieutenant C. T. Haig, R.E., with Troughton and Simms' 18-inch Theodolite No. 2.



## At XIX (Kandálwa)-(Continued).



## At XX (Páwágarh)

January 1861; observed by Lieutenant C. T. Haig, R.E., with Troughton and Simms' 18-inch I'heodolite No. 2.


| At XX (Páwágarh)-(Continued). |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Angle between |  |  |  |  |  |  |  |  |  |  |  |  |
| XXI \& XXIII |  <br>  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=37^{\prime \prime} \cdot 11 \\ & \boldsymbol{w}=1 \cdot 72 \\ & \frac{1}{w}=0 \cdot 5^{8} \\ & C=55^{\circ} 6^{\prime} 37^{\prime \prime} \cdot 11 \end{aligned}$ |
|  | $38 \cdot 17 \quad 37.30$ | 36.03 | 36.58 | 35.00 | $32 \cdot 84$ | 39:25 | $33 \cdot 89$ | 41*32 | 39.98 | $39^{\circ} 67$ | 35.25 |  |
| February 1861; observed by Lieutenant C. T. Haig, R.E., with Troughton and Simms' 18-inch Theodolite No. 2. |  |  |  |  |  |  |  |  |  |  |  |  |
| Angle between |  |  |  |  |  |  |  |  |  |  |  | $M=$ Mean of groups <br> $w^{v}=$ Relative Weight <br> C = Concluded Angle |
| XXII \& XXIII |  <br>  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =54^{\prime \prime} \cdot 63 \\ w & =0 \cdot 81 \\ \frac{1}{w} & =1 \cdot 24 \\ C & =84^{\circ} 4^{\prime} 54^{\prime \prime} \cdot 63 \end{aligned}$ |
|  | 58.20 $\quad \mathbf{5 7} 32$ | 58.00 | 49.31 | 50'90 | 50'16 | 54.13 | $49^{\circ} 03$ | 58.35 | 54.55 | 58.98 | $56 \cdot 62$ |  |
| XXIII \& XX |  <br>  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =22^{\prime \prime} \cdot 17 \\ w & =2 \cdot 04 \\ \frac{1}{w} & =0 \cdot 49 \\ C & =88^{\circ} 48^{\prime} 22^{\prime \prime} \cdot 17 \end{aligned}$ |
|  | 21.19 20.18 | $20 \cdot 57$ | 23.94 | 25.47 | 24.68 | 24.43 | 2414 | 2278 | 21.19 | 17.80 | 19.66 |  |
| XX \& XIX |  <br>  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=57^{\prime \prime} \cdot 85 \\ & w=1 \cdot 20 \\ & \frac{\mathbf{I}}{w}=0 \cdot 83 \\ & C=78^{\circ} 22^{\prime} 57^{\prime \prime \prime} \cdot 85 \end{aligned}$ |
|  | $58.60 \quad 62.39$ | 58.07 | 59:30 | $56 \cdot 35$ | $60 \cdot 47$ | 53.98 | 54.94 | 5148 | 58.25 | 59.47 | 60*88 |  |
| February 1861; observed by Lieutenant C. T. Haig, R.E., with Troughton and Simms' 18-inch Theodolite No. 2. |  |  |  |  |  |  |  |  |  |  |  |  |
| Angle between | $183^{\circ} 1^{\prime} \quad 3^{\circ} 0^{\prime}$ | Circle readings, telescope being set on XXIV |  |  |  |  |  |  | $43^{\circ} 38^{\prime}$ | $233^{\circ} 49^{\prime}$ | $53^{\circ} 49^{\prime}$ | $M=$ Mean of Groupe <br> $v=$ Relative Weight <br> $C=$ Concluded Angle |
| $\begin{aligned} & \text { XXIV \& } \\ & \text { XXIII } \end{aligned}$ |  <br>  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=22^{\prime \prime} \cdot 50 \\ & w=1 \cdot 00 \\ & \frac{1}{w}=1 \cdot 00 \\ & C=81^{\circ} 11^{\prime} 22^{\prime \prime} \cdot 50 \end{aligned}$ |
|  | $20.27 \quad 26.06$ | 18.35 | 20.65 | 17.63 | 20'10 | 24.97 | 28.30 | 25.63 | 25.23 | 19.98 | 22.81 |  |

## At XXII (Karáli)-(Continued).

| Angle | $183^{\circ} 1^{\prime}$ | $8^{8} 0^{\prime}$ | $193^{\circ} 11^{\prime}$ | Circle $18^{\circ} 11^{\prime}$ | readings, $203^{\circ} 22^{\prime}$ | telesco $23^{\circ} 22^{\prime}$ | pe being $213^{\circ} 8^{\prime}$ | set on $83^{\circ} 27^{\prime}$ | XXIV <br> $223^{\circ} 8^{\prime}$ | $48^{\circ} 38^{\prime}$ | $293{ }^{\circ} 49^{\prime}$ | 68 ${ }^{\circ} 49^{\prime}$ | $M=$ Mean of Groups <br> ${ }^{20}=$ Relative Weight <br> C = Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| XXIII \& XXI | " | " | " | " | " | " | " | " | " | " | " |  | $\begin{aligned} & M=41^{\prime \prime} \cdot 64 \\ & w=2 \cdot 30 \\ & \frac{1}{w}=0 \cdot 43 \\ & C=62^{\circ} 53^{\prime} 41^{\prime \prime} \cdot 64 \end{aligned}$ |
|  | $\begin{aligned} & h 45.47 \\ & h 45.50 \end{aligned}$ | $\begin{aligned} & h 39^{\circ} 60 \\ & .37^{\prime} 90 \end{aligned}$ | $\begin{aligned} & l 43 \cdot 17 \\ & l \\ & l 2 \cdot 33 \end{aligned}$ | $\begin{aligned} & l 41 \cdot 54 \\ & l 41 \cdot 77 \end{aligned}$ | $\begin{aligned} & l 40 \cdot 73 \\ & l 4 \mathrm{I} \cdot 4 \end{aligned}$ | $\begin{aligned} & l \\ & l 4 \cdot 83 \\ & l \\ & 43 \cdot 67 \end{aligned}$ | $\begin{aligned} & h_{4 I} \cdot 86 \\ & h_{44 \cdot 44} \end{aligned}$ | $\begin{aligned} & h \quad 40 \cdot 90 \\ & h 39^{\prime} 93 \end{aligned}$ | $\begin{array}{r} h 39 \cdot 30 \\ h 38 \cdot 17 \end{array}$ | $\begin{aligned} & l \\ & l \\ & l \\ & l \mathbf{4} \cdot 30 \\ & \hline \end{aligned}$ | $\begin{aligned} & h 38 \cdot 74 \\ & h 39^{\cdot 23} \end{aligned}$ | $\begin{aligned} & \begin{array}{l} d \\ 43.55 \\ d \\ 43.72 \end{array} \end{aligned}$ |  |
|  | $45^{\circ} 49$ | $38 \cdot 75$ | 42•75 | 41.65 | 40•89 | 44.25 | 43'15 | $40 \cdot 41$ | $38 \cdot 74$ | $41^{\circ} \mathrm{O} 3$ | 38.99 | $43 \cdot 63$ |  |
| XXI \& XIX |  <br>  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=16^{\prime \prime} \cdot 64 \\ & w=1 \cdot 63 \\ & \frac{1}{w}=0 \cdot 61 \\ & C=32^{\circ} 55^{\prime} 16^{\prime \prime} \cdot 64 \end{aligned}$ |
|  | 14*92 | 18.66 | 16.59 | 19.61 | 18.00 | 22.62 | 13.72 | 13.23 | 15.60 | 14.42 | $16 \cdot 40$ | 15.95 |  |

## At XXIII (Sidpur)

February 1861; observed by Lieutenant C. T. Haig, R.E., with Troughton and Simms' 18-inch Theodolite No. 2.

| Angle between | $169^{\circ} 40^{\prime} \quad 849^{\circ} 40^{\prime}$ | Circle <br> $179^{\circ} 50^{\prime} 359^{\circ} 50^{\prime}$ | readings, <br> $190^{\circ} 1^{\prime}$ | , telesco <br> $10^{\circ} 1^{\prime}$ | pe being $200^{\circ} 7^{\prime}$ |  | $\begin{aligned} & X X \\ & 210^{\circ} 18^{\prime} \end{aligned}$ | $80^{\circ} 18^{\prime}$ | $220^{\circ} 29^{\prime}$ | $40^{\circ} 29^{\prime}$ | $M=$ Mean of Groupe <br> $v=$ Relative Weight <br> C = Concluded Anglo |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| XX \& XXI | " | " | " | " | " | " | " | " | " | , " | $\begin{aligned} & M=62^{\prime \prime} \cdot 82 \\ & w=1 \cdot 11 \\ & \frac{1}{w}=0 \cdot 90 \\ & C=36^{\circ} 5^{\prime} 2^{\prime \prime} \cdot 82 \end{aligned}$ |
|  | $\begin{aligned} & d 66 \cdot 14 d 61 \cdot 15 \\ & d 66 \cdot 25 d 62 \cdot 55 \end{aligned}$ | $\begin{array}{rl} d 57 \cdot 14 & d \\ d & 56 \cdot 89 \\ d 7 \cdot 54 & d \\ 57 \end{array}$ | $\begin{aligned} & d 62.25 \\ & d 61 \cdot 31 \end{aligned}$ | $\begin{array}{r} d 61 \cdot 53 \\ d 61.44 \end{array}$ | $\begin{array}{r} d 64 \cdot 75 \\ d 64 \cdot 32 \end{array}$ | $\begin{aligned} & d 63.48 \\ & d 63.34 \end{aligned}$ | $\begin{aligned} & d 66 \cdot 78 \\ & d 67 \cdot 22 \end{aligned}$ | $\begin{array}{r} d 66 \cdot 93 \\ d 66 \cdot 20 \end{array}$ | $\begin{array}{r} d 61 \cdot 15 \\ d 60 \cdot 94 \end{array}$ | $\begin{array}{r} d 65 \cdot 13 \\ d 65 \cdot 27 \\ d \end{array}$ |  |
|  | $66.20 \quad 61.85$ | $57.34 \quad 57 \times 44$ | 61778 | 61.48 | 64.54 | 63.41 | 67\%00 | $66 \cdot 56$ | 6r:05 | 65.20 |  |
| XXI \& XXII |  <br>  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=25^{\prime \prime} \cdot 59 \\ & w=0 \cdot 77 \\ & \frac{\mathbf{r}}{w}=1 \cdot 3 \mathrm{I} \\ & C=33^{\circ} 1^{\prime} 25^{\prime \prime} \cdot 59 \end{aligned}$ |
|  | $26.77 \quad 32.74$ | 30.28 28.72 | $26 \cdot 34$ | 28.30 | 20*33 | 22.04 | 22:17 | $22 \cdot 73$ | 25.46 | 21'17 |  |
| XXII \& XXIV |  <br>  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=27^{\prime \prime} \cdot 33 \\ & w=0 \cdot 98 \\ & \frac{1}{w w}=1 \cdot 02 \\ & C=51^{\circ} 36^{\prime} 27^{\prime \prime} \cdot 33 \end{aligned}$ |
|  | 24.79 21*43 | $29.14 \quad 26 \cdot 83$ | 32.89 | 25.59 | 33.22 | 28.38 | 23.40 | 28.67 | 25.97 | 27.64 |  |
| XXIV \& XXV |  <br>  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=55^{\prime \prime} \cdot 92 \\ & w=0 \cdot 85 \\ & \frac{1}{w}=1 \cdot 18 \\ & C=69^{\circ} 37^{\prime} 55^{\prime \prime} \cdot 92 \end{aligned}$ |
|  | 56.47 6r.06 | 52.88 $\quad 56.80$ | $49 \cdot 76$ | 58.91 | 49.60 | 53.90 | 58.08 | 55.37 | 58.13 | 60.11 |  |

## At XXIV (Bábásiráj)

March 1861 ; observed by Lieutenant C. T. Haig, R.E., with Troughton and Simms' 18-inch Theodolite No. 2.

| Angle between | $215^{\circ} 21^{\prime}$ | $35^{\circ} 21^{\prime} \quad 2$ | $225^{\circ} 32^{\prime}$ | Circle r $45^{\circ} 32^{\prime}$ | oadings, $235^{\circ} 43^{\prime}$ | telescop $65^{\circ} 43^{\prime}$ | pe being $245^{\circ} 48^{\prime}$ | set on $65^{\circ} 48^{\prime}$ | XXVI <br> $255^{\circ} 59^{\prime}$ | $75^{\circ} 59^{\prime}$ | $266^{\circ} 10^{\prime}$ | $86^{\circ} 10^{\prime}$ | $M=$ Mean of Groups <br> ${ }^{2}=$ Relative Weight <br> C - Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\underset{\text { XXVI \& }}{\text { XXVII }}$ |  <br>  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=24^{\prime \prime} \cdot 92 \\ & w=0 \cdot 71 \\ & \frac{1}{w}=1 \cdot 42 \\ & C=32^{\circ} 33^{\prime} 24^{\prime \prime} \cdot 92 \end{aligned}$ |
|  | 28.67 | 3132 | 27.70 | 29.87 | 24.47 | $25^{115}$ | $20 \cdot 60$ | 19'71 | 21.67 | 19.54 | 27776 | 22.59 |  |
| XXVI \& XXV |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =9^{\prime \prime} \cdot 23 \\ w & =2 \cdot 16 \\ \frac{I}{w} & =0 \cdot 46 \\ C & =5^{\circ} \cdot 29^{\prime} \quad 9^{\prime \prime} \cdot 23 \end{aligned}$ |
|  | 572 | 1110 | 9.14 | $8 \cdot 45$ | 7.50 | 10.05 | 11'17 | 8.45 | $9 \cdot 37$ | 9.28 | 14.35 | 6.21 |  |
| XXV \& XXIII |  <br>  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =13^{\prime \prime \cdot} \cdot 44 \\ w & =0 \cdot 98 \\ \frac{1}{w} & =1 \cdot 02 \\ C & =3^{\circ} 58^{\prime} 13^{\prime \prime} \cdot 44 \end{aligned}$ |
|  | 19.87 | 14*01 | 18.97 | 16.27 | 11.03 | 13.00 | 8.78 | 12.40 | $13^{\circ} 04$ | 10'10 | 9091 | 13.95 |  |
| XXIII \& XXII |  <br>  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =15^{N \cdot 02} \\ w & =1 \cdot 73 \\ \frac{1}{w} & =0 \cdot 5^{8} \\ C & =47^{\circ} 12^{\prime} 15^{\prime \prime} \cdot 02 \end{aligned}$ |
|  | 14.93 | 18.09 | 9.66 | $16 \cdot 25$ | 1579 | 18.97 | 13.96 | 15.07 | 11.78 | 17.27 | $13^{\circ} 51$ | 14.91 |  |

## At XXV (Kesarwa)

February and March 1861; observed by Lieutenant C. T. Haig, R.E., with Troughton and Simms' 18-inch Theodolite No. 2.

| Angle betwoon | $\boldsymbol{0}^{\boldsymbol{1}} \mathbf{1}^{\prime}$ | $180^{\circ} 1^{\prime}$ | $10^{\circ} 12^{\prime}$ | $\begin{gathered} \text { Circle r } \\ 190^{\circ} 11^{\prime} \end{gathered}$ | adings, <br> $20^{\circ} 22^{\prime}$ | telescop <br> $200^{\circ} 22^{\prime}$ | $\begin{aligned} & \text { e being } \\ & 30^{\circ} 28^{\prime} \end{aligned}$ | $\begin{gathered} \text { set on } \overline{8} \\ 210^{\circ} 28^{\prime} \end{gathered}$ | $\begin{gathered} \text { KIIII } \\ 40^{\circ} 39^{\prime} \end{gathered}$ | $220^{\circ} 39^{\prime}$ | $50^{\circ} 50^{\prime}$ | $230^{\circ} 50^{\prime}$ | $M=$ Mean of Groape <br> $w_{0}=$ Relative Woight <br> C = Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| XXIII\& XXIV | $h_{51} .64 h_{54.77}$ $h_{52.50 h 54.20}$ |  |  | * | " |  | - |  |  | " | " |  | $\begin{aligned} & M=54^{N \cdot} \cdot 84 \\ & w=4 \cdot 66 \\ & \frac{1}{w}=0 \cdot 21 \\ & C=71^{\circ} 23^{\prime} 54^{\prime \prime \cdot} 84 \end{aligned}$ |
|  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & h_{53.40} h_{53} .66 \end{aligned}$ | $\begin{aligned} & h 55^{\circ} 23 \\ & h_{55} 90 \end{aligned}$ |  |
|  | 52.07 | 54.49 | 5723 | 54:38 | 54.22 | 55.45 | 53.32 | $54 \cdot 40$ | 55:90 | 57.57 | 53.53 | 55.56 |  |




## At XXVIII (Páthal)-(Continued).

| Angle betweon | $0^{\circ} 1^{\prime}$ | $180^{\circ}{ }^{\prime}$ | $10^{\circ} 12^{\prime}$ | $\begin{gathered} \text { Circle } \\ 190^{\circ} 11^{\prime} \end{gathered}$ | reading $20^{\circ} 22$ | s, telesco $200^{\circ} 22^{\prime}$ | pe bein $30^{\circ} 28^{\prime}$ | g set on $210^{\circ} 28^{\prime}$ | $\begin{gathered} \text { XXV } \\ 40^{\circ} 39^{\prime} \end{gathered}$ |  | $50^{\circ} 50^{\circ}$ | $230^{\circ} 50^{\prime}$ | $\boldsymbol{M}=$ Mean of Groups <br> ${ }^{20}=$ Relative Weight <br> $C=$ Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| XXIX \& XXX | " | " | " | " | " | " | " | " | " | " | " | * | $\begin{aligned} M & =10^{\prime \prime} \cdot 07 \\ w & =0 \cdot 56 \\ \frac{1}{w} & =1 \cdot 77 \\ C & =82^{\circ} 5^{\prime} 10^{\prime \prime} \cdot 07 \end{aligned}$ |
|  | $\begin{array}{ll} d & 8.93 \\ d & 8.70 \end{array}$ | $\begin{array}{ll} d & 6.73 \\ d & 6.87 \end{array}$ | $\begin{array}{ll} d & 8.63 \\ d & 8.34 \end{array}$ | $\begin{aligned} & d 13.73 \\ & d 13.80 \end{aligned}$ | $\begin{aligned} & d 16.41 \\ & d 16.50 \end{aligned}$ | $\begin{array}{ll} h & 6 \cdot 80 \\ h & 6.20 \end{array}$ | $\begin{array}{ll} d & 8.52 \\ d & 8.33 \end{array}$ | $\begin{array}{ll} d & 7.77 \\ d & 8.07 \end{array}$ | d $12 \%$ $d 12 \%$ |  | d $17 \times 72$ $d \times 7 \times 5$ | $\begin{aligned} & d 12.77 \\ & d 12.51 \end{aligned}$ |  |
|  | 8.82 | $6 \cdot 80$ | 8.48 | 13.77 | 16.50 | $6 \cdot 50$ | 8.42 | 7792 | 12.03 | 133 | 1765 | 12.64 |  |

## At XXIX (Dopári)

*February 1846; observed by Lieutenant H. Rivers with Dollond's 15-inch Theodolite. $\dagger$ April 1861; observed by Lieutenant C. T. Haig, R.E., with Troughton and Simms' 18-inch T'heodolite No. 2.


At XXIX (Dopári)-(Continued).


## At XXX (Tarbhán)

$\ddagger$ April 1861 ; observed by Lieutenant C. T. Haig, R.E., with Troughton and Simms' 18-inch Theodolite No. 2.
§April 1845; observed by Lieutenant H. Rivers with Dollond's 15-inch Theodolite.

| $\underset{\text { between }}{\text { Angle }}$ between | $0^{\circ} 1^{\prime} \quad 180^{\circ} 0^{\prime}$ | $$ | adings, telescop <br> $20^{\circ} 22^{\prime} \quad 200^{\circ} 22^{\prime}$ | being set on $X$ <br> $30^{\circ} 28^{\prime} \quad 210^{\circ} 28^{\prime}$ | XVIII <br> $40^{\circ} 39^{\prime} \quad 220^{\circ} 39^{\prime}$ | $50^{\circ} 50^{\prime}$ | $230^{\circ} 50^{\prime}$ | $M=$ Mean of Groups <br> $w_{0}=$ Relative Weight <br> $C=$ Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\underset{\& X X I X}{\ddagger}$ |  <br>  |  |  |  |  |  |  | $\begin{aligned} M & =40^{\prime \prime} \cdot 86 \\ w & =3 \cdot 48 \\ \frac{1}{w} & =0 \cdot 29 \\ C & =59^{\circ} 4^{\prime} 40^{\prime \prime} \cdot 86 \end{aligned}$ |
|  | $38.45 \quad 42.04$ | $40 \cdot 15 \quad 43 \cdot 43$ | $43.50 \quad 38 \cdot 59$ | $40 \cdot 26 \quad 42 \cdot 52$ | $4 \mathrm{I}^{\circ} \mathrm{O} 4 \quad 4 \mathrm{r}^{\prime} 97$ | $39^{\prime \prime} 11$ | 39.25 |  |
| $\underset{\text { XXVIII }}{\substack{\S}}$ | Circle readings, telescope being set on XXVIII |  |  |  |  |  |  | $\begin{aligned} M & =4^{\prime \prime} \cdot 49 \\ w & =0 \cdot 69 \\ \frac{1}{w} & =1 \cdot 45 \\ C & =115^{\circ} 10^{\prime} \quad 4^{\prime \prime} \cdot 47 \end{aligned}$ |
|  | $\begin{array}{lc} & \\ h & \prime \prime \\ h & 3.33 \\ h & 4.00 \\ h & 2.34 \\ h & 2.00\end{array}$ |  $\prime \prime$ <br> $h$ 4.67 <br> $h$ $5 \cdot 0$ <br> $h$ 0.33 <br> $h$ 0.66 <br> $h$ 4.66 | $\begin{array}{ll} h & 9 \cdot 00 \end{array}$ $\begin{array}{ll} h & 93 \end{array}$ | $\begin{array}{ll} h & 1 \cdot 67 \\ h & 5 \cdot 33 . \end{array}$ | $\begin{array}{ll} h & 1 \cdot 66 \\ h & 2 \cdot 00 \end{array}$ | $h$ $h$ $h$ | 66 33 33 |  |
|  | $2 \cdot 92$ | 3.06 | $9^{\prime} 17$ | 350 | 1. 83 |  | 44 |  |
| $\begin{aligned} & \text { XXXI \& } \\ & \text { XXXIII } \end{aligned}$ | h 33.33 d 29.75 d 30.74 | h. 36.34 h 32 2.00 h 33.34 | $\begin{aligned} & h 28.66 \\ & h 27.67 \end{aligned}$ | $\begin{aligned} & h 41.33 \\ & h 37 \cdot 33 \end{aligned}$ | $\begin{aligned} & h 38.00 \\ & h 36.67 \end{aligned}$ |  |  | $\begin{aligned} & M=33^{\prime \prime \cdot} \cdot 78 \\ & w=0 \cdot 3^{6} \\ & \frac{1}{w}=2 \cdot 78 \\ & C=53^{\circ} 50^{\prime} 33^{\prime \prime} \cdot 78 \end{aligned}$ |
|  | 31/27 | $33 \cdot 89$ | 28.17 | 39'33 | 37.33 |  | 67 |  |

## At XXXI (Pilwa)

## April 1845; observed by Lieutenant H. Rivers with Dollond's 15-inch Theodolite.



## At XXXII (Sáler)

March and April 1845; observed by Lieutenant H. Rivers with Dollond's 15-inch Theodolite.

| Anglebetween | Circle readings, telescope being set on XXXV |  |  |  |  |  | $M=$ Mean of Groups |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $159^{\circ} 25^{\prime}$ | $339^{\circ} 25^{\prime}$ | $179^{\circ} 24^{\prime}$ | $359^{\circ} 25^{\prime}$ | $199^{\circ} 25^{\prime}$ | $19^{\circ} 25^{\prime}$ | c = Concluded Angle |
| $\underset{\text { XXXIV }}{\text { XXXV }}$ | " | " | " |  |  | " | $\begin{aligned} M & =46^{\prime \prime} \cdot 55 \\ w & =0 \cdot 79 \\ \frac{1}{w} & =1 \cdot 27 \\ C & =59^{\circ} 28^{\prime} 46^{\prime \prime} \cdot 50 \end{aligned}$ |
|  | $h_{43} \cdot 67$ | $h 45^{\prime} 67$ | $h 47 \div 33$ | $h 49^{\circ} 00$ $h 44 \cdot 67$ | $h 5^{\circ} \circ 0$ | $h 41.66$ $h 43.66$ |  |
|  |  |  |  |  |  | $\begin{array}{r} 43 \\ d \end{array}$ |  |
|  | 45.34 | 46•50 | 4716 | $46 \cdot 84$ | 50.67 | 42'77 |  |
| $\underset{\mathbf{X X X I}}{\operatorname{XXXIV}}$ | h 29.00 | h 18.00 | h21.33 | h21.00 | h 20.00 | h $25^{\circ} 00$ | $\begin{aligned} & M=22^{\prime \prime} \cdot 77 \\ & w=0 \cdot 48 \\ & \frac{\mathbf{I}}{w}=2 \cdot 08 \\ & C=64^{\circ} 28^{\prime} 22^{\prime \prime} \cdot 77 \end{aligned}$ |
|  | h 29.00 | $\begin{aligned} & h 20.33 \\ & h 20.00 \end{aligned}$ | d22.84 | $\begin{aligned} & h 1900 \\ & d 21.49 \end{aligned}$ | h2200 | $\begin{aligned} & h 24.00 \\ & d 24.84 \end{aligned}$ |  |
|  | 2900 | 19.44 | 22.09 | 20*50 | $2 \mathrm{I} \times 0$ | 24.61 |  |
| $\underset{\text { XXIX }}{\text { XXXI }}$ | $\begin{array}{ll}h & 3.33 \\ d & 6.44\end{array}$ | $h 6.67$ $h 800$ | $h 12.00$ $d 13.51$ | $\begin{array}{ll}h & 7 \\ h & 33 \\ h & 66\end{array}$ | $\begin{array}{rr}\boldsymbol{h} 12 \cdot 00 \\ \boldsymbol{h} & 9.66\end{array}$ | $h$ 8.33 <br> $d$ 5 | $\begin{aligned} & M=8^{\prime \prime} \cdot 65 \\ & w=0 \cdot 66 \\ & \frac{1}{w}=1 \cdot 5^{2} \\ & C=69^{\circ} 29^{\prime} 8^{\prime \prime} \cdot 65 \end{aligned}$ |
|  |  | $h 800$ | d14.12 | d 949 |  | d 6.51 |  |
|  |  |  |  |  |  | $\begin{array}{lll} d & 701 \\ d & 7 \times 18 \end{array}$ |  |
|  | $4 \cdot 89$ | $7 \times 5$ | 13.21 | $8 \cdot 49$ | 10.83 | 6.91 |  |
| $\underset{\mathbf{R} . \mathrm{M} .}{\operatorname{XXIX}} \&$ | $h 61.00$ $h 63.67$ | $h 63.33$ $h 6034$ | ${ }^{\prime} 59.66$ | ${ }^{2} 62 \cdot 67$ | ${ }^{\prime} 57.00$ | ${ }^{2} 63.66$ | $\begin{aligned} M & =61^{\prime \prime} \cdot 11 \\ w & =1 \cdot 42 \\ \frac{1}{w} & =0 \cdot 70 \\ C & =27^{\circ} 9^{\prime} 1^{\prime \prime \prime} \cdot 16 \end{aligned}$ |
|  |  |  |  | $\begin{aligned} & 662.34 \\ & d 64.00 \end{aligned}$ | h 58.34 | h62.33 $\boldsymbol{k} 62.00$ |  |
|  |  |  |  |  |  | d 63.00 |  |
|  | 61.89 | 60.78 | $60 \cdot 55$ | 63.00. | 57.67 | $62 \cdot 75$ |  |

At XXXIII (Párnera)
November 1844; observed by Lieutenant H. Rivers with Dollond's 15-inch Theodolite.

| $\begin{aligned} & \text { Angle } \\ & \text { between } \end{aligned}$ | Circle readings, telescope being set on XXX |  |  |  |  |  | $M=$ Mean of Groups <br> $w_{0}=$ Relative Weight <br> $C=$ Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $4^{\circ} 10^{\prime}$ | $184^{\circ} 11^{\prime}$ | $24^{\circ} 11^{\prime}$ | $204{ }^{\circ} 11^{\prime}$ | $44^{\circ} 11^{\prime}$ | $224^{\circ} 11^{\prime}$ |  |
| $\underset{\mathbf{X X X I}}{\mathbf{X X X}} \underset{ }{\&}$ | - ${ }^{\prime \prime}$ | d" |  |  |  |  | $\begin{aligned} & M=35^{\prime \prime} \cdot 00 \\ & w=0 \cdot 42 \\ & \frac{1}{w}=2 \cdot 3^{8} \\ & C=63^{\circ} 23^{\prime} 35^{\prime \prime} \cdot 00 \end{aligned}$ |
|  | $\begin{aligned} & d 38.00 \\ & d 38.34 \end{aligned}$ | $\begin{aligned} & d 31 \cdot 12 \\ & d \\ & d y_{1} \cdot 11 \end{aligned}$ | $\begin{aligned} & k 35.33 \\ & k \\ & k 4.34 \end{aligned}$ | $\boldsymbol{h} 41.00$ $\boldsymbol{h} 39.33$ | $\begin{aligned} & k 30 \cdot 00 \\ & h 31 \cdot 67 \end{aligned}$ | $\begin{aligned} & \begin{array}{l} \text { K } 36.33 \\ d \\ d 3.56 \end{array} \end{aligned}$ |  |
|  |  |  |  | h 40.00 |  |  |  |
|  | 38•17 | 31'12 | 34.83 | $40^{\prime} 11$ | 30.84 | 34.94 |  |

Notm.-R.M. denotes Referring Mark.

> At XXXIII (Párnera)-(Continued).

| Angle between | Circle readings, telescope being set on XXX |  |  |  |  |  | $\boldsymbol{M}=$ Mean of Groups <br> ${ }^{v}$ = Relative Weight <br> $C=$ Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $4^{\circ} 10^{\prime}$ | $184{ }^{\circ} 11^{\prime}$ | $24^{\circ} 11^{\prime}$ | $204^{\circ} 11^{\prime}$ | $44^{\circ} 11^{\prime}$ | $224^{\circ} 11^{\prime}$ |  |
| $\underset{\mathbf{X X X V I}}{\mathbf{X X X I}}$ | 3 | 35.66 | " |  |  |  | $\begin{aligned} & M=50^{\prime \prime} \cdot 88 \\ & w=1 \cdot 38 \\ & \frac{1}{w}=0 \cdot 72 \\ & C=92^{\circ} 25^{\prime} 50^{\prime \prime} \cdot 88 \end{aligned}$ |
|  | $\begin{aligned} & h 52.00 \\ & h_{51} .66 \end{aligned}$ | $\begin{aligned} & h_{52} \cdot 66 \\ & h_{52} .67 \end{aligned}$ | $\begin{aligned} & h 52 \cdot 34 \\ & h_{54.00} \end{aligned}$ | K 48.00 $h 49.00$ | $\begin{aligned} & h 51.33 \\ & h 49.67 \end{aligned}$ | $h_{4} 88.00$ $h_{49} 67$ |  |
|  |  |  |  | $h 47.00$ |  | $h_{49} 67$ |  |
|  | 51.83 | 52.67 | 53.17 | 48.00 | 50'50 | 49.11 |  |

## At XXXIV (Bhorgarh)

February 1845; observed by Lieutenant H. Rivers with Dollond's 15-inch Theodolite.

| Angle between | Circle readings, telescope being set on XXXVII |  |  |  |  |  | $M=$ Mean of Groups <br> $20=$ Relative Weight <br> $C=$ Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $300^{\circ}{ }^{\prime}$ | $120^{\circ}{ }^{\prime}$ | $320^{\circ}{ }^{\prime}$ | $140^{\circ} 0^{\prime}$ | $340^{\circ} 0^{\circ}$ | $160^{\circ} 0^{\prime}$ |  |
| $\underset{\text { XXXIX }}{\text { XXXVII }}$ | " | " | " | " | " | " | $\begin{aligned} & M=33^{\prime \prime} \cdot 84 \\ & w=0 \cdot 24 \\ & \frac{1}{w}=4^{\cdot 1} 7 \\ & C=50^{\circ} 38^{\prime} 33^{\prime \prime} \cdot 84 \end{aligned}$ |
|  | h 30.34 | h36.33 | ${ }_{6} 36.67$ | h 28.34 | $h_{40 \cdot 67}$ | h29.00 |  |
|  | h 33.00 | h 38.67 | h 34.67 | h2700 | $h_{41} 167$ | h2767 |  |
|  | h $35^{\circ} 0$ | $h 34.66$ | ${ }_{\text {h }} 36.33$ | h 29.00 |  |  |  |
|  |  |  | $h 36.67$ |  |  |  |  |
|  | 32.78 | $36 \cdot 55$ | 36.09 | 28.11 | 41•17 | $28 \cdot 33$ |  |
| $\underset{\mathbf{X X X} \mathbf{V I}}{\text { XXXIX \& }}$ | h 29.00 | d 34.12 | h 30.34 | ${ }_{\text {k }} \mathbf{3 8} 8.67$ | h 29.33 | ${ }^{\text {d }} 40 \cdot 33$ | $\begin{aligned} & M=34^{\prime \prime} \cdot 13 \\ & w=0 \cdot 18 \\ & \frac{1}{w}=5 \cdot 56 \\ & C=81^{\circ} 16^{\prime} 34^{\prime \prime \cdot 13} \end{aligned}$ |
|  |  | d 34.45 d 35.67 | d 27.91 | d 42.55 |  |  |  |
|  | $30 \cdot 61$ | 34.75 | 29.13 | 40'61 | $29 \cdot 16$ | 40'50 |  |
| $\underset{\mathbf{X X X I}}{\operatorname{XXXVI}} \&$ | d 32.33 | ${ }_{\text {h }}^{19.67}$ | h31.66 | k 13.34 | h 26.00 | k 18.00 | $\begin{aligned} & M=24^{N \cdot 60} \\ & w=0 \cdot 12 \\ & \frac{1}{w}=8 \cdot 33 \\ & C=64^{\circ} 14^{\prime} 24^{\prime \prime \cdot} \cdot 60 \end{aligned}$ |
|  | d 31.33 | h 21.67 | h 33.00 | h 1700 | d 29.16 | d 22.00 |  |
|  | 31.83 | $20 \cdot 67$ | 32.33 | $15 \cdot 17$ | 27.58 | 20*00 |  |
| $\underset{\text { XXXI \& }}{\text { XXI }}$ | h 59.67 | h 57.33 | ${ }_{6} 56.00$ | \% 66.00 | $h_{\text {L }} 59.33$ | k 63.34 | $\begin{aligned} & M=60^{\prime \prime} \cdot 4 \mathrm{I} \\ & w=0 \cdot 42 \\ & \frac{\mathrm{I}}{w}=2 \cdot 38 \\ & C=48^{\circ} 5^{\prime} \quad 0^{\prime \prime} \cdot 4 \mathrm{I} \end{aligned}$ |
|  | ${ }^{\text {d }} 59.78$ | $\begin{aligned} & d 57.24 \\ & d 62.2 \mathrm{I} \end{aligned}$ | h 54.33 | d 65.22 | ¢ 59.34 | h64*00 |  |
|  | 59*73 | 58.93 | 55•16 | $65 \cdot 61$ | 59.34 | 63.67 |  |


| At XXXIV (Bhorgarh)-(Continued). |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Anglebetween | $300^{\circ}{ }^{\prime}$ | Circle readings, telescope being set on XXXVII |  |  |  | $160^{\circ} 0^{\prime}$ | $M=$ Mean of Groups <br> wo Relative Weight <br> $C=$ Concluded Angle |
|  |  | $120^{\circ} 0^{\prime}$ | $320^{\circ} 0^{\prime}$ | $140^{\circ} 0^{\prime}$ | $340^{\circ} 0^{\prime}$ |  |  |
| $\underset{\text { XXXII }}{\text { XX }}$ | " | " |  |  |  |  | $\begin{aligned} M & =16^{\prime \prime} \cdot 3^{8} \\ w & =0 \cdot 36 \\ \frac{1}{w} & =2 \cdot 78 \\ C & =66^{\circ} \cdot 40^{\prime} 16^{\prime \prime} \cdot 3^{8} \end{aligned}$ |
|  | $d_{12.58}$ | ${ }^{1} 18.45$ | d 21.77 | ${ }^{d} 15.89$ | d 18.34 | dir $\cdot 83$ |  |
|  | $\begin{aligned} & d_{11} \cdot 24 \\ & d_{11} \cdot 58 \end{aligned}$ | $\begin{aligned} & d 19.45 \\ & d 1712 \end{aligned}$ | d 21.77 | d 17.56 d 14.56 | d 19001 |  |  |
|  | 1180 | 18.34 | $21 \times 77$ | 16.00 | 18.68 | 11.66 |  |
| $\underset{\mathbf{X X X V I I}}{\mathbf{X X X V}}$ | $h_{13.67}$ | $h_{11000}$ | $\ldots 4.0$ | $h_{11} 1{ }^{\text {6 }} 6$ | h 6.00 | $h 15.00$ | $\begin{aligned} & M=10^{\prime \prime} \cdot 69 \\ & w=0 \cdot 24 \\ & \frac{1}{w}=4^{\cdot 17} \\ & C=48^{\circ} 14^{\prime} 10^{\prime \prime} \cdot 69 \end{aligned}$ |
|  | $h 115.66$ $h 13.33$ | h 10.00 | $h 4.00$ | $h 114.33$ $h 15.33$ | h 5.33 | h 15.34 |  |
|  | $\begin{aligned} & h 13.33 \\ & h 15.00 \end{aligned}$ | h 12.33 |  | h 15.33 |  |  |  |
|  | $14^{\circ} \mathbf{4}^{2}$ | 11'11 | 4.00 | 13.77 | $5 \cdot 66$ | 1517 |  |

## At XXXV (Ankai)

March 1845; observed by Lieutenant H. Rivers with Dollond's 15-inch Theodolite.

| Angle between | Circle readings, telescope being set on XXXVIII |  |  |  |  |  | $M=$ Mean of Groups <br> wo = Relative Weight <br> $C=$ Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $158^{\circ} 15^{\prime}$ | $338^{\circ} 15^{\prime}$ | $178^{\circ} 14^{\prime}$ | $358^{\circ} 14^{\prime}$ | $198{ }^{\circ} 14^{\prime}$ | $18^{\circ} 14^{\prime}$ |  |
| $\underset{\mathbf{X X X I X}}{\text { XXXVIII }}$ |  |  |  |  |  |  | $\begin{aligned} M & =42^{\prime \prime} \cdot 10 \\ w & =0 \cdot 24 \\ \frac{1}{w} & =4 \cdot 17 \\ C & =33^{\circ} 44^{\prime} 42^{\prime \prime} \cdot 10 \end{aligned}$ |
|  | h $35^{\circ} \mathrm{O}$ $\boldsymbol{h} 37.33$ | $h 41.00$ $d 46.07$ | $h 41.33$ $h 38.33$ | h 46.00 $h 51.67$ | h 38.33 $h 40 \cdot 00$ | h 47.33 $h 4066$ |  |
|  |  | d 44.07 |  |  |  |  |  |
|  | $36 \cdot 17$ | 4371 | $39 \cdot 83$ | $49 \cdot 67$ | 39'16 | 44.07 |  |
| $\underset{\text { XXXVII }}{\text { XXXIX }}$ | $\boldsymbol{h} 47 \times 00$ $h 46.33$ | $h 43.00$ $h 39.66$ | $h 41.33$ $h 43.33$ | h 36.00 d 38.83 | $h 46 \cdot 67$ $h 47.00$ | $h_{41} 1000$ $h_{42} \cdot 67$ | $\begin{aligned} M & =43^{\prime \prime} \cdot 15 \\ w & =0 \cdot 42 \\ \frac{1}{w} & =2 \cdot 3^{8} \\ C & =4^{\circ} 25^{\prime} 43^{\prime \prime \cdot} \cdot 15 \end{aligned}$ |
|  |  | $\boldsymbol{h} 43.66$ |  | ${ }_{\boldsymbol{d}} 38 \cdot 16$ |  | $h_{41} 1.67$ |  |
|  |  | ${ }^{6} 49.33$ |  | d 34.83 |  | $\begin{aligned} & d 42 \cdot 00 \\ & d 43.67 \end{aligned}$ |  |
|  | $46 \cdot 67$ | 43*91 | 42.33 | 36.95 | $46 \cdot 84$ | 42.20 |  |
| $\underset{\text { XXXXIV }}{\text { XX }}$ | d 4.00 | h 5.00 | h 8.67 | \% 6.00 | h 4.66 | h 4.00 | $\begin{aligned} M & =5^{\prime \prime \cdot} \cdot 64 \\ w & =1 \cdot 26 \\ \frac{I}{w} & =0 \cdot 79 \\ C & =29^{\circ} 44^{\prime} 5^{\prime \prime} \cdot 62 \end{aligned}$ |
|  | d 334 | $\begin{array}{ll}\text { d } & 7.44 \\ \text { d } 6.11\end{array}$ | h $8 \cdot 34$ | $\begin{array}{ll}\boldsymbol{h} \\ \boldsymbol{d} & 7 \cdot 67 \\ 7 \cdot 11\end{array}$ | $\begin{array}{ll}h & 6 \cdot 67 \\ h & 5.67\end{array}$ | $\begin{array}{ll}h & 0.00 \\ h & 2.00\end{array}$ |  |
|  |  | d 4.44 |  |  |  | d 3.89 |  |
|  |  | $\begin{array}{ll}\text { d } & 7.11 \\ \text { d } & 6.53\end{array}$ |  |  |  | d 4.84 |  |
|  | $3 \cdot 67$ | $6 \cdot 11$ | 8.50 | $6 \cdot 93$ | $5 \cdot 67$ | $2 \cdot 95$ |  |



| At XXXVII (Sinnar) <br> February 1845; observed by Lieutenant H. Rivers with Dollond's 15-inch Theodolite. |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Anglebetween | Circle readings, telescope being set on XXXIV |  |  |  |  |  | $\boldsymbol{M}=$ Mean of Groups <br> - Relative Wrigh |
|  | $60^{\circ} 0^{\prime}$ | $240^{\circ} 1^{\prime}$ | $80^{\circ} 0^{\prime}$ | $260^{\circ} 0^{\prime}$ | $100^{\circ} 0^{\prime}$ | $280^{\circ} 1^{\prime}$ | C $=$ Concluded Angle |
| $\underset{\text { XXXV }}{\text { XXXIV }}$ | " | " |  |  |  |  | $\begin{aligned} & M=47^{\prime \prime} \cdot 89 \\ & w=0 \cdot 60 \\ & \frac{1}{w}=1 \cdot 67 \\ & C=102^{\circ} 1^{\prime} 47^{\prime \prime} \cdot 89 \end{aligned}$ |
|  | $\begin{aligned} & h_{47} \cdot 67 \\ & h_{49} \cdot 33 \end{aligned}$ | $\begin{aligned} & h 45 \cdot 33 \\ & h_{47} \cdot 33 \end{aligned}$ | $\begin{aligned} & h_{52 \cdot 67} \\ & h_{52} \cdot 00 \end{aligned}$ | $\begin{aligned} & h 47.66 \\ & h_{46 \cdot 00} \end{aligned}$ | $\begin{aligned} & h_{51.33} \\ & h_{48} .67 \end{aligned}$ | $\begin{aligned} & h_{42} \cdot 33 \\ & h_{44} .33 \end{aligned}$ |  |
|  | $48 \cdot 50$ | $46 \cdot 33$ | 52.34 | $46 \cdot 83$ | 50.00 | $43 \cdot 33$ |  |
| $\underset{\mathbf{X X X V I I I}}{\mathbf{X X X V}}$ | h $29^{\circ} 00$ d 3 I'17 | $\begin{aligned} & h 27 \cdot 67 \\ & h 27 \cdot 67 \end{aligned}$ | d 29.99 <br> d 30.66 | $\begin{aligned} & h 25.34 \\ & d 28.67 \end{aligned}$ | $\begin{aligned} & h 29^{\circ} 00 \\ & h 26.00 \end{aligned}$ | $\begin{aligned} & h 26.67 \\ & h 29.34 \end{aligned}$ | $\begin{aligned} M & =28^{\prime \prime} \cdot 43 \\ w & =2 \cdot 22 \\ \frac{\mathrm{I}}{w} & =0 \cdot 45 \\ \boldsymbol{C} & =98^{\circ} 14^{\prime} 28^{\prime \prime} \cdot 43 \end{aligned}$ |
|  | $30 \cdot 09$ | 27.67 | 30*32 | 27.01 | $27 \times 50$ | 28.00 |  |
| $\underset{\text { XXXIX }}{\text { XXXVIII }}$ | $h 38.00$ d 38.36 <br> d 38.36 | $\begin{aligned} & h 49.33 \\ & h 50.66 \end{aligned}$ | $\begin{aligned} & h 34.34 \\ & h 36.34 \end{aligned}$ | ${ }^{2} 45.33$ <br> d 48.66 <br> d 50.99 | $\begin{aligned} & h 43 \cdot 67 \\ & d 44.67 \end{aligned}$ | $\begin{aligned} & h 42 \cdot 33 \\ & d 45.83 \end{aligned}$ | $\begin{aligned} & M=43^{\prime \prime} \cdot 35 \\ & w=0 \cdot 18 \\ & \frac{\mathbf{I}}{w}=5 \cdot 5^{6} \\ & C=71^{\circ} 3^{8^{\prime}} 43^{\prime \prime} \cdot 35 \end{aligned}$ |
|  | 38•18 | 50.00 | $35 \cdot 34$ | $48 \cdot 33$ | $44 \cdot 17$ | 44.08 |  |
| $\underset{\mathbf{X X X I V}}{\operatorname{XXXIX}}$ | $h 63^{\circ} 00$ $h 59.00$ $h 62.66$ | $\begin{aligned} & h_{58 \cdot 66} \\ & h 57.00 \end{aligned}$ | $\begin{aligned} & d 63.33 \\ & d 6 \mathrm{I} \cdot 33 \end{aligned}$ | $\begin{aligned} & h 57.34 \\ & d 63.00 \end{aligned}$ | $\begin{aligned} & h 59.33 \\ & h 57.33 \end{aligned}$ | $\begin{aligned} & h 64.34 \\ & h 65^{\circ} 33 \end{aligned}$ | $\begin{aligned} & M=60^{\prime \prime} \cdot 84 \\ & w=0 \cdot 73 \\ & \frac{1}{w}=1 \cdot 37 \\ & C=88^{\circ} 5^{\prime} 0^{\prime \prime} \cdot 85 \end{aligned}$ |
|  | 61*55 | $57 \cdot 83$ | 62.33 | $60 \cdot 17$ | 58.33 | 64.84 |  |
| At XXXVIII (Hewargaon) <br> January and February 1845; observed by Lieutenant H. Rivers with Dollond's 15-inch Theodolite. |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
| Angle <br> between | $182^{\circ} 22^{\prime}$ | Circle readings, telescope being set on XXVI |  |  |  | $42^{\circ} 23^{\prime}$ | $\boldsymbol{M}=\mathbf{M e a n}$ of Groups <br> wo = Relative Weight <br> $C=$ Concluded Angle |
| XXVI \& XXX | $\begin{gathered} " \\ d 39 \cdot 72 \\ d 40 \cdot 38 \end{gathered}$ | " | $\begin{gathered} \prime \prime \\ h_{43} .00 \\ h_{43} .00 \end{gathered}$ | " | " | "$h 34.00$$h 33.00$$d 34.33$ | $\begin{aligned} M & =3^{8^{\prime \prime} \cdot 74} \\ w & =0 \cdot 48 \\ \frac{\mathbf{I}}{w} & =2 \cdot 08 \\ C & =66^{\circ} \cdot 44^{\prime} 3^{\prime \prime \prime} \cdot 74 \end{aligned}$ |
|  |  | $\begin{aligned} & h 36.00 \\ & d 34.22 \end{aligned}$ |  | $\begin{aligned} & h 37{ }^{\circ} \circ 00 \\ & h \\ & h 2^{\circ} \cdot 00 \end{aligned}$ | $\begin{aligned} & h 40 \cdot 00 \\ & h 40 \cdot 00 \end{aligned}$ |  |  |
|  |  |  |  | $\begin{aligned} & h 41 \cdot 33 \\ & d 41 \cdot 11 \end{aligned}$ | $h 40 \cdot 34$ |  |  |
|  | 40*05 | $35^{111}$ | 43.00 | 4036 | $40^{\prime 1} 1$ | 33.78 |  |
| $\underset{\mathbf{X X X}}{\mathbf{X X X}}$ | d 33.95 d 32.28 | $\begin{aligned} & h 39^{\circ} 00 \\ & d 39^{\circ} 44 \end{aligned}$ | $\begin{aligned} & h 32.67 \\ & h 33.34 \end{aligned}$ | $\begin{aligned} & h 38.00 \\ & h 36.66 \end{aligned}$ | $\begin{aligned} & h 36 \cdot 00 \\ & h 36 \cdot 67 \end{aligned}$ | $\begin{aligned} & h 38 \cdot 00 \\ & h 39^{\circ} 34 \end{aligned}$ | $\begin{aligned} M & =3^{6^{\prime \prime}} \cdot 30 \\ w & =0 \cdot 60 \\ \frac{\mathbf{I}}{w} & =1 \cdot 67 \\ C & =5^{\circ} 3^{8^{\prime}} 36^{\prime \prime} \cdot 30 \end{aligned}$ |
|  | d 32.61 | d $40 \cdot 78$ |  | $\begin{aligned} & \hbar 39^{\circ} 00 \\ & \text { d } 38.89 \end{aligned}$ | h 36.00 h31.33 | d 39.50 |  |
|  | 32.95 | $39^{\prime} 74$ | $33^{\circ} \mathrm{I}$ | $38 \cdot 14$ | $35^{\circ} 00$ | 38.95 |  |

Nors,-Stations XXVI and XXX appertain to the Bombay Longitudinal Series.

## At XXXVIII (Hewargaon)-(Continued).



## At XXXIX (Kalsubai)

December 1842; observed by Lieutenant H. Rivers with Dollond's 15-inch Theodolite.

| $\underset{\text { between }}{\text { Angle }}$ | Circle readings, telescope being set on XXX |  |  |  |  |  | $M=$ Mean of Groups <br> ${ }^{20}=$ Relative Weight <br> $C=$ Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $83^{\circ} 59^{\prime}$ | $264{ }^{\circ} 0^{\prime}$ | $103^{\circ} 57^{\prime}$ | $283^{\circ} 58{ }^{\prime}$ | $123^{\circ} 57^{\prime}$ | $303^{\circ} 57^{\prime}$ |  |
| $\underset{\mathbf{X I}}{\mathbf{X X X}}$ | " | " | " | " | " | " | $\begin{aligned} M & =39^{\prime \prime \cdot 15} \\ w & =0 \cdot 83 \\ \frac{1}{w} & =1 \cdot 20 \\ C & =69^{\circ} 3^{\prime} 39^{\prime \prime \cdot} \cdot 15 \end{aligned}$ |
|  | $h_{41} 167$ | h 36.66 | h 40.67 | h 36.34 | ${ }_{6} 39.00$ | h 45.00 |  |
|  | $\boldsymbol{h} 3733$ | h 38.33 | ${ }_{6} 43.33$ | $\boldsymbol{h} 35^{\circ} 00$ | h 38.34 | h $40 \cdot 34$ |  |
|  |  | $\begin{aligned} & h 37.66 \\ & d 39.89 \end{aligned}$ | $\mathrm{d}_{41}{ }^{\text {4 }} 49$ | h $35^{\circ} 00$ | d 36.22 | d4112 |  |
|  |  |  |  |  |  |  |  |
|  | $39^{\circ} 50$ | 38.14 | 4183 | $35^{*} 45$ | $37 \cdot 85$ | 42'15 |  |
| $\begin{gathered} \text { XL \& } \\ \mathbf{X X X V I} \end{gathered}$ |  |  | ' |  |  |  | $\begin{aligned} & M=34^{\prime \prime} \cdot 99 \\ & w=0 \cdot 78 \\ & \frac{1}{w}=1 \cdot 28 \\ & C=52^{\circ} 58^{\prime} 34^{\prime \prime} \cdot 99 \end{aligned}$ |
|  | h 30.66 | ${ }_{2} 36.33$ | ¢ 33.67 | h 36.33 | h 37.00 | h 31.66 |  |
|  | h 37.33 | ¢ 36.67 | h $30 \cdot 67$ | h 36.34 | h 39.33 | h 35.66 |  |
|  | d 33.72 | ¢ 40.34 |  | ${ }^{\text {h }} 37.33$ | $\begin{array}{r} 34.65 \\ \\ \hline \end{array}$ | $h 33.34$ |  |
|  |  | d $40 \cdot 12$ | $\begin{aligned} & \text { d } 29.88 \end{aligned}$ |  | d 34.55 | $\text { d } 32.00$ |  |
|  | 33.90 | 38.37 | 31*47 | $36 \cdot 67$ | $36 \cdot 39$ | $33 \cdot 16$ |  |

Norm.-Stations XXVI and XXX appertain to the Bombay Longitudinal Sories.

At XXXIX (Kalsubai)-(Continued).

* December 1844; and $\dagger$ February 1845; observed by Lieutenant H. Rivers with Dollond's 15-inch Theodolite.



## At XXXIX (Kalsubai)-(Continued).



## At XXVI (Párner)

January 1845; observed by Lieutenant H. Rivers with Dollond,'s 15-inch Theodolite.

| Anglebetween | Circle readings, telescope being set on XXX |  |  |  |  |  | $M=$ Mean of Groups <br> $v_{0}=$ Relative Weight <br> C = Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $0^{\circ} 1^{\prime}$ | $180^{\circ} 0^{\prime}$ | $20^{\circ} 1^{\prime}$ | $200^{\circ} 0^{\prime}$ | $40^{\circ} 1^{\prime}$ | $220^{\circ} 0^{\prime}$ |  |
| $\underset{\mathbf{X X X I X}}{\mathbf{X X X}}$ | " | " | " | " | " | " | $\begin{aligned} M & =65^{\prime \prime} \cdot 40 \\ w & =0 \cdot 30 \\ \frac{1}{w} & =3 \cdot 33 \\ C & =47^{\circ} 54^{\prime} 5^{\prime \prime} \cdot 40 \end{aligned}$ |
|  | h61.34 | h 68.66 | \% 60.34 | h62.67 | \% 67.66 | ${ }_{6} 73.66$ |  |
|  | h63.00 | h64.33 | h61.67 | h62.33 | ¢ 65.67 | $\hbar 73.00$ |  |
|  | $\hbar, 59 \cdot 67$ $d 62.22$ |  | h62.33 d 62.78 |  | $h 64.00$ |  |  |
|  |  | $\begin{aligned} & h 69 \cdot 67 \\ & h 65.33 \end{aligned}$ | d 62.78 |  |  |  |  |
|  | 61.56 | 6713 | 61.78 | 62.50 | 66.08 | 73.33 |  |

Norm.-Stations XXVI and XXX appertain to the Bombay Longitudinal Series.

| At XXVI (Párner)-(Continued). |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\underset{\text { betweon }}{\substack{\text { Angle }}}$ | Circle readings, telescope being set on XXX |  |  |  |  |  |  |
|  | $0^{\circ} 1^{\prime}$ | $180^{\circ} 0^{\prime}$ | $20^{\circ} 1^{\prime}$ | $200^{\circ} 0^{\prime}$ | $40^{\circ} 1^{\prime}$ | $2200^{\circ}$ | $C=$ Concluded Anglo |
| $\underset{\text { XXXVIIII }}{\text { XXXIX }}$ | " | " | " | " | " | " | $\begin{aligned} & M=11^{\prime \prime} \cdot 93 \\ & w=0 \cdot 52 \\ & \frac{1}{w}=1 \cdot 92 \\ & C=28^{\circ} 33^{\prime} 11^{\prime \prime \prime} \cdot 83 \end{aligned}$ |
|  | $h_{13} \cdot 66$ | h $9 \cdot 0$ | h 6.33 | h 18.00 | $h_{12}{ }^{1} 67$ | $h_{10 \cdot 00}$ |  |
|  | $h_{10} 10.67$ | ${ }_{1}{ }_{14}{ }^{6} 67$ | h 8.33 | $h 1800$ | $h_{12}{ }^{\text {a }} 3$ | h $12 \cdot 33$ |  |
|  | hriro $d_{12} \cdot 66$ | h 11.34 $h_{11} 167$ | h 10.00 $d \quad 9.55$ |  | $h 8.67$ $h$ $h$ |  |  |
|  |  |  |  |  |  |  |  |
|  | 12:00 | 1167 | $8 \cdot 55$ | 18.00 | $10 \cdot 17$ | 1117 |  |
| At XXX (Singi) <br> $\dagger$ December 1842; and $\ddagger$ October 1845; observed by Lieutenant H. River's with Dollond’s 15-inch Theodolite. |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |
| $\begin{gathered} \text { Angle } \\ \text { betwren } \end{gathered}$ | $2^{9} 3^{\prime}$ | Circle readings, telescope being set on XL |  |  |  | $2224^{4}$ | $M=$ Mean of Groups <br> ${ }^{*}=\begin{aligned} & \text { Relative Weight } \\ & =\end{aligned}$ |
|  |  | $182^{\circ} 4^{\prime}$ | $22^{\circ} 3^{\prime}$ | $2024^{\prime}$ | $42^{\circ} 3^{\prime}$ |  |  |
| XL \& $\stackrel{\dagger}{\mathrm{X}} \mathrm{XXIX}$ | " | " | " | " | " | " | $\begin{aligned} & M=29^{\prime \prime} \cdot 61 \\ & w=0 \cdot 3 \mathrm{I} \\ & \frac{1}{w}=3 \cdot 23 \\ & C=60^{\circ} 44^{\prime} 29^{\prime \prime} \cdot 46 \end{aligned}$ |
|  | $h 26.00$ $h 27.67$ | $h 28.00$ $h 27.33$ | h 35.33 $h 34.00$ | h 26.66 h 27.67 | $h 36.34$ $h 36.00$ | $h 32 \cdot 00$ $h 29 \cdot 00$ |  |
|  | $h 29.00$ | $h_{25}{ }^{2} 66$ | ${ }^{\text {a }} 30.67$ | ${ }^{\text {h }} 30.67$ | ${ }_{\text {¢ }}{ }_{36}{ }^{\circ} \mathrm{O}$ | $h^{2} 28.33$ |  |
|  |  |  | ${ }^{\text {d }}{ }^{1} 33$ | d $20 \cdot 0$ $d 20 \cdot 33$ |  |  |  |
|  | 27.56 | 27\%0 | $32 \cdot 83$ | 25.07 | $36 \cdot 11$ | 29.08 |  |
| $\underset{\text { XXXVIII }}{\underset{\text { XXXIX }}{\ddagger}}$ | Circle readings, telescope being set on XXXIX |  |  |  |  |  | $\begin{aligned} & M=22^{\prime \prime} \cdot 13 \\ & w=0 \cdot 85 \\ & \frac{1}{w}=1 \cdot 18 \\ & C=41^{\circ} 19^{\prime} 22^{\prime \prime} \cdot 12 \end{aligned}$ |
|  | $40^{\circ} 1^{\prime}$ | $220^{\circ} 1^{\prime}$ | $60^{\circ} 0^{\prime}$ | $239^{\circ} 59^{\prime}$ | $79^{\circ} 59^{\prime}$ | $259{ }^{\circ} 59$ |  |
|  | " | " | " | " | " | " |  |
|  | $h 24.67$ $h_{23} \mathbf{4} \times 0$ | $\begin{aligned} & h_{22} 2 \cdot 34 \\ & h_{23} \cdot 34 \end{aligned}$ | $\begin{aligned} & h_{21} 1.66 \\ & h_{23} \cdot 33 \end{aligned}$ | $\begin{aligned} & h_{25} 256 \\ & h_{26} 60 \end{aligned}$ | $\begin{aligned} & h_{19} 1944 \\ & h_{22} 200 \end{aligned}$ | $\begin{aligned} & h_{19} 900 \\ & h_{18} 84 \end{aligned}$ |  |
|  | $h 21.00$ |  | $h 23.00$ $d 18.66$ | ${ }^{\text {d } 27} 90$ |  |  |  |
|  |  |  | ${ }^{\text {d }} 20.66$ |  |  |  |  |
|  | 22.89 | 22.84 | 21.46 | 26.22 | $20 \cdot 67$ | 18:67 |  |
| $\underset{\text { XXVI }}{\underset{\text { XXX }}{\ddagger} \ddagger}$ | $\begin{aligned} & h 1934 \\ & h 2067 \end{aligned}$ | $\begin{aligned} & h 22.00 \\ & d 19.83 \end{aligned}$ |  | $\begin{aligned} & h 1400 \\ & h_{16} 00 \\ & d 16 \cdot 16 \end{aligned}$ | $\begin{aligned} & h_{25} 2500 \\ & h_{2400} \end{aligned}$ | $\begin{aligned} & h_{22}^{22} \cdot 34 \\ & h 21: 66 \end{aligned}$ | $\begin{aligned} & M=20^{\prime \prime} \cdot 44 \\ & w=0 \cdot 57 \\ & \frac{1}{w}=1 \cdot 75 \\ & C=36^{\circ} 48^{\prime} 20^{\prime \prime} \cdot 33 \end{aligned}$ |
|  |  |  |  |  |  |  |  |
|  | 18.67 | 20.92 | 21.17 | 15.39 | 24.50 | 22*00 |  |

NoTr.-Stations XXVI and XXX appertain to the Bombay Longitudinal Series.
July 1879.
J. B. N. HENNESSEY,

In charge of Computing Office.

## SINGI MERIDIONAL SERIES.

PRINCIPAL TRIANGULATION. SUMS OF SQUARES OF APPARENT ERRORS.

Sums of Squares of Apparent Errors of Single Observations, and of Apparent Errors of Single Zeros.

| Station of Observation | Observed Angle | Number of Observations | Sum of Squares of Errors of single Observations | $\underset{\text { Zeros }}{\text { Number of }}$ | Sum of Squares of Krrors of single Zeros | Remaris |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| XXIX | I \& XXXII | 24 | 1.63 | 12 | $78 \cdot 80$ |  |
| XXXII | XXIX \& I | 24 | 1.91 | 12 | $82 \cdot 86$ |  |
| " | I \& II | 24 | $3 \cdot 32$ | 12 | $86 \cdot 77$ |  |
| I | III \& II | 24 | 7.81 | 12 | 189.23 |  |
| " | II \& XXXII | 24 | 5.69 | 12 | 88.18 |  |
| " | XXXII \& XXIX | 24 | 5.58 | 12 | $84 \cdot 84$ |  |
| II | XXXII \& 1 | 24 | 3.55 | 12 | 84.41 |  |
| " | I \& III | 24 | $5 \cdot 63$ | 12 | 53.01 |  |
| " | III \& IV | 24 | 4.63 | 12 | 115.44 | Troughton and Simms' 18-inch |
| III | VI \& V | 24 | $3 \cdot 36$ | 12 | 63.83 | Theodolite No. 2. |
| " | V \& IV | 24 | 5.13 | 12 | $45 \cdot 97$ |  |
| " | IV \& II | 24 | $4 \cdot 32$ | 12 | 71.81 |  |
| " | II \& I | 24 | $3 \cdot 54$ | 12 | 49.51 |  |
| IV | II \& III | 24 | 3.63 | 12 | $62 \cdot 11$ |  |
| " | III \& V | 24 | 2.78 | 12 | 182.77 |  |
| V | IV \& III | 24 | $6 \cdot 88$ | 12 | 143.45 |  |
| " | III \& VI | 24 | $2 \cdot 86$ | 12 | 128.63 |  |
| " | VI \& VII | 24 | $8 \cdot 37$ | 12 | 121.42 |  |

NOTE.-Stations XXIX and XXXII appertain to the Karáchi Longitudinal Series of the North-West Quadrilateral.

40-
SINGI MERIDIONAL SERIES.

| Station of Obeervation | Observed Angle | Number of Observations | Sum of Squares of Errors of single Observations | Number of Zeros | Sum of Squares of Frrors of aingle Zoros | Remaris |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\nabla$ | VII \& VIII | 24 | 5.08 | - 12 | $140 \cdot 62$ | $)$ |
| VI | VII \& V | 24 | 2.59 | 12 | 117.44 |  |
| " | V \& III | 24 | $2 \cdot 63$ | 12 | $124^{\circ} 42$ |  |
| VII | IX \& VIII | 24 | 7.06 | 12 | $63 \cdot 29$ |  |
| " | VIII \& V | 24 | 5*72 | 12 | $67 \cdot 87$ |  |
| " | V\& VI | 24 | 6. 50 | 12 | $85^{111}$ |  |
| VIII | V \& VII | 24 | 1. 56 | 12 | 37'58 |  |
| 9 | VII \& IX | 24 | 3.52 | 12 | $140^{\circ} 20$ |  |
| " | IX \& X | 24 | 4.94 | 12 | 68-17 |  |
| IX | XI \& X | 24 | 4.24 | 12 | 102.32 |  |
| " | X \& VIII | 24 | $2 \cdot 90$ | 12 | 129.07 |  |
| $"$ | VIII \& VII | - 24 | 5'99 | 12 | $86 \cdot 24$ |  |
| $\mathbf{X}$ | VIII \& IX | 24 | 8.70 | 12 | 97'79 | - |
| " | IX \& XI | 24 | 4.41 | 12 | 109'95 |  |
| " | XI XII | 24 | 3.77 | 12 | 151.33 |  |
| XI | XIII \& XII | 24 | 7* 44 | 12 | $83^{\circ} \mathrm{O}$ |  |
| " | XII \& X | 24 | 6.92 | 12 | 116.41 |  |
| " | $\mathbf{X} \& I X$ | 24 | 3.08 | 12 | $70 \cdot 84$ |  |
| XII | $\mathbf{X \& ~ X I ~}$ | 24 | $2 \cdot 89$ | 12 | 125.66 |  |
| " | XI \& XIII | 24 | 3. 59 | 12 | $165^{\circ} 44$ |  |
| " | XIII \& XIV | 24 | 1.52 | 12 | 42•11 | Troughton and.Simms' 18-inch Theodolite No. 2. |
| " | XIV \& XV | 24 | 1.90 | 12 | 173.36 |  |
| XIII | XVII \& XVIII | 24 | $4^{\cdot 21}$ | 12 | 220.44 |  |
| " | XVIII \& XIV | 24 | $5^{\circ} \mathrm{O} 4$ | 12 | 205.52 |  |
| " | XIV \& XII | 24 | 3'15 | 12 | $145^{1} 14$ |  |
| " | XII \& XI | 24 | $2 \cdot 25$ | 12 | 95'79 |  |
| XIV | XIII \& XVIII | 24 | 5.95 | 12 | $137 \cdot 91$ |  |
| " | XVII \& XVIII | 24 | $5 \cdot 40$ | 12 | 180.29 |  |
| " | XVIII \& XVI | 24 | 3.91 | 12 | $157 \cdot 78$ | - |
| " | XVI \& XV | 24 | $4 \cdot 84$ | 12 | 105.01 |  |
| " | XV \& XII | 24 | $5 \cdot 29$ | 12 | 80.60 |  |
| " | XII \& R. M. | 24 | 3. 26 | 12 | 78.26 |  |
| $\mathbf{X V}$ | XII \& XIV | 24 | $6 \cdot 84$ | 12 | $127 \cdot 85$ |  |
| " | XIV \& XVI | 24 | 5.22 | 12 | 83.58 |  |
| XVI | XV \& XIV | 24 | 5.03 | 12 | $57 \cdot 60$ |  |
| " | XIV \& XVIII | 24 | 5 71 | 12 | IO1-87 |  |
| XVII | XIX \& XX | 24 | $5 \cdot 33$ | 12 | 85*33 |  |
| " | XX \& XVIII | 24 | 6.62 | 12 | 96•98 |  |
| " | XVIII \& XIV | 24 | -7.25 | 12 | 61*28 |  |
| " | XIV \& XIII | 24 | 4•54 | 12 | 119.53 |  |
| XVIII | XVI \& XIV | 26 | 10•13 | 12 | 113.54 | $J$ |

Notz.-R. M. denotes Referring Mark.

| Station of Observation | Observed Angle | Number of Observations | Sum of Squares of Frrors of single Obeervations | $\underset{\text { Zeros }}{\text { Number of }}$ | Sum of Squares of Frrors of single Zeros | Rimaris |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| XVIII | XIV \& XVII | 24 | 6.71 | 12 | $142 \cdot 64$ | 7 |
| " | XVII \& XIX | 24 | 9.04 | 12 | $130 \cdot 69$ |  |
| ' | XIX \& XX | 24 | 5.12 | 12 | 96.77 |  |
| " | XIV \& XIII | 24 | 2.87 | 12 | 54.23 |  |
| XIX | XXII \& XXI | 24 | 3.50 | 12 | 163.28 |  |
| " | XXI \& XX | 24 | 3.49 | 12 | $63 \cdot 68$ |  |
| " | XX\& XVIII | 24 | $6 \cdot 34$ | 12 | $83 \cdot 76$ |  |
| " | XVIII \& XVII | 24 | 4.82 | 12 | $67 \cdot 70$ |  |
| $\mathbf{X X}$ | XVIII \& XVII | 24 | $3 \cdot 66$ | 12 | $126 \cdot 20$ | . |
| " | XVII \& XIX | 24 | $2 \cdot 45$ | 12 | 164.10 |  |
| " | XIX \& XXI | 24 | $2 \cdot 60$ | 12 | $196 \cdot 89$ |  |
| " | XXI \& XXIII | 24 | $2 \cdot 17$ | 12 | $76 \cdot 21$ |  |
| XXI | XXII \& XXIII | 24 | 6.67 | 12 | 161.87 |  |
| " | XXIII \& XX | 24 | 5.63 | 12 | 63.52 |  |
| " | XX \& XIX | 24 | 4.80 | 12 | 108.42 |  |
| XXII | XXIV \& XXIII | 24 | 3.45 | 12 | $131 \cdot 20$ |  |
| " | XXIII \& XXI | 24 | 8.19 | 12 | $55 \cdot 32$ |  |
| " | XXI \& XIX | 24 | 3.15 | 12 | 80.18 |  |
| XXIII | XX \& XXI | 24 | 2. 58 | 12 | 117.77 |  |
| " | XXI \& XXII | 24 | 1.87 | 12 | 171.92 | Troughton and Simms' 18-inch Theodolite No. 2. |
| " | XXII \& XXIV | 24 | 1.48 | 12 | 133.71 |  |
| " | XXIV \& XXV | 24 | $3 \cdot 56$ | 12 | 155.05 |  |
| XXIV | ${ }^{\bullet} \mathrm{XXVI}$ \& XXVII | 24 | $2 \cdot 77$ | 12 | $186 \cdot 30$ |  |
| " | XXVI \& XXV | 24 | 5.15 | 12 | 59.82 |  |
| " | XXV \& XXIII | 25 | 6.92 | 12 | 133.09 |  |
| " | XXIII \& XXII | 25 | 6.16 | 12 | 74.83 |  |
| $\mathbf{X X V}$ | XXIII \& XXIV | 24 | $2 \cdot 38$ | 12 | 27.77 |  |
| " | XXIV \& XXVI | 24 | $1 \cdot 34$ | 12 | 79.95 |  |
| " | XXVI \& XXVII | 24 | 4.31 | 12 | 121.31 |  |
| " | XXVI \& XXVIII | 24 | 1•74 | 12 | $60 \cdot 26$ |  |
| XXVI | XXIX \& XXVIII | 24 | $1 \cdot 14$ | 12 | 118.08 |  |
| " | XXVIII \& XXV | 24 | I.97 | 12 | 181.21 |  |
| " | XXVII \& XXV | 24 | 5.30 | 12 | 154.95 |  |
| " | XXV \& XXIV | 24 | 6.32 | 12 | $236 \cdot 89$ |  |
| XXVII | XXV \& XXIV | 24 | 3.95 | 12 | 70.39 |  |
| " | XXIV \& XXVI | 24 | 4.10 | 12 | 75.92 |  |
| XXVIII | XXV \& XXVI | 26 | $7 \cdot 59$ | 12 | 211.37 |  |
| " | XXVI \& XXIX | 24 | 0.86 | 12 | 216.41 |  |
| " | XXIX \& XXX | 24 | $0 \cdot 38$ | 12 | $234 \cdot 18$ | J |
| XXIX | XXXII \& XXXI | 26 | $84 \cdot 96$ | 6 | $105 \cdot 34$ | 〕 Dollond's 15-inch Theodolite. |
| " | XXXI \& XXX | 25 | 146.16 | 6 | ${ }^{72 \cdot 52}$ | \} Dollond's 16-inch Theodolito. |

SINGI MERIDIONAL SERIES.

| Station of Obeervation | Obserrod Anglo | $\begin{gathered} \text { Number of } \\ \text { Observa } \\ \text { tions } \end{gathered}$ | Sum of Squares of Errors of of single Errore of single Obeorvations | $\begin{gathered} \text { Number of } \\ \text { Zeros } \end{gathered}$ | Sum of Bquares of Firrors of single Zeros | Rnorres |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| XXIX | XXX\& XXVIII | 21 | 115.24 | 6 | 88.87 | Dollond's 15-inch Theodolite. |
| " | XXX \& XXVIII | 25 | 2.44 | 12 | 62.22 | ) ${ }^{\text {a }}$ |
| " | XXVIII \& XXVI | 25 | $5 \cdot 09$ | 12 | 145.63 |  |
| XXX | XXVIII \& XXIX | 24 | 3.63 | 12 | $36 \cdot 45$ |  |
| " | XXVIII \& XXXI | 18 | $38 \cdot 22$ | 6 | $38 \cdot 26$ | ? |
| " | XXXI \& XXXIII | 15 | $37 \cdot 00$ | 6 | 82.41 |  |
| XXXI | XXXIV \& XXXVI | 19 | 18.62 | 6 | 10147 | $\cdots$ |
| " | XXXVI \& XXXIII | 12 | 16.98 | 6 | 133.00 |  |
| " | XXXIII \& XXX | 13 | 15.04 | 6 | $92 \cdot 09$ |  |
| " | XXX \& XXIX | 12 | $7 \cdot 27$ | 6 | $82 \cdot 16$ |  |
| " | XXIX \& XXXII | 14 | $5 \cdot 34$ | 6 | 90.07 |  |
| " | XXXII \& XXXIV | 13 | 7.83 | 6 | $141 \cdot 76$ |  |
| XXXII | XXXV \& XXXIV | 13 | 21.98 | 6 | $33 \cdot 17$ |  |
| " | XXXIV \& XXXI | 15 | 10.36 | 6 | $62 \cdot 03$ |  |
| " | XXXI \& XXIX | 18 | 17.72 | 6 | 43.93 |  |
| " | XXIX \& R.M. | 18 | $22 \cdot 06$ | 6 | $19 \cdot 12$ |  |
| XXXIII | XXX\& XXXI | 13 | $7 \cdot 19$ | 6 | $68 \cdot 55$ |  |
| " | XXXI \& XXXVI | 14 | $6 \cdot 67$ | 6 | 20.90 |  |
| XXXIV | XXXVII \& XXXIX | 17 | 25.26 | 6 | 130.44 |  |
| " | XXXIX \& XXXVI | 13 | 17.11 | 6 | 145.04 |  |
| " | XXXVI \& XXXI | 12 | $23 \cdot 10$ | 6 | $246 \cdot 42$ |  |
| " | XXXI \& XXXII | 13 | $18 \cdot 10$ | 6 | 69.02 |  |
| " | XXXII \& XXXV | 15 | $8 \cdot 50$ | 6 | 81.58 | ¢ Dollond's 15-inch Theodolite. |
| " | XXXV\& XXXVII | 16 | 13.84 | 6 | 113.71 |  |
| Xxx | XXXVIII \& XXXIX | 15 | 64.20 | 6 | 112.72 |  |
| " | ExXIX \& XXXVII | 19 | $65 \cdot 14$ | 6 | $66 \cdot 60$ |  |
| " | XXXVII \& XXXIV | 21 | 25.86 | 6 | 21.18 |  |
| " | XXXIV \& XXXII | - 16 | 45.91 | 6 | $44 \cdot 94$ |  |
| XXXVI | XXXIII \& XXXI | 16 | 8.06 | 6 | 88.95 |  |
| " | XXXI \& XXXIV | 15 | 5.66 | 6 | $137 \cdot 06$ |  |
| " | XXXIV \& XXXIX | 14 | 25.05 | 6 | $60 \cdot 60$ |  |
| " | XXXIX \& XL | 26 | 19.67 | 12 | 194.56 |  |
| XXXVII | xxxiv \& Xxx | 12 | 10.53 | 6 | $48 \cdot 96$ |  |
| " | xxxv \& XXVIII | 12 | 16.21 | 6 | 9.97 |  |
| " | XXXVIII \& XXXIX | 13 | $25 \cdot 76$ | 6 | $161 \cdot 11$ |  |
| " | XXXIX \& XXXIV | 13 | $31 \cdot 72$ | 6 | $34 \cdot 53$ |  |
| XXXVIII | XXVI \& XXX* | 16 | 18.31 | 6 | $62 \cdot 15$ |  |
| " | XXX* \& XXXIX | 19 | 26.64 | 6 | $45 \cdot 97$ |  |
| " | XXXIX \& XXXVII | 22 | 27.74 | 6 | $80 \cdot 54$ |  |
| " | XXXVII \& XXXV | 20 | $47 \cdot 64$ | 6 | $72 \cdot 67$ |  |
| XXXIX | XXX \& XL | 18 | $36 \cdot 53$ | 6 | $32 \cdot 70$ |  |

PRINCIPAL TRIANGULATION. SUMS OF SQUARES OF APPARENT ERRORS.

| Station of Observation | Observed Angle | $\begin{gathered} \text { Number of } \\ \text { Observa- } \\ \text { tions } \end{gathered}$ | Sum of Squares of Frrors of single Observations | $\begin{gathered} \text { Number of } \\ \text { Zeros } \end{gathered}$ | Sum of Squares of Frrors of singto Zeros | Remabis |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| XXXIX | XL \& XXXVI | 22 | 70•24 | 6 | $33^{\prime} 13$ |  |
| 7 | XXXVI \& XXXIV | 22 | $26 \cdot 69$ | 6 | $69 \cdot 69$ |  |
| \% | XXXIV \& XXXV | 19 | 40*34 | 6 | - 103'90 |  |
| " | XXXIV \& XXXVII | 22 | 6I 20 | 6 | $82 \cdot 40$ |  |
|  | XXXVII \& XXXV | 18 | $45 \cdot 61$ | 6 | $5^{\prime 2} 3$ |  |
| " | XXXV \& XXXVIII | 15 | 20'72 | 6 | 50.29 |  |
| " | XXXV \& XXVI | 18 | 47*02 | 6 | $136 \cdot 92$ |  |
| " | XXVI \& XXX | 17 | 40.06 | 6 | $25^{\prime 7} 7$ | , $\}$ Dollond's 15-inch Theodolite. |
| $\mathbf{X L}$ | XXXVI \& XXXIX | 27 | $47 \cdot 30$ | 12 | 199.26 |  |
| " | XXXIX \& XXX | 27 | 86•31 | 12 | 176.28 |  |
| XXVI | XXX \& XXXIX | 21 | 37*79 | 6 | 102.59 |  |
| " | XXXIX \& XXXVIII | 20 | 56•23 | 6 | $52^{\circ} \mathrm{OI}$ |  |
| $\mathbf{X X X}$ | XL \& XXXIX | 22 | 124.28 | 6 | 84.52 |  |
| " | XXXIX \& XXXVIII | 17 | 26•36 | 6 | $32 \cdot 36$ |  |
| " | XXXVIII \& XXVI | 16 | $3^{2} 11$ | 6 | 48*30 | J |

NoTs.-Stations XXVI and XXX appertain to the Bombay Longitudinal Series.
-

From the preceding data of the sums of the squares of the apparent errors, in the measurement of each angle, we may ascertain the e.m.s. (error of mean square) of observation of a single measure of an angle, and the e.m.s. of graduation and observation of the mean of the measures on a single zero, for each group of angles measured with the same instrument, by the same observer, and under similar circum. stances.

## The instruments employed were as follows :-

1st.-Troughton and Simms' 18 -inch Theodolite No. 2, having 3 microscopes; observations were taken on 6 pairs of zeros (face left and face right), giving circle readings at $10^{\circ}$ apart.

2nd.-A theodolite by Dollond, having an azimuthal circle 15 inches in diameter, furnished with 3 microscopes; observations were taken on 6 or 3 pairs of zeros, giving circle readings at $10^{\circ}$ or $20^{\circ}$ apart.

The e.m.s. of observation of a single measure of an angle $=\sqrt{\frac{\text { Sum of squares of apparent errors of observations. }}{\text { No. of observations-No. of angles } \times \text { No. of changes of zero. }}}$
$\left.\begin{array}{l}\text { The e.m.s. of graduation and observation of the mean of the } \\ \text { measures on a single zero }\end{array}\right\}=\sqrt{\frac{\text { Sum of squares of apparent errors of zero. }}{\text { No. of angles } \times \text { (No. of changes of zero-1). }}}$

| Group | Instrument andObserver |  |  | Number of |  |  |  | e. m. s. of observation of a single measure | e. m. s. of graduation and obserration of a single zero |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\underset{\text { zero (average) }}{\substack{\text { Measures on each } \\ \hline}}$ |  |  |  |  |  |
| I | $\left\{\begin{array}{l} \text { Troughton and Simms' 18-inch } \\ \text { Theodolite No. 2; Lieutenant } \\ \text { C. T. Haig, R.E. } \end{array}\right\}$ | Hills, | $\begin{array}{rr} \circ & 0 \\ 10 & 0 \end{array}$ | 2.01 | 101 | 2432 | 1212 | $\left\{\frac{445 \cdot 23}{2432-1212}\right\}^{t}= \pm 0^{\prime \prime} .604$ | $\left\{\frac{11817 \cdot 75}{1212-101}\right\}^{\prime \prime}= \pm{ }^{\prime \prime}$ '192 |
| II | $\left\{\begin{array}{l} \text { Dollond's 15-inch Theodolite ; } \\ \text { Lieutenant H. Rivers. } \end{array}\right\}$ | " | 100 | 2.22 | 8 | 80 | 36 | $\left\{\frac{153.28}{80-36}\right\}^{\frac{3}{3}}= \pm 1.866$ | $\left\{\frac{570 \cdot 10}{36-3}\right\}^{\frac{1}{t}}= \pm 4 \cdot 156$ |
| III | Ditto. | " |  | 2•80 | 52 | 875 | 312 | $\left\{\frac{1794 \cdot 16}{875-312}\right\}^{\frac{3}{3}}= \pm 1.785$ | $\left\{\begin{array}{c}3969 \cdot 59 \\ 312-52\end{array}\right\}^{\frac{1}{2}}= \pm 3 \cdot 907$ |

July 1879.

## J. B. N. HENNESSEY,

In charge of Oomputing Office.

## SINGI MERIDIONAL SERIES.

## PRINCIPAL TRIANGULATION. REDUCTION OF FIGURES.

46-H.
SINGI MERIDIONAI SERIES.
Figure No. 10.


- In the tables of the equations between the factors the co-efficients of the terms below the diagonal are omitted for convenience, the co-efficient of the pth term in the $q$ th line being alwaye the aame as the co-efficient of the $q$ th term in the pth line.

Figure No. 11.


## SINGI MERIDIONAL SERIES.

Figure No. 12.


Figure No. 13.


Figure No. 14.


Figure No. 14-(Continued).

| Equations between the Factors |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { No. of } \\ 0 \end{gathered}$ | Value of - | Co-efficients of |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | $\lambda_{1}$ | $\lambda_{3}$ | $\lambda_{3}$ | $\lambda_{4}$ | $\lambda_{s}$ | $\lambda_{6}$ | $\lambda_{\boldsymbol{7}}$ | $\lambda_{8}$ | $\lambda_{9}$ | $\lambda_{10}$ | $\lambda_{11}$ | $\lambda_{12}$ | $\lambda_{13}$ | $\lambda_{14}$ |
| 1 | $+2.55$ | $+7 \cdot 30$ | + ${ }^{-}$ | ... | - 0 | ... | $\cdots$ | ... | $\cdots$ | ... | ... | ... | ... | ... | $\cdots$ |
| 2 | +1.81 |  | +8.49 | $\cdots$ | ... | ... | ... | ... | $\cdots$ | ... | ... | ... | ... | ... | ... |
| 3 | -2.37 |  |  | +7.67 | $\cdots{ }^{\circ}$ | ... | ... | ... | ... | . | ... | ... | ... | ... | ... |
| 4 | -2.71 |  |  |  | $+15.83$ | $\cdots$ | $\cdots$ | ... | $\cdots$ | ... | ... | ... | -. | ... | $\cdots$ |
| 5 | +1.14 -6.83 |  |  |  |  | +9.72 | + $\quad \cdots{ }_{0}$ | $\cdots$ | $\cdots$ | ... | ... | ... | ... | ... | $\ldots$ |
| 6 | -6.82 |  |  |  |  |  | +798 | $\ldots$ | $\cdots$ | ... | $\cdots$ | ... | ... | ... | ... |
| 8 | 1.49 +1.72 |  |  |  |  |  |  | + 10.02 | $\cdots$ | $\ldots$ | ... | ... | ... | ... | ... |
| 8 | 11.49 -1.18 |  |  |  |  |  |  |  | $+8 \cdot 32$ | $+\dddot{6 \cdot 63}$ | $\cdots$ | ... | ... | ... | ... |
| 10 | +0.27 |  |  |  |  |  |  |  |  |  | $+5 \cdot 72$ | ... | $\cdots$ | ... | $\ldots$ |
| 11 | -1.13 |  |  |  |  |  |  |  |  |  |  | $+10.50$ | ... | $+4.60$ | - |
| 12 | +0.19 |  |  |  |  |  |  |  |  |  |  |  | +9044 | +6.61 | ... |
| 13 | -6.01 |  |  |  |  |  |  |  |  |  |  |  |  | +11.21 | $\ldots$ |
| 14 | -0.44 |  |  |  |  |  |  |  |  |  |  |  |  |  | +434 |
| 15 | -2.18 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 16 | +2.57 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 17 | +6.18 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 18 | $+1 \cdot 37$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 19 | $-0.83$ |  | . |  |  |  |  |  |  |  |  |  |  |  |  |
| 20 | $+1 \cdot 32$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 21 | +0.05 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 22 | +0.52 |  |  |  |  |  |  |  |  |  | * |  |  |  |  |
| 23 | 0.00 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 24 | $-7 \cdot 030$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 25 | +1.021 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 26 | $-2.717$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 27 | -3.363 -1.207 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 29 | -1.473 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |



Figure No. 14.


Figure No. 14-(Continued).

| Equations between the Factors |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. of - | Value of - | Co-efficients of |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | $\lambda_{1}$ | $\lambda_{3}$ | $\lambda_{3}$ | $\lambda_{4}$ | $\lambda_{5}$ | $\lambda_{6}$ | $\lambda_{7}$ | $\lambda_{8}$ | $\lambda_{9}$ | $\lambda_{10}$ | $\lambda_{11}$ | $\lambda_{13}$ | $\lambda_{13}$ | $\lambda_{14}$ |
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | $\begin{aligned} & +2 \cdot 55 \\ & +1.81 \\ & -2 \cdot 37 \\ & -2 \cdot 71 \\ & +1 \cdot 14 \\ & -6.82 \\ & +1 \cdot 49 \\ & -1 \cdot 72 \\ & -1 \cdot 18 \\ & +0 \cdot 27 \\ & -1.13 \\ & +0 \cdot 19 \\ & -6 \cdot 01 \\ & -0.44 \\ & -2.18 \\ & +2.57 \\ & +6 \cdot 18 \\ & +1 \cdot 37 \\ & -0.83 \\ & +1 \cdot 32 \\ & +0.05 \\ & +0.52 \\ & 0.00 \\ & -7.030 \\ & +1 \cdot 021 \\ & -2.717 \\ & -3.363 \\ & -1 \cdot 207 \\ & -1.473 \end{aligned}$ | $+7 \cdot 30$ | $+\dddot{8}_{49}$ | $\begin{gathered} \cdots \\ +\ddot{\eta} 67 \end{gathered}$ | $\begin{gathered} \cdots \\ \cdots \\ +\cdots \bar{m} \cdot 83 \end{gathered}$ | $\begin{gathered} \cdots \\ \cdots \\ \cdots \\ \cdots \\ +\ddot{9} 72 \end{gathered}$ | $\begin{gathered} \cdots \\ \cdots \\ \cdots \\ \cdots \\ +\dddot{y} 98 \end{gathered}$ | $+10.02$ | -•• <br> -•• <br> $\cdots \cdot$ <br> -•• <br> -•• $+8 \cdot 32$ | $\begin{gathered} . . \\ \ldots \\ \ldots \\ \ldots \\ \ldots \\ \ldots \\ \cdots \\ +\ddot{6} \cdot 63 \end{gathered}$ | $\begin{gathered} \cdots \\ \cdots \end{gathered}$ | $\begin{gathered} \cdots \\ +\cdots \\ +10 \cdot 50 \end{gathered}$ | $\begin{gathered} \cdots \\ +\cdots \cdot+4 \end{gathered}$ | $\begin{gathered} \cdots \\ +\cdots \\ +4.60 \\ +6.61 \\ +11.21 \end{gathered}$ | $\bullet \bullet$ $\because \bullet$ $\ldots$ $\cdots \bullet$ - •• -•• $\cdots \cdot$ -•• $+4 \cdot 34$ |



Figure No. 14.


Figure No. 14-(Continued).



Figure No. 14.


Figure No. 14-(Continued).

| Equations between the Factors |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { No. of } \\ \text { e } \end{gathered}$ | Value of - | Co-efficients of |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | $\lambda_{1}$ | $\lambda_{3}$ | $\lambda_{3}$ | $\lambda_{4}$ | $\lambda_{5}$ | $\lambda_{6}$ | $\lambda_{7}$ | $\lambda_{8}$ | $\lambda_{9}$ | $\lambda_{10}$ | $\lambda_{11}$ | $\lambda_{12}$ | $\lambda_{13}$ | $\lambda_{14}$ |
| 1 | +2.55 | $+7 \cdot 30$ | $\cdots$ | -.. | - 0 | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
| 2 | +1.81 | - | +8.49 | $\cdots$ | ... | ... | , | ... | . | . | ... | ... | . | ... | ... |
| 3 | -2.37 |  | +89 | $+7 \cdot 67$ | . ${ }^{-1}$ | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
| 4 | -2.71 |  |  |  | $+15 \cdot 83$ | $\cdots$ | ... | ... | ... | ... | ... | ... | ... | ... | ... |
| 5 | +1.14 |  |  |  |  | +9.72 | $\cdots$ |  | ... | ... | ... | ... | ... | ... | ... |
| 6 | -6.82 |  |  |  |  |  | +798 | +10.03 | $\ldots$ | ... | ... | ... | ... | ... | ... |
| 8 | +1.49 |  |  |  |  |  |  | $+10.02$ |  | $\cdots$ | ... | $\cdots$ | $\cdots$ | $\cdots$ | ... |
| 8 | -1.72 |  |  |  |  |  |  |  | $+8 \cdot 32$ |  | $\ldots$ | ... | ... | ... | $\cdots$ |
| 9 | -1.18 |  |  |  |  |  |  |  |  | $+6 \cdot 63$ | + $\quad$. |  | ... | ... | ... |
| 10 | +0.27 |  |  |  |  |  |  |  |  |  | $+5.72$ | + 10.5 | $\cdots$ |  | ... |
| 11 | -1.13 |  |  |  |  |  |  |  |  |  |  |  | -•• | +4.60 | ... |
| 12 | +0.19 |  |  |  |  |  |  |  |  |  |  |  |  | $+6.61$ | ... |
| 13 | -6.01 |  |  |  |  |  |  |  |  |  |  |  |  | +11.21 | $\ldots$ |
| 14 | -0.44 |  |  |  |  |  |  |  |  |  |  |  |  |  | +434 |
| 15 | $-2 \cdot 18$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 16 | +2.57 +6.18 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 17 | +6.18 +1.37 |  |  |  |  |  |  | . |  |  | . |  |  |  |  |
| 19 | +0.8.3 |  | . |  |  |  |  |  |  |  |  |  |  |  |  |
| 20 | +1.32 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 21 | $+0.05$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 22 | +0.52 |  |  |  |  |  |  |  |  |  | * |  |  |  |  |
| 23 | 0.00 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 24 | $-7.030$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 25 | $+1.021$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 26 | $-2.717$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 27 28 | -3.363 -1.207 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 29 | -1.473 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |



Figure No. 14-(Continued).

| Values of the Factors | Values of the Factors | Values of the Factors |
| :---: | :---: | :---: |
| $\begin{aligned} & \lambda_{1}=+0.1997 \\ & \lambda_{2}=+0.0862 \\ & \lambda_{3}=-0.3222 \\ & \lambda_{4}=-0.1945 \\ & \lambda_{5}=-0.0395 \\ & \lambda_{6}=-0.9199 \\ & \lambda_{7}=+0.2819 \\ & \lambda_{8}=+1.7626 \\ & \lambda_{9}=+1.7244 \\ & \lambda_{10}=+0.0466 \end{aligned}$ | $\begin{aligned} & \lambda_{11}=+4.4356 \\ & \lambda_{12}=+5.2061 \\ & \lambda_{13}=-6.9337 \\ & \lambda_{16}=-0.0761 \\ & \lambda_{16}=-0.2729 \\ & \lambda_{16}=+0.4754 \\ & \lambda_{17}=+1.2416 \\ & \lambda_{18}=-0.9199 \\ & \lambda_{19}=+0.1351 \\ & \lambda_{20}=+0.2536 \end{aligned}$ | $\begin{aligned} & \lambda_{21}=-0.0110 \\ & \lambda_{28}=-2.8849 \\ & \lambda_{23}=-0.0736 \\ & \lambda_{24}=-0.2789 \\ & \lambda_{25}=-0.0636 \\ & \lambda_{26}=-1.4421 \\ & \lambda_{27}=+2.3707 \\ & \lambda_{28}=-0.7784 \\ & \lambda_{29}=+0.1600 \end{aligned}$ |
| $\begin{aligned} & x_{1}=+1 \cdot 26 \\ & x_{2}=+1 \cdot 27 \\ & x_{3}=+\cdot 02 \\ & x_{4}=+1 \cdot 13 \\ & x_{5}=+\cdot 81 \\ & x_{6}=-.13 \\ & x_{7}=-.28 \\ & x_{8}=-.24 \\ & x_{9}=-1 \cdot 85 \\ & x_{10}=+.32 \\ & x_{11}=-.20 \\ & x_{18}=-2 \cdot 83 \\ & x_{13}=+.98 \\ & x_{14}=+.46 \end{aligned}$ | Angular errors in seconds | $\begin{aligned} & x_{43}=-40 \\ & x_{44}=+\cdot 52 \\ & x_{45}=-2 \cdot 30 \\ & x_{46}=+2 \cdot 30 \\ & x_{47}=-.42 \\ & x_{48}=+.51 \\ & x_{49}=+.18 \\ & x_{50}=+2 \cdot 43 \\ & x_{61}=+.57 \\ & x_{58}=+.71 \\ & x_{63}=+2.47 \end{aligned}$ |

July 1879.

## SINGI MERIDIONAL SERIES.

## PRINCIPAL TRIANGULATION. TRIANGLES.



Notzs-1. The values of the sides are given in the same lines with the opposite angles.
2. Stations XXIX (Tána) and XXXII (Lakarwás) appertain to the Karáchi Longitudinal Beries of the North-Weat Quadrilateral.

- H.

SINGI MERIDIONAL SERIES.


H.



Note.-Stations XXVI (Párner) and XXX (Singi) appertain to the Bombay Longitudinal Series of the Southern Trigon.

58-
SINGI MERIDIONAL SERIES.

| No. of Triangle |  | Number and Name of Station |  | Corrections to Observed Angle |  |  |  | $\begin{gathered} \text { Corrected Plane } \\ \text { Angle } \end{gathered}$ | Distance |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Circuit | Noncircuit |  |  | Figure | Circuit | Noncircuit | Total |  | Log. feet | Feet | Milos |
|  | 207 | XXXIX (Kalsubai) <br> XXX (Singi) <br> XXVI ( (árner) | $\begin{gathered} " 1 \\ 4.78 \\ 4.78 \\ 4.78 \\ \hline \end{gathered}$ | $" 1$ $+\quad 42$ -1.08 $-\quad 71$ | " | $\begin{array}{r}\prime \prime \\ +\quad .37 \\ +2.09 \\ -2.46 \\ \hline\end{array}$ | $\begin{array}{r} +79 \\ +1.01 \\ +3.17 \\ \hline \end{array}$ | $\circ$ $\prime$ $\prime \prime$ <br> 53 58 $23 \cdot 87$ <br> 78 7 38 <br> 47 53 57 <br> 4  45 | $\begin{aligned} & 5.4143939,6 \\ & 5.4971919,9 \\ & 5.3769684,1 \end{aligned}$ | $\begin{aligned} & 259653.37 \\ & 314189 \cdot 71 \\ & 238214.62 \end{aligned}$ | $\begin{aligned} & 49 \cdot 177 \\ & 59 \cdot 506 \end{aligned}$ $45 \cdot 116$ |
|  |  |  | 14.34 |  |  |  | -1.37 | 180 |  |  |  |

Nore.-Stations XXVI (Párner) and XXX (Singi) appertain to the Bombay Longitudinal Series of the Southern Trigon.

March, 1890.
W. H. COLE,

In charge of Computing Office.

SINGI MERIDIONAL SERIES.

PRINCIPAL TRIANGULATION. LATITUDES, LONGITUDES AND AZIMUTHS.

| Station A |  |  |  | Side A B |  |  | Station B |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Circuit No. | Number and Name of Station | Latitude North | Longitude East of Greenwich | Azimuth at A | Log. Feet | Azimuth at B | Number and Name of Station |
|  | XXIX (Tána) | $2443 \quad 3 \times 93$ | $741344 \cdot 30$ | $601935.48$ | 5'1383141,5 | $\begin{array}{ccc} \circ & \prime & \prime \prime \\ 240 & 10 & 36 \end{array}$ | XXXII (Lakarwás) |
| 19 | " | " | " | 54159.33 | 5.2401535,2 | 1854042.03 | I (Aujini) |
|  | XXXII (Lakarwás) | 24 31 47*99 | $735210 \cdot 41$ | $3153556 \cdot 15$ | 5.1657330,2 | 1354333.35 |  |
| " | ". ${ }^{\text {l }}$ | " | " | 165916.01 | 5.0915031,8 | 1965635.25 | II (Sísa) |
|  | I (Anjini) | $241430 \cdot 13$ | $741037 \times 74$ | 843532.94 | 5•1436240, | 2642518.74 | " |
| 20 | " " | " | . " | 14146.72 | 5*0567470,8 | $1935945 \cdot 16$ | III (Tukwása) |
|  | II (Sísa) | 24121812 | $734540 \cdot 78$ | 311716.17 | 5•1692727,3 | 1311525.27 | " ${ }^{\text {\% }}$ |
| " | $"$ " | 6 | " | 04112.40 | 5•1382677,7 | $\begin{array}{lllll}180 & 41 & 517\end{array}$ | IV (Dúngarpur) |
|  | III (Tukwása) | 235614.66 | $74 \quad 539 * 93$ | $702730 \cdot 38$ | 5.0787673,9 | $2501917 \% 1$ | " $\quad$ |
|  | " " | " | " | 111149.32 | 4.9611718,2 | 191 $1032 \cdot 18$ | $V$ (Sagwáru) |
|  | " " | " | " | 3195255.06 | 4.91021.70,3 | 1395643.19 | VI (Lohária) |
| 21 | IV (Dúngarpur) | $234936 \cdot 00$ | 734523.03 | $2972250 \cdot 35$ | 5.0308778,0 | 1172943.65 | V (Sagwára) |
| 22 | V (Sagwára) | $234125^{\circ} 80$ | $74 \quad 228.86$ | 24833 47\%91 | $4 \cdot 8771567,8$ | 6838 5r ${ }^{\text {8 }}$ I | VI (Lohária) |
| " | " | " | ", | 3061342.60 | 4.9838091,1 | 126191713 | VII (Ámjio) |
| " | " " | " | " | $231746 \cdot 64$ | 4.9005487,1 | 203153141 | VIII (Kua) |
|  | VI (Lohária) | $23455^{8} 19$ | $7415 \quad 4.09$ | 35458 0.91 | 4.9284925,5 | 1745832.99 | VII (Ámjio) |
|  | VII (Ámjio) | 2332 1.O1 | 741624.06 | 81 $4151 \times 36$ | 5•0427770,6 | 261 $34 \begin{array}{lll}1737\end{array}$ | VIII (Kua) |
|  |  |  |  | 164314.55 | 4.9120010,4 | 1964134.33 | IX (Deokotla) |
| 23 | VIII (Kua) | $232921 \cdot 90$ | 73 56 50'94 | 3055222.13 | 5.0250415,6 | 1255827.97 |  |
| " | " " | " | , | 55615.92 | 4.9372412,9 | 1855537.83 | $\mathbf{X}$ (Tembla) |

Nore.-Stationa XXIX (Tána) and XXXII (Lakarwás) appertain to the Karáchi Longitudinal Series of the North-West Quadrilateral.

| Station A |  |  |  | Side A B |  |  | Station B |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Circuit No. | Number and Name of Station | Latitude North | Longitude East of G̣reenwich | Azimuth at A | Log. Feet | Azimuth at B | Number and Name of Station |
| $\begin{gathered} 24 \\ " \end{gathered}$ | IX (Deokotla) | 011 | - 1 | $\bigcirc 17$ |  | - 11 |  |
|  |  | 2319 6.05 | 74121198 | 7553 30.47 | 4.9902772,8 | $2554648 \cdot 42$ | X (Tembla) |
|  | " | " | " | 245214.73 | 5.0213114,8 | 2044984.49 | XI (Uchak) |
|  | $\mathbf{X}$ (Tembla) | $2315 \quad 8.95$ | 735514.93 | 3243259.89 | 4.9424645,0 | $1443633 \cdot 81$ | , |
|  | "XI (Uchak) | 0 | " | 41785.82 | 5'0295186,4 | 22120.65 | XII (Játhrábhor) |
|  |  | $23 \quad 321 \cdot 65$ | $74 \quad 4 \quad 18 \cdot 96$ | 85404974 | 5.0847332,9 | $265322 \mathrm{I} \cdot 8 \mathrm{I}$ | " " |
| 25 |  | 23 I $49{ }^{\prime} 45$ | " | 352022.83 | 4.9157005,5 | 21517400 | XIII (Patángri) |
|  | X.II (Játhrábhor) |  | 7342 4I•32 | $\begin{array}{llll}308 & 7 & 34.84\end{array}$ | 4.9717078,7 | 128124219 | " " |
| " | " " | " | " | 71038.82 | $4.7126578,6$ | 187 10 11992 | XIV (Kágarol) |
|  | XIII (Patángri) | " | " | $1075438 \cdot 57$ | $4.8659684,6$ | $2874945 \cdot 33$ | XV (Wardhari) |
| " |  | 225215 70 | $735549 \cdot{ }^{2}$ | 944939.62 | 4.9053978,4 | $27444 \quad 6 \cdot 35$ | XIV (Rágarol) |
| 26 | " | " <br> " | ; | 164729.94 | 4-9055378,8 | 1964553.91 | XVII (Bhor) |
|  | XIV (Kágarol) |  |  | 56 I 336.49 | 5'0450038,5 | 23671509 | XVIII (Rencha) |
|  |  | $225322 \cdot 13$ | 73 41 32'37 | 1391812.20 | 4.9881 430,6 | 31913 46.74 | XV (Wardhari) |
| " | " " | " | " | 855523.99 | 4.9971557 .7 | $2654831 \cdot 98$ | XVI (Ghoráráo) |
|  | " " |  | " | 3254343.30 | 5.0055375,0. | $1454739^{\circ} 04$ | XVII (Bhor) |
| 36 | " * | $\begin{array}{rrrr}23 & 5 & 32 \cdot 78 \\ 22 & 52\end{array}$ | " | 9548886 | 4.8418802,4 | 189531941 | XVIII (Rencha) |
|  | XV (Wardhari) |  | $733012 \cdot 73$ | $234320 \cdot 10$ | 4.9461984,9 | 2034051771 | XVI (Ghoráráo) |
|  | XVI (Ghoráráo) |  | $732352 \cdot 63$ | 305 $2146 \cdot 56$ | 5•0277404,7 | $\begin{array}{llll}125 & 8 & 47 & 53\end{array}$ | XVIII (Rencha) |
|  | XVII (Bhor) | 223932.41$"$ | $73514 \mathrm{I} \cdot 35$ | $\begin{array}{r} 1023153.44 \\ 64948.25 \end{array}$ | 4.8491027,2 | 28227 941 | " $\quad$ |
|  | " $\quad$ |  | " |  | $4 \cdot 8449312,2$ | 1864914.20 | XIX (Kandálwa) |
| 27 | XVIII (Rencha) | " | " | $55 \quad 94774$ | 5*0965728,7 | $\begin{array}{llll}235 & 2 & 48 & 36\end{array}$ | XX (Páwágarh) |
|  |  | $22423 \cdot 84$ | 73 39 24•74 | $3242110 \cdot 78$ | 5.0181076,8 | 1442519.60 | XIX (Kandálwa) |
| " | XIX (Kandálwa) | $\text { 22 } 28 \text { " } 3 \text { •92 }$ | $735012 \cdot 62$ | $21 \quad 45726$ | 4.9682304,7 | 201 240.37 | XX (Páwágarh) |
|  |  |  |  | 8851 | 4.9741207,3 | 268444016 | " ${ }^{\text {" }}$ |
|  | " " | " | " | 275752.47 | 47976934,8 | 20755 53.06 | XXI (Masábár) |
| 28 | XX (Páwágarh) | $\begin{gathered} " \\ 222744 \times 33 \end{gathered}$ | $733328 \cdot 25$ | 3493653.36 | 5.0388748,4 | 1693813.02 | XXII (Karáli) |
|  |  |  |  | 3092831.21 | 4.9244505,0 | 1293254.37 | XXI (Masábár) |
| " | XXI (Masábár) | $22 \text { I } 8{ }^{\prime \prime} 54^{\circ} 50$ | " | 43580.02 | 5'1542631,2 | 1843422.07 | XXIII (Sidpur) |
|  |  |  | $734459 \cdot 15$ | $\left\lvert\, \begin{array}{r} 3163937.29 \\ 4044 \\ 41.82 \end{array}\right.$ | $\begin{aligned} & 4 \cdot 8552 \times 56,3 \\ & 5 \cdot 0683046,6 \end{aligned}$ | $\begin{array}{llll} 136 & 42 & 55.35 \\ 220 & 39 & 25.04 \end{array}$ | $\begin{aligned} & \text { XXII (Karáli) } \\ & \text { XXIII (Sidpur) } \end{aligned}$ |
|  | XXI (Masábár) | $221854^{\circ} 50$ | " |  |  |  |  |
| 29 | XXII (Karáli) | 221017.84 | $73534^{2} 39$ | 734913.63 | 5.1165101,6 | 25340 50.76 | XXIV (Băbásiráj) |
|  | " ${ }^{\prime}$ | " | " | 3523751935 | 5'1451353,3 | 17239251 |  |
|  | XXIII (Sidpur) | 22415.21$"$ | 73 3126.99 | 30517 17.47 | 5.2457915,0 | $1252647 \cdot 23$ | XXV (Kesarwa) |
| " | XXIV (Bábásiráj) |  | " | 145513.37 | 5.0676852,9 | 1945314.22 |  |
|  |  | 214724.96 | $73565^{2} 51$ | $\begin{array}{lllll}86 & 28 & 33\end{array}$ | 5.2410536,9 | $\begin{array}{lllll}266 & 17 & 9 & 15\end{array}$ | " <br> " |
| 30 | $"$ $"$ <br> XXV (Kesarwa)  | " | " | 275923.95 | 4.9511565,2 | 2075639.77 | XXVI (Ságbára) |
|  |  | " | " | 603249.00 | 5'1981437, 1 | $2402351 \times 0$ | XXVII (Alamwári) |
|  |  | $214535 \times 98$ | $73 \quad 26 \quad 7774$ | 29784794 | 5'1717813,3 | 1171724.96 | XXVI (Ságbára) |
| " | " $\quad$ " | " | " | 3311311.16 | $4.8818360,4$ | 1511534.65 | XXVII (Álamwári) |
|  |  | " | " | 204653.99 | 5.1850368,0 | 2004322.71 | XXVIII (Páthal) |
|  |  |  |  |  |  |  |  |


| Station $A$ |  |  |  | Side A B |  |  | Station B |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Circuit No. | Number and Name of Station | Latitude North | Longitude East of Greenwich | Azimuth at A | Log. Feet | Asimuth at B | Number and Name of Station |
| 81 | XXVI (Ságbára) | $\bigcirc 11$ | - 11 | - 1 . |  | - 1 |  |
|  |  | $213422 \cdot 74$ | 7349 28.11 | 904427.50 | 4*9799427,4 | 2703815.48 | XXVII (Ålamwári) |
|  | " ${ }^{\prime}$ | " | " | $\begin{array}{ll}68 & 747\end{array}$ | 5.3035204,0 | $2475544 \times 48$ | XXVIII (Páthal) |
|  |  | " | " | $54644 \cdot 36$ | 5.2536243,0 | $1854535^{\circ} \mathrm{O}$ | XXIX (Dopári) |
|  | XXVII (Álamwári) | $213434^{\circ} 13$ | $733236 \cdot 38$ |  |  |  |  |
|  | XXVIII (Páthal) | $212156 \cdot 88$ | $731632 \cdot 89$ | 3012012.52 | 5•2963033,8 | 1213058.56 | " ${ }^{\prime}$ |
| 7 | XXIX (Dopári) | " | " | 241622.73 | 5'1521017,9 | 204124013 | XXX (Tarbhán) |
|  |  | 21454.50 | $734617 \times 43$ | 833143.08 | 5*3595762,3 | 2631721.04 | " " |
|  | " | " | " | $3617 \quad 0.83$ | 5'2904721,1 | 21694757 | XXXI (Pilwa) |
|  | $">$ | " | " | 33122 24.92 | 5'1729501,5 | 1512653.09 | XXXII (Sáler) |
| 32 | XXX (Tarbhán) | $21034 \cdot 13$ | $73616 \cdot 97$ | $3192244^{\circ} 18$ | 5-2372906,9 | 139294519 | XXXI (Pilwa) |
| 3 | X"XXI (Pilwa) | " | " | $131316 \cdot 10$ | 5*2348758,9 | 193104945 | XXXIII (Párnera) |
|  |  | $203853 \cdot 72$ | 7326 1•00 | $26146 \quad 8 \cdot 39$ | 5•2758807,0 | 81574359 | XXXII (Sáler) |
| " | " $\quad$ | " | " | $764347 \cdot 60$ | 5•1929886,4 | 2563425.61 | XXXIII (Párnera) |
| " | " ${ }^{\prime}$ | \% | " | 3282154.84 | 5•3539327,9 | $14829 \quad 796$ | XXXIV (Bhorgarh) |
|  | " | " | 9 | 282445.23 | 5.3913665,0 | 208173780 | XXXVI (Gambírgarh) |
| " | XXXII (Sáler) | 2043 18•44 | $735849^{\text { } 11}$ | 172921.11 | 5'3612570,3 | $19725 \quad 8.32$ | XXXIV (Bhorgarh) |
|  | 99 <br> 3 | " ${ }^{\circ}$ | " | 31803417 | 5'4170790,3 | 138 II 15.50 | XXXV (Ankai) |
|  | XXXIII (Párnera) | $203256 \cdot 85$ | $725923 \cdot 60$ | 349 - 16.15 | 5.2649801,4 | $169 \quad 223.92$ | XXXVI (Gambírgarh) |
| 34 | XXXIV (Bhorgarh) | 20-7 5.96 | $734644 \cdot 50$ | $264 \quad 525 \cdot 81$ | 5.3893465,9 | $8420 \quad 769$ | XXXV (Ankai) |
|  | " $\quad$ | " | " | 841442.73 | 5•3745593,5 | $264 \bigcirc 3359$ | XXXVI (Gambírgarh) |
| " | " ${ }^{\prime}$ | " | " | $3121935 \cdot 81$ | 5*0944476,8 | $13225 \quad 5.21$ | XXXVII (Sinnar) |
| " | " | " | $"$ | 25811.29 | 5.2748801,2 | 1825736.62 | XXXIX (Kalsubai) |
|  | XXXV (Ankai) | $201110 \cdot 94$ | 742924.24 | $5436 \quad 4.27$ | 5.2716664,5 | $2342657 \times 17$ | XXXVII (Sinnar) |
|  | " $\quad$ | " | " | $162536 \cdot 85$ | 54286544,5 | 19621777 | XXXVIII (Hewargaon) |
|  | " $\quad$ | " | " | 501021002 | 5.5202689,4 | 2295515.27 | XXXIX (Kalsubai) |
|  | XXXVI (Gambírgarh) | $20 \quad 3 \quad 5 \cdot 69$ | $73 \quad 531 \cdot 89$ | 30547 22.99 | 5*4461775,8 | $126 \quad 04702$ | " ${ }^{\text {" }}$ |
|  |  | " | " | 7270.40 | 5.3898201,2 | $18725 \quad 8.28$ | XL (Kámandrug) |
|  | XXXVII (Sinnar) | $195315 \% 1$ | 74 247 <br> 189  | 3324121.54 | 5.2241816,3 | 1524552.22 | XXXVIII (Hewargaon) |
|  | " ${ }^{\prime}$ | " | $"$ | $4420 \quad 5 \cdot 81$ | 5•1634193,2 | $22414 \quad 6.03$ | XXXIX (Kalsubai) |
|  | XXXVIII (Hewargaon) | $192839^{\circ} 20$ | 74161111 | $104647 \cdot 24$ | 5*2652770,6 | 2835622.27 | " $\quad$ |
| 35 | " $\quad$. | " | " | $3384336 \cdot 50$ | 5.2286982,2 | $15847 \quad 775$ | XXVI (Párner) |
|  | $"{ }^{\prime \prime}$ | " | " | 452813113 | 5*4389456,8 | 22517157 | XXX (Singi) |
|  | XXXIX (Kalsubai) | $1936 \quad 1 \cdot 76$ | $7345 \quad 2 \cdot 44$ | 73214.15 | 5*4321683,6 | 2524712.29 | XL (Kámandrug) |
| " | " $\quad$ | " | " | 31008847 | 5*4971919,9 | 1301358.68 | XXVI (Párner) |
|  |  | " | " | 35837112 | 5.3769684, I | 183574030 | $\mathbf{X X X}$ (Singi) |
| , | XL (Kámandrug) | 192253.80 | $725959 * 54$ | $3025918 \cdot 35$ | 5*4617675,9 | 12313 9114 | " $\quad$ |
|  | XXVI (Párner) | 19 2 34.75 | $742651 \cdot 54$ | 821956.45 | 5.4143939,5 | 262523.76 | " $\quad$ " |
|  | $\mathbf{X X X}$ (Singi) | I8 $5645^{\prime} 90$ | $7342^{10} 30$ |  |  |  |  |

Note.-Stations XXVI (Párner) and XXX (Singi) appertain to the Bombay Longitudinal Series of the Southern Trigon.
April, 1890.
W. H. COLE,

In charge of Computing Office.

SINGI MERIDIONAL SERIES．

## PRINCIPAL TRIANGULATION．HEIGHTS ABOVE MEAN SEA LEVEL．

The following table gives，first，the usual data of the observed vertical angles and the heights of the signal and instrument， \＆c．，in pairs of horizontal lines，the first line of which gives the data for the lst or the fixed station，and the second line the data for the 2nd or the dedaced station．This is followed by the arc contained between the two stations，and then by the terrestrial refraction and the height of the 2nd station above or below the lst，as computed from the vertical angles in the usual manner． This difference of height applied to the given height above mean sea level of the fixed station，gives that of the deduced station． Usually there are two or three independent values of the height of the deduced station；the details are so arranged as to show these consecutively and their mean in the columns of＂Trigonometrical Results．＂The mean results thus obtained are however liable to receive corrections for the errors generated in the trigonometrical operations，which are shown up by the spirit levelling operations，wherever a junction between the two has been effected．The spirit levelled determinations are always accepted as final，and the trigonometrical heights of stations lying between those fixed by the levelling operations are adjusted by simple proportion to accord with the latter．In the table the spirit levelled values are printed thus，613．96，\＆c．，to dis－ tinguish them from the adjusted trigonometrical values．The column in which the mean trigonometrical heights are given is barred across where necessary，as after deduction of Stn．XVII from Stn．XVIII，page 64＿${ }_{\text {H }}$ ，to indicate that one set of adjustments ends and another begins．The trigonometrical heights always refer to the upper mark or to the upper surface of the pillar or structure on which the theodolite stood；when a spirit levelled height does not refer to either of these surfaces，it is given in combination with a correction，thus $\left\{\begin{array}{c}168.72 \\ -3.5\end{array}\right.$ ，and the sum of these two quantities，in this case $165^{\circ} 22$ ，represents the value with which the corre－ sponding trigonometrical mean height 169.4 is comparable．Descriptions follow these tables，exactly indicating the surfaces on which the levelling staff stood during the determinations of the spirit levelled heights．

When the pillar of the station is perforated，the height given in the last column is that between the upper surface of pillar and the ground level mark－stone in the floor of the passage；otherwise，it is the approximate height of the structure above the ground at the base of the station．

The heights of the fixed stations above Mean Sea Level are as follows：－


| Astronomical Date |  | Number and Name of Station | Observed Vertical Angle |  | Height in feet |  |  | Terrestrial Refraction |  |  | Height in feet of 2nd Station above Mean Sea Level |  |  | 产 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1862 | Mean of <br> Times <br> of obser－ <br> vation |  |  |  | 要 | 若鼻 |  |  |  |  | $\begin{gathered} \text { Trigonometrical } \\ \text { Results } \end{gathered}$ |  | $\left\{\begin{array}{c} \text { Final } \\ \text { Result } \end{array}\right.$ |  |
|  |  |  |  |  |  |  |  |  |  |  | $\begin{gathered} \begin{array}{c} \text { By each } \\ \text { deduc- } \\ \text { tion } \end{array} \end{gathered}$ | Mean |  |  |
|  | $h m$ |  | － 11 |  |  |  | 11 |  |  |  |  |  |  | feet |
| Mar． 15 | 235 | XXIX（Tána） | D 017174 |  | $2 \cdot 6$ | 5．1 |  |  |  |  |  |  |  |  |
| ＂18，19 | 221 | I（Anjini） | Do 8 31．9 | 8 | $2 \cdot 6$ | $5 \cdot 2$ | 1722 | 97 | $\cdot 057$ | －214．8 | 18745 |  |  |  |
| ＂ 12 | 232 | XXXII（Lakarwás） | D $\sim^{26} 55^{\circ} 7$ | 4 | $2 \cdot 6$ | 5．1 |  |  |  |  |  |  | 5 | $3 \cdot 1$ |
| ＂18，19 | 233 | 1 （Anjini） | E 0 54711 | 8 | $2 \cdot 6$ | $5 \cdot 2$ | 1447 | 93 | $\cdot 064$ | $-697 * 0$ | $1877 \times 4$ |  |  |  |

Nots．—Statinns XXIX（Tána）and XXXII（Lakarwás）appertain to the Karáchi Longitudinal Series of the North－West Quadrilateral．
－ H．

| Astronomical Date |  | Number and Name of Station | Observed Vertical Angle |  | Height in feet |  |  | Terrestrial Refraction |  |  | Height in feet of 2 nd Station above Mean Sea，Level |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1862 | Mean of <br> Times of obser ration |  |  |  | 砸 | $\begin{aligned} & \text { 若 } \\ & \text { 首 } \end{aligned}$ |  | 皆 |  |  | Trigonon | metrical ults |  |  |
|  |  |  |  |  |  | 訔 |  | $\stackrel{\text { b }}{\text { a }}$ | ค\％ |  | By each deduc－ tion | Mean | Result |  |
|  | $h m$ |  | － 1 |  |  |  | ＂ |  |  |  |  |  |  | feet |
| Mar． 12 | 241 | XXXII（Lakarwás） | D 01714.7 | 4 | $2 \cdot 6$ | 5．1 | 1223 | 66 |  |  |  |  |  |  |
| ＂ 22 | 227 | II（Sísa） | Do 1 4．9 | 4 | $2 \cdot 6$ | $5 \cdot 2$ | 1223 | 66 |  |  | $2284{ }^{1}$ |  |  |  |
| 19 | 245 | I（Anjini） | E 0 O 1．6 | 4 | 2.6 | $5^{\circ} 2$ |  |  |  |  |  | 2284＊ | 2282 | 44 |
| 22 | 240 | II（Sísa） | D 020 7．3 | 4 | 2.6 | $5 \cdot 2$ | 1372 | 87 | －063 |  | 2283．9 |  |  |  |
| ＂18，19 | 246 | I（Anjini） | D 02918.9 | 8 | 2.6 |  |  |  |  |  |  |  |  |  |
| ＂29，31 | 217 | III（Tukwása） | E $\bigcirc 1229.3$ | 8 | 2.5 | $5 \cdot 2$ | 1129 | 64 |  | － 693.0 | 1183.0 |  |  |  |
| ＂ 22 | 253 | II（Sísa） | D o 3617.4 | 4 | $2 \cdot 7$ | $5 \cdot 2$ | 1458 | 85 |  |  | $1188 \cdot 6$ | 1185.8 | 1184 | 4.9 |
| ＂29，31 | 233 | III（Tukwása） | E 01442.4 | 8 | $2 \cdot 6$ | $5 \cdot 2$ | 1458 | 85 |  |  | $1188 \cdot 6$ |  |  |  |
| ＂ 22 | 30 | II（Sísa） | D ○ 31 54．4 | 4 | 2.6 | $5 \cdot 2$ | 1362 | 82 |  | －873．9 | 1410＇1 |  |  |  |
| \％25，26，27 | 239 | IV（Dúngarpur） | E $\bigcirc 1147{ }^{5}$ | 12 | $2 \cdot 6$ | $5 \cdot 2$ |  |  |  |  |  |  |  |  |
| ＂29，31 | 250 | III（Tukwása） | D 0228.7 | 8 | $2 \cdot 7$ | 5．2 |  |  |  |  |  |  |  | ． 6 |
| ＂25，26 | 247 | IV（Dúngarpur） | D 01511.4 | 8 | $2 \cdot 6$ | $5 \cdot 2$ | 1182 | 65 | －055 | ＋221．6 | $1407 \cdot 4$ |  |  |  |
| ＂29，31 | 237 | III（Tukwása） | D $01438{ }^{\circ} \mathrm{O}$ | 8 | $2 \cdot 6$ | 5 2 |  | 48 |  |  |  |  |  |  |
| Apr．2，4 | 235 | V（Sagwára） | E ○ ○ $55^{\circ} 5$ | 8 | 2.5 | 5．1 | 906 | 48 | ． 052 | $206 \cdot 9$ | $978 \cdot 9$ |  |  |  |
| Mar．26，27 | 237 | IV（Dúngarpur） | D 021415 | 8 | 2.6 | $5^{\circ} 2$ |  |  |  |  |  | 980 | 976 | $4 \cdot 6$ |
| Apr． 2 | 225 | V（Sagwára） | EO 5415 | 4 | $2 \cdot 7$ | $5 \cdot 1$ | 1059 | 54 |  | 427＊5 | 981•3 |  |  |  |
| Mar． 29 | 248 | III（Tukwhsa） | D 020 1．9 | 4 | 2.6 | $5 \cdot 2$ | 804 |  |  |  | 854.3 |  |  |  |
| Apr． 8,9 | 225 | VI（Lohária） | E 0759.6 | 8 | 2.6 | $5^{11}$ | 804 | 47 |  | － 3315 | 8543 |  |  | 8 |
| 2，4 | 249 | V（Sagwára） | D ○ II 16.4 | 8 | 2.7 | 5．1 |  |  |  |  |  | $855 \cdot 4$ | 851 | 2.8 |
| ＂ 9 | 227 | VI（Lohária） | D o 0 0．6 | 4 | 2.6 | $5^{1} 1$ | 743 | 40 |  | － 123.6 | $856 \cdot 5$ |  |  |  |
| ＂2，4 | 235 | V（Sagwára） | Do 7 51•8 | 8 | 2.6 | $5^{11}$ |  |  |  |  |  |  |  |  |
| n 10，11 | 249 | VII（Ȧmjio） | Do 622.2 | 8 | $2 \cdot 6$ | $5 \cdot 2$ | 951 | 54 |  | －21．0 | 959•1 |  |  |  |
| ＂ 9 | 233 | VI（Lohária） | D $0^{2} 291$ | 4 | 2.6 | 5．1 |  |  |  |  |  | 958 | 953 | 4 |
| \％10，11 | 244 | VII（Ȧmjio） | D 01027.7 | 8 | $2 \cdot 6$ | $5 \cdot 2$ | 840 | 48 | －057 | ＋ 102.5 | 957＊9 |  |  |  |
| \％ 2 | 34 | $\nabla$（Sagwára） | D 01447.8 | 4 | 2.5 | 5 ${ }^{1}$ |  |  |  |  |  |  |  |  |
| ＂ 14 | 311 | VIII（Kua） | E $0 \quad 237 \times 9$ | 4 | $2 \cdot 6$ | $5^{11}$ | 787 | 35 |  |  | $778 \cdot 5$ |  |  |  |
| ＂10，11 | 240 | VII（Ámjio） | D ○ 1345.5 | 8 | 2.6 | 5．2 |  |  |  |  |  | $777 \cdot 6$ | 772 | $5^{\circ} 0$ |
| 14 | 235 | VIII（Kua） | Do $225^{\circ} 5$ | 4 | $2 \cdot 6$ | 5．1 | 1087 | 63 |  | －181．9 | $776 \cdot 6$ |  |  |  |
| ＂ 11 | 235 | VII（Amjio） | E 0646.9 | 4 | 2.6 | $5 \cdot 2$ |  |  |  |  |  |  |  |  |
| \％ 17 | 217 | IX（Deokotla） | Doi9 1．6 | 4 | $2 \cdot 6$ | $5 \cdot 2$ | 809 | 44 |  |  | $1265 \cdot 0$ |  |  |  |
| ＂ 14 | 33 | VIII（Kua） | E 08 I．0 | 4 | 2.6 | $5 \cdot 1$ |  |  |  |  |  | $1265{ }^{\circ}$ | 1258 | 5 |
| 17 | 227 | IX（Deokotla） | D 02338.9 | 4 | $2 \cdot 6$ | $5 \cdot 2$ | 1046 | 59 |  | ＋487＊9 | 1265.5 |  |  |  |
| \％ 14 | 255 | VIII（Kua） | D o $644^{\circ} \mathrm{O}$ | 4 | 2.5 | 5．1 |  |  |  |  |  |  |  |  |
| ＂ 19 | 224 | X （Tembla） | Do 6 31．0 | 4 | $2 \cdot 5$ | $5^{1} 1$ | 858 | 37 |  |  | 774.8 |  |  |  |
| ＂ 17 | 236 | IX（Deokotla） | D $02436 \cdot 0$ | 4 | $2 \cdot 6$ | 5．2 |  |  |  |  |  | $774 \times 5$ | 767 | 5 |
| ＂ 19 | 244 | X（Tembla） | E O $955^{\circ} \mathrm{O}$ | 4 | $2 \cdot 6$ | $5^{\prime} 1$ | 964 | 47 |  | －490＇9 | 7743 |  |  |  |


| Astronomical Date |  | Number and Name of Station | Obserred Vertical Angle |  | Height in feet |  |  | Terrestrial Refraction |  |  | Height in feet of 2nd Station above Mean Sea Level |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1868 | Mean of Times of obser－ ration |  |  |  | $z_{E_{0}}$ | $\begin{aligned} & \text { 若 } \\ & \text { 兑 } \end{aligned}$ |  | 皆 |  |  | $\underset{\text { Resul }}{\text { Trigonom }}$ | metrical sults |  |  |
|  |  |  |  |  |  | 晋 |  | $\begin{aligned} & \infty \\ & \substack{0 \\ \hline} \end{aligned}$ | － |  | $\begin{array}{\|c\|} \hline \begin{array}{c} \text { By each } \\ \text { deduc- } \\ \text { tion } \end{array} \\ \hline \end{array}$ | Mean | Result |  |
|  | h m |  | － 11 |  |  |  | ＂ |  |  |  |  |  |  | feet |
| Apr． $\begin{array}{r}17 \\ \\ 21,22\end{array}$ | 243 | IX（Deokotla） | D o 831．6 |  |  | 5．2 | 1040 |  |  |  |  |  |  |  |
| ＂21，22 | 220 | XI（Uchak） | Do $722^{1} 1$ | 8 | $2 \cdot 6$ | $5 \cdot 2$ | 1040 | 48 |  | － 177 | 12475 |  |  |  |
| ＂ 19 | 351 | X（Tembla） | E O II 58．1 | 4 | $2 \cdot 6$ | $5^{11}$ | 866 |  |  |  |  | $1246 \cdot 8$ |  | ． 2 |
| ＂21，22 | 39 | XI（Uchak） | D 0252.7 | 8 | $2 \cdot 6$ | $5^{\circ} 2$ | 866 | 47 | －054 | ＋471．5 | 1246.0 |  |  |  |
| ＂ 19 | 235 | X（Tembla） | D ○ 659.7 | 4 | $2 \cdot 6$ | $5 \cdot 1$ |  |  |  |  |  |  |  |  |
| ＂ 25 | 250 | XII（Játhrábhor） | D 096.6 | 4 | $2 \cdot 6$ | $5^{\prime 2}$ | 1058 | 51 |  | ＋ $32 \cdot 9$ | $807 \cdot 4$ |  |  |  |
| ＂21，22 | 244 | XI（Uchak） | D 02128.7 | 8 | $2 \cdot 6$ | 5．2 |  |  |  |  |  | 807 ＇9 | 798 | 5 |
| ＂ 25 | 239 | XII（Játhrábhor） | EO 31911 | 4 | $2 \cdot 6$ | $5 \cdot 2$ | 1198 | 58 |  | $-438 \cdot 4$ | $808 \cdot 4$ |  |  |  |
| ＂21，22 | 244 | XI（Uchak） | D 019 27．2 | 8 | $3 \cdot 5$ | 5：2 |  |  |  |  |  |  |  |  |
| ${ }_{1860-61}{ }^{23}$ | 251 | XIII（Patángri） | E $0646 \%$ | 4 | $2 \cdot 6$ | $5 \cdot 2$ | 815 | 32 |  | $-3145$ | 9323 |  |  |  |
| Jan． 15 | 222 | XII（Játhrábhor） | D 0218.3 | 4 | 2.6 | 5．1 |  |  |  |  |  | 93I•9 | 922 | 2 |
| ＂5，6 | 246 | XIII（Patángri） | D $\bigcirc 1123.3$ | 8 | $2 \cdot 6$ | $5 \cdot 2$ | 925 | 57 | －062 | ＋123．7 | 931．6 |  |  |  |
| Dec．19，20 | 230 | XII（Játhrábhor） | D ○ $1735^{\circ} 4$ | 8 | $2 \cdot 6$ | $5 \cdot 2$ |  |  |  |  |  |  |  |  |
| ＂21，27 | 233 | XIV（Kágarol） | E $0937 \cdot 3$ | 8 | $2 \cdot 6$ | 5．1 | 511 | 27 | $\cdot 052$ | －204．2 | 593.9 |  |  |  |
| Jan．5，6 | 241 | XIII（Patángri） | D 0201.2 | 8 | $2 \cdot 6$ |  |  |  |  |  |  | 594＊2 | 595 | 5 |
| ＂ 2 | 221 | XIV（Kágarol） | E $\circ 758 \cdot 0$ | 4 | 2.6 | $5^{11}$ | 792 | 41 | $\cdot 052$ | -327 － 4 | 594＊5 |  |  |  |
| Dec．19，20 | 241 | XII（Játhrábhor） | D ○ $1647 \times 7$ | 8 | $2 \cdot 8$ | 5：2 |  |  |  |  |  |  |  |  |
| ＂ 1 | 238 | XV（Wardhari） | E 061 If | 4 | $2 \cdot 6$ | $5 \cdot 2$ | 724 | 46 |  | $-243 \cdot 8$ | 554＊3 |  |  |  |
| ＂．21，27 | 235 | XIV（Kágarol） | D o 829.8 | 8 | $2 \cdot 8$ | 5．1 |  |  |  |  |  | 554＊9 | 556 | $5 \cdot 8$ |
| Nor．30，Dec． 1 | 245 | XV（Wardhari） | D o $546 \cdot 2$ | 8 | $2 \cdot 7$ | $5 \cdot 2$ | 962 | 58 |  | － 38.7 | 555．5 |  |  |  |
| Dec．21，27，28 | 228 | XIV（Kágarol） | D ○ $1642 \cdot 8$ | 12 |  | 5．1 |  |  |  |  |  |  |  |  |
| ＂3，4 | 220 | XVI（Ghoráráo） | E○ 22.2 | 8 | $2 \cdot 7$ | $5^{1} 1$ | 979 | 54 | 055 | $-270 \cdot 9$ | 323．3 |  |  |  |
| ＂ 1 | 212 | XV（Wardhari） | D 01539.6 | 4 | $2 \cdot 6$ | 5．2 |  |  |  |  |  | 322.4 | 323 | 5 |
| ＂3，4 | 27 | XVI（Ghoráráo） | E $0231 \cdot 2$ | 8 | $2 \cdot 8$ | 5．1 | 875 | 49 |  | －233．5 | 3214 |  |  |  |
| Jan．5，6 | 239 | XIII（Patángri） | D 0202.9 | 8 | $2 \cdot 7$ | 5．2 |  |  |  |  |  |  |  |  |
| ＂ 19 | 231 | XVIII（Rencha） | E o 323.6 | 4 | $2 \cdot 6$ | $5 \cdot 1$ | 1095 | 52 | －048 | $-378 \cdot 2$ | $543 \cdot 7$ |  |  |  |
| ＂ 2 | 236 | XIV（Kágarol） | D o $755^{\circ} \mathrm{I}$ | 4 | $2 \cdot 7$ | 5 1 |  |  |  |  |  |  |  |  |
| ＂ 19 | 220 | XVIII（Rencha） | D $0242 \cdot 1$ | 4 | $2 \cdot 7$ | $5 \cdot 1$ | 688 | 33 |  | －52．7 | 541＊5 | $541 \cdot 8$ | 542 | 5 |
| Dec． 31 | 225 | XVI（Ghoráráo） | 1） $0052^{\circ} \mathrm{O}$ | 4 | $2 \cdot 7$ | 5．1 |  |  |  |  |  |  |  |  |
| ＂ 12 | 242 | XVIII（Rencha） | D $\bigcirc 1454.5$ | 4 | $2 \cdot 7$ | $5 \cdot 1$ | 1052 | 58 | $\cdot 055$ | ＋2177 | 540 1 |  |  |  |
| Jan．5，6 | 224 | XIII（Patángri） | Do 16.5 | 8 | $2 \cdot 7$ | $5 \cdot 2$ |  |  |  |  |  |  |  |  |
| ＂ 20 | 225 | XVII（Bhor） | D ○ 10 47＊3 | 4 | $2 \cdot 6$ | 5 1 | 797 | 48 | $\cdot 060$ | ＋113．2 | $1035 \cdot 1$ |  |  |  |
| Dec．21，27 | 238 | XIV（Kágarol） | E 0731.6 | 8 | $2 \cdot 7$ | $5^{11}$ |  |  |  |  |  |  |  |  |
| ＂14，15 | 250 | XVII（Bhor） | D 02226.0 | 8 | $2 \cdot 7$ | $5 \cdot 1$ | 1002 | 59 |  | ＋441．4 | 1035．6 | $1036 \cdot 6$ | 1037 | $\dagger$ |
| ＂10，11 | 232 | XVIII（Rencha） | E 019011 | 8 | $2 \cdot 8$ | 5 1 |  |  |  |  |  |  |  |  |
| ＂14，15 | 241 | XVII（Bhor） | D 02923.7 | 8 | $2 \cdot 6$ | 5．1 | 696 | 44 | －063 | ＋497．2 | 1039.0 |  |  |  |


| Astronomical Date |  | Number and Name of Station | Observed Vertical Angle |  | Height in feet |  |  | Terrestrial Refraction |  |  | Height in feet of 2nd Station above Mean Sea Level |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1860．61 | $\left\|\begin{array}{c} \text { Mean of } \\ \text { Times } \\ \text { of obser-- } \\ \text { vation } \end{array}\right\|$ |  |  |  | ］ | $\begin{aligned} & \text { 兑 } \\ & \text { 置 } \end{aligned}$ |  | 長 |  |  | Trigono Res | metrical sults |  |  |
|  |  |  |  |  |  | 军 |  |  |  |  | $\begin{array}{\|c} \text { By each } \\ \text { deduc- } \\ \text { tion } \end{array}$ | Mean | Result $\cdot$ |  |
|  | $h m$ |  | $\bigcirc 1$ |  |  |  | ＂ |  |  |  |  |  |  | feet |
| Dec．14，15 | 218 | XVII（Bhor） | E 01243.0 |  | $2 \cdot 5$ | 5•1 |  |  |  |  |  |  |  |  |
| Jan．22，24 | 238 | XIX（Kandálwa） | D 0231.4 | 8 | $2 \cdot 6$ | $5^{11}$ | 693 | 45 |  | ＋ 363.8 | 1401 I |  |  |  |
| Dec．10，11，12 | 253 | XVIII（Rencha） | E $02046 \cdot 0$ | 12 | $2 \cdot 5$ | 5．1 |  | 63 |  |  |  |  |  | 5 |
| Jan．22，24 | 228 | XIX（Kaudálwa） | D 036 1•0 | 8 | $2 \cdot 7$ | $5 \cdot 1$ | 1031 | 63 |  |  |  | 14030 | 1402 | 5 |
| ＂26，28 | 254 | XX（Páwágarh） | D $05457^{2}$ | 8 | $2 \cdot 7$ | 5．2 | 928 | 58 |  |  |  |  |  |  |
| ＂，22，23，24 | 244 | XIX（Kandálwa） | E 04113.6 | 12 | $2 \cdot 6$ | 5．1 |  | 58 |  |  |  |  |  |  |
| Dec．14，15 | 228 | XVII（Bhor） | E 03723.9 | 8 | $2 \cdot 7$ | $5^{1} 1$ |  | 82 |  |  |  |  |  |  |
| Jan．${ }^{\text {26，28 }}$ | 224 | XX（Páwágarh） | D 05521.5 | 8 | $2 \cdot 6$ | $5 \cdot 2$ | 1233 | 82 | －066 | $+1685{ }^{\circ}$ | $12722 \cdot 6$ |  |  |  |
| $\begin{array}{ll}\text { Dec．} & 10,11 \\ \end{array}$ | 31 | XVIII（Rencha） |  | 8 | $2 \cdot 8$ | 5．1 |  | 61 |  | ＋2181．6 |  |  |  | 2 |
| Jan．26，28 | 227 | XX（Páwagarh） | D 12724.8 | 8 | $2 \cdot 8$ | $5 \cdot 2$ | 920 | 61 | －066 | ＋2181．6 | 2723 | 2722 I | 2721 | 2 |
| ＂22，23．24 | 244 | XIX（Kandálwa） | E 04113.6 | 12 | $2 \cdot 6$ | 5．1 | 928 | 58 |  |  |  |  |  |  |
| ＂26，28 | 254 | XX（Páwágarh） | D $0545^{\circ} \mathrm{2}$ | 8 | $2 \cdot 7$ | $5 \cdot 2$ | 928 | 58 | －062 | ＋13182 | 2720 3 |  |  |  |
| ＂22，23 | 252 | XIX（Kandálwa） | D 017 50．8 | 8 | 2.7 | 5＇1 | 621 |  |  |  |  |  |  |  |
| Feb．2，5 | 25 | XXI（Masábár） | E○ 83010 | 8 | $2 \cdot 7$ | $5 \cdot 1$ | 621 | 38 |  | － 24 | $1162 \cdot 5$ |  |  |  |
| Jan．26，28 | 222 | XX（Páwágarh） | D I $954^{\circ} \mathrm{O}$ | 8 | $2 \cdot 7$ | 5．2 |  |  |  |  |  | 1162．4 | 1160 | 3 |
| Feb．2，5 | 238 | XXI（Masábár） | E 05741.6 | 8 | $2 \cdot 7$ | 5•1 | 830 | 55 | 066 | － 1559.8 | 11 |  |  |  |
| Jan．22，23 | 251 | XIX（Kandálwa） | D ○ 1736.8 | 8 | 2.5 | $5 \cdot 1$ |  |  |  |  |  |  |  |  |
| Feb．6，9 | 239 | XXII（Karáli） | E 0143.4 | 8 | $2 \cdot 6$ | 5．1 | 1084 | 70 |  | 07 | $5^{\circ} 4$ |  |  |  |
| 》 2，5 | 215 | XXI（Masábár） | D o 827 | 8 | $2 \cdot 6$ |  |  |  |  |  |  | $1095{ }^{\circ}$ | 1092 | 5 |
| ＂6，9 | 241 | XXII（Karáli） | D o $159{ }^{\circ} 1$ | 8 | $2 \cdot 7$ | 5. | 708 | 48 | －068 | － 67.4 | 1095＊ |  |  |  |
| 2，5 | 228 | XXI（Masábár） | D $03745^{\circ} 4$ | 8 | 2.6 |  |  |  |  |  |  |  |  |  |
| ＂14，18，21 | 225 | XXIII（Sidpur） | E $02037^{\circ} 1$ | 12 | $2 \cdot 7$ | 5 | 1157 | 69 | －059 | － 993.6 | 168•8 |  |  |  |
| 7，8 |  | XXII（Karáli） |  | 8 | 2.6 |  |  |  |  |  |  | 169.4 | $168 \cdot 72$ <br> $-3 \cdot 5$ | 4．8 |
| ＂，13，14，18 | 231 | XXIII（Sidpur） | E $01446 \cdot 5$ | 12 | 2.6 | 5．1 | 1289 | 76 | －059 | － $925{ }^{\circ}$ | 169．9 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| ＂9，11 | 233 | XXII（Karáli） | E 04329.7 | 8 | $2 \cdot 6$ | 5•1 |  |  |  |  |  |  |  |  |
| Mar．14，16 | 216 | XXIV（Bábásiráj） | D $1346 \cdot 0$ | 8 | $2 \cdot 6$ | $5 \cdot 2$ | 1384 | 88 | $\cdot 063$ | $+2179.5$ | $3271 \cdot 6$ |  |  |  |
| Feb．21，22 | 248 | XXIII（Sidpur） | E $04754^{\circ} 9$ | 8 | $2 \cdot 6$ |  |  |  |  |  |  | 32719 | 3272 | 3.5 |
| Mar．14，16 | 244 | XXIV（Bábásiráj） | D $11321 \cdot 2$ | 8 | $2 \cdot 7$ | 5.2 | 1739 | 109 | －063 | ＋3106＊9 | $3272 \cdot 1$ |  |  |  |
| Feb．13，14，18，21 | $2 \dot{2} 8$ | XXIII（Sidpur） | E $03230 \cdot 2$ | 16 | 2.6 | 5．1 |  |  |  |  |  |  |  |  |
| （1） | 222 | XXV（Kesarwa） | D 04935.4 | 28 | $2 \cdot 8$ | $5 \cdot 1$ | 1158 | 71 | 061 | ＋1395．6 | $1560 \cdot 8$ |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  | $1560 \cdot 6$ | 1561 | 4 |
| Mar．14，16 | 243 | XXIV（Bábásiraj） | $\text { D } \circ 4622 \cdot 1$ | 8 | 2.6 | $5 \cdot 2$ | 1717 | 106 | －061 |  | $1560 \cdot 3$ |  |  |  |
| Fob．26，27，28 | 215 | XXV（Kesarwa） | E $02110 \cdot 6$ | 12 | $2 \cdot 6$ | 5．1 | 1717 | 106 |  |  | 15603 |  |  |  |
| Mar．16，19 | 231 | XXIV（Bábásiraj） | D 057 9．6 | 8 | $2 \cdot 7$ | $5 \cdot 2$ | 885 |  |  |  |  |  |  |  |
|  | 212 | XXVI（Ságbára） | E $04342 \cdot 7$ | 24 | $2 \cdot 6$ | $5 \cdot 2$ | 885 | 45 |  | $-13114$ |  |  |  |  |
| Mar． $\begin{array}{r}\text { 6，7 } \\ \hline\end{array}$ | 213 | XXV（Kesarwa） | D ○ 1 39.3 | 8 | $2 \cdot 7$ | $5^{\prime 1}$ |  |  |  |  |  |  |  |  |
| $\xlongequal{27,28,29,90,31} \begin{gathered} \text { and } \triangle \mathrm{pr} \cdot 2,5 \end{gathered}$ | 226 | XXVI（Ságbára） | D $\bigcirc 2098$ | 28 | $2 \cdot 8$ | 5：2 | 1465 | 81 | $\cdot 056$ | ＋ $399{ }^{\circ} 9$ | $1960 \cdot 5$ | $1960{ }^{\circ} 4$ | 1961 | $\dagger$ |

（1）The mean of observations taken on 26th，27th and 28th February，and 1st，4th，6th and 7th March，1861．† Not forthcoming．

H．

| Astronomical Date |  | Number and Name －of Station | Observed <br> Vertical Angle |  | Height in feet |  |  | Terrestrial Refraction |  |  | Height in feet of 2nd Station above Mean Sea Level |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1861 | Mean of <br> Times of obser－ vation |  |  |  | 继 | 若 |  | 若 |  |  | $\left\lvert\, \begin{gathered} \text { Trigonon } \\ \text { Res } \end{gathered}\right.$ | metrical <br> ults |  |  |
|  |  |  |  |  | \％ | 䓂 |  | $\begin{aligned} & \stackrel{\rightharpoonup}{\mathbf{D}} \\ & \stackrel{1}{4} \end{aligned}$ |  |  | By each deduc－ tion | Mean | Final <br> Result |  |
|  | h m |  | － 1 |  |  |  | ＂ |  |  |  |  |  |  | feet |
| Apr．8，9，10 | 241 | XXVII（Álamwári） | E $0325^{\prime}$ ，1 | 12 | $2 \cdot 7$ | $5 \cdot 2$ | 941 | 48 |  |  |  |  |  |  |
| Mar． 27 | 229 | XXVI（Ságbára） | D 04788 | 4 | $2 \cdot 7$ | $5 \cdot 2$ | 941 |  |  | ＋imi 9 | 1960 I |  |  |  |
| ＂ 19 | 32 | XXIV（Bábásiráj） | D 14 i 8.7 | 4 | $3 \cdot 0$ | $5 \cdot 2$ |  | 88 |  |  |  |  |  |  |
| Apr．$\quad 9,10$ | 241 | XXVII（Álamwári） | E $04110 \cdot 4$ | 8 | $2 \cdot 6$ | 5.2 | 1557 | 88 |  | －2421．8 | $850 \cdot 1$ |  |  |  |
| Mar． 10 | 218 | XXV（Kesarwa） | D 03759.5 | 4 | $2 \cdot 9$ | 5．1 |  |  |  |  |  |  |  | ＊ |
| Apr．8，9，10 | 225 | XXVII（Ålamwári） | E 02627.7 | 12 | $2 \cdot 7$ | $5 \cdot 2$ | 754 | 37 |  | $-7143$ | $846 \cdot 3$ | $848 \cdot 3$ | 848 | － |
| Mar．$\quad 27$ | 229 | XXVI（Ságbára） | D 0478.9 | 4 | $2 \cdot 7$ | $5 \cdot 2$ |  |  |  |  | $848 \cdot 6$ |  |  |  |
| Apr．8，9，10 | 241 | XXVII（Ãlamwári） | E 03254 1 | 12 | $2 \cdot 7$ | $5 \cdot 2$ | 941 | 48 |  | －11119 | $848 \cdot 6$ |  |  |  |
| （1） | 224 | XXV（Kesarwa） | D 03032.4 | 20 | 3．9 | 5＊1 |  |  |  |  |  |  |  |  |
| Apr．12，13，16，17 | 228 | XXVIII（Páthal） | E $\circ{ }^{\text {8 }}$ 5．7 | 16 | $2 \cdot 8$ | $5 \cdot 2$ | 1516 | 87 |  | －861•1 | $699 \times 5$ |  |  |  |
| ＂ 2,5 | 230 | XXVI（Ságbára） | D 03614.7 | 8 | $4 \cdot 0$ | $5 \cdot 2$ |  |  |  |  |  |  | 701 |  |
| \＃12，13，16，17 | 252 | XXVIII（Páthal） | E○ $645^{\prime 2}$ | 16 | $2 \cdot 7$ | $5 \cdot 2$ | 1984 | 109 |  | －1258．7 | 7017 |  |  |  |
| Mar．28，29，30 | 237 | XXVI（Ságbára） | D $\circ 1638 \cdot 3$ | 12 | $3 \cdot 5$ | $5 \cdot 2$ |  |  |  |  |  |  |  |  |
| Apr． 21 | 214 | XXIX（Dopári） | D ○ 928.7 | 4 | $2 \cdot 7$ | $5 \cdot 9$ | 1777 | 108 |  | －187．6 | $1772 \cdot 8$ |  |  |  |
| ＂ 17 | 244 | XXVIII（Páthal） | E○ 49.5 | 4 | 3．3 | $5 \cdot 2$ |  |  |  |  |  | $1770 \cdot 8$ | 1771 | $\dagger$ |
|  | 226 | XXIX（Dopári） | D 032590 | 4 | $2 \cdot 6$ | $5 \cdot 9$ | 1953 | 114 | 058 | ＋ $1068 \cdot 1$ | $1768 \cdot 7$ |  |  |  |
| ＂13，16，17 | 242 | XXVIII（Páthal） | D $02412 \cdot 7$ | 10 | $2 \cdot 6$ | $5 \cdot 2$ |  | 66 |  |  |  |  |  |  |
| ＂ 25 | 224 | XXX（Tarbhán） | E 0252.7 | 4 | $2 \cdot 6$ | $5 \cdot 1$ | 1405 | 66 |  | － $559 \cdot 2$ | 1414 |  |  |  |
| （2） | 210 | XXIX（Dopári） | D 04113.2 | 10 | $2 \cdot 3$ | $5 \cdot 8$ |  |  |  |  |  | 139.5 | 140 | $2 \cdot 7$ |
| (3) | 216 | XXX（Tarbhán） | E○ $751 \cdot 0$ | 10 | $2 \cdot 6$ | $5^{\prime 1}$ | 2262 | 133 |  | $-1633 \cdot 3$ | $137 \times 5$ |  |  |  |
| Apr． 14 | 213 | XXIX（Dopári） | D $0102 \cdot 1$ | 6 | 1．8 | $5 \cdot 8$ |  |  |  |  | 216．0 |  |  |  |
| Mar． 30 | 214 | XXXI（Pilwa） | D 01838.5 | 6 | $2 \cdot 8$ | $5 \cdot 2$ | 1929 | 108 |  |  |  |  |  |  |
| Apr．． 4 | 220 | XXX（Tarbhán） | E 024493 | $\cdot 8$ | 1•7 | 5．1 |  |  |  |  |  | 3 | 20 | 0.8 |
| Mar． 27 | 220 | XXXI（Pilwa） | D $\bigcirc 4957 \cdot 8$ | 6 | $2 \cdot 4$ | $5^{\circ} 2$ | 1707 | 104 | 061 | ＋1879 ${ }^{\circ}$ | 2018．5 |  |  |  |
| Apr． 7 | 153 | XXX（Tarbhán） | D 03 IIf1 | 6 | $2 \cdot 2$ | 5＇1 |  |  |  |  |  |  |  |  |
| Mar． 21 | 213 | XXXIII（Párnera） | D 0226.9 | 12 | $5 \cdot 2$ | $5 \cdot 3$ | 1698 | 92 |  | ＋ 4743 | 613.8 |  |  |  |
| ＂ 27 | 146 | XXXI（Pilwa） | D 04278 | 6 | 1．3 | $5 \cdot 2$ |  |  |  |  |  | $613 \cdot 6$ | 613.96 | $\bigcirc$ |
| 16 | I 48 | XXXIII（Párnera） | E ○ $1945 \%$ | 6 | 1． 6 | $5 \cdot 3$ | 1542 | 105 | 068 | －1403．8 | 613.5 |  |  |  |
| Apr． 14 | 141 | XXIX（Dopári） | EI $648 \cdot 8$ | 6 | 1．3 | 5•8 |  |  |  |  |  |  |  |  |
| ＂ 23 | 142 | XXXII（Sáler） | D 12834.4 | 6 | $2 \cdot 6$ | $5 \cdot 1$ | 1472 | 88 |  | $+3367 \times 8$ | ［5138＊8 |  |  |  |
| Mar． 29 | 21 | XXXI（Pilwa） | E 043 4．9 | 8 | 1．3 | $5 \cdot 2$ |  |  |  |  |  | $5139^{\circ}$ | 5140 | $\bigcirc$ |
| Apr． 23 | 219 | XXXII（Sáler） | D I $1035 \cdot 6$ | 6 | 1．8 | $5 \cdot 1$ | 1866 | 112 |  | ＋31219 | 5139．5 |  |  |  |
| Mar． 30 | 124 | XXXI（Pilwa） | E ○ 657.8 | 8 | 1•7 | 5.2 |  |  |  |  |  |  |  |  |
| May 13 | 146 | XXXIV（Bhorgarh） | D 03927.6 | 8 | $2 \cdot 5$ | $5 \cdot 1$ | 2233 | 145 |  | ＋1526．1 | $3543 * 7$ |  |  |  |
| Apr． 22 | 223 | XXXII（Sáler） | D $04035 \cdot 3$ | 6 | 1•7 | 5 ${ }^{1}$ |  |  |  |  |  |  |  | $2 \cdot 4$ |
| May 8，10 | 249 | XXXIV（Bhorgarh） | E 0713.2 | 6 | $1 \cdot 3$ | $5 \cdot 1$ | 2271 | 138 |  | $-1598 \cdot 2$ | 3541 | 3541 | 3543 | 24 |

3）The

| Astronomical Date |  | Number and Name of Station | Observed Vertical Angle |  | Height in feet |  |  | Terrestrial Refraction |  |  | Height in feet of 2nd Station above Mean Sea Level |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1885 | Mean of <br> Times <br> of obser－ <br> vation |  |  |  | 光 | $\begin{aligned} & \text { 品 } \\ & \text { a } \end{aligned}$ |  | 茄 | － |  | Trigono Res | ometrical sults |  |  |
|  |  |  |  |  | \％ | $\begin{gathered} \text { 董 } \end{gathered}$ |  | $\begin{aligned} & \mathbf{\infty} \\ & \text { 』̈ } \end{aligned}$ | － |  | By each deduc－ tion | Mean | Result |  |
|  | $\boldsymbol{h} \boldsymbol{m}$ |  | － 1 |  |  |  | ＂ |  |  |  |  |  |  | feet |
| Mar． 8 | 159 | XXXVI（Gambírgarh） | E 0 1 51．9 | 6 | $1 \cdot 7$ | $6 \cdot 7$ |  |  |  |  |  |  |  |  |
| May 8,10 | 1 56 | XXXIV（Bhorgarh） | D $03530 \cdot 1$ | 6 | 3＊3 | $5^{\circ} 1$ | 2342 |  |  | ＋12893 | 538 7 |  |  |  |
| Mar． 28 | I 54 | XXXI（Pilwa） | D ○ $1433 \cdot 0$ | 6 | 3＊0 | $5^{\circ} 2$ |  |  | －062 | ＋ 232.1 | $2249 * 7$ |  |  |  |
| ＂ 10 | I 53 | XXXVI（Gambírgarh） | D 021403 | 6 | I＇3 | $6 \cdot 7$ | 2434 |  | －062 | ＋ 2321 | 22497 |  |  |  |
| ＂ 16 | I 52 | XXXIII（Párnera） | E○1721．4 | 8 | 3＊3 | $5^{\circ} 3$ | 1819 |  |  |  |  |  |  | t |
| ＂ 8 | I 46 | XXXVI（Gambirgarh） | D $04345 \cdot 3$ | 6 | 2.0 | $6 \cdot 7$ | 1819 |  | －067 | ＋1635 1 | 2249 1 | $2250 \cdot 6$ | 2252 | $\dagger$ |
| May 8,10 | I 56 | XXXIV（Bhorgarh） | D 035 30＊I | 6 | $3 \cdot 3$ | $5^{\circ} 1$ |  |  |  |  |  |  |  |  |
| Mar． 8 | I 59 | XXXVI（Gambírgarh） | E O 1 51．9 | 6 | $1 \cdot 7$ | $6 \cdot 7$ | 2342 |  | 070 | $-1289^{\circ} 3$ | $2253 * 1$ |  |  |  |
| Apr． 22 | I 49 | XXXII（Sáler） | D 04514.4 | 6 | I•3 | $5^{\circ} 1$ |  |  |  |  |  |  |  |  |
| ＂ 30 | 1 56 | XXXV（Ankai） | E 0766 | 6 | I•3 | $5^{1} 1$ | 2582 | 150 | 058 | － 1990.0 | $3149^{\circ} 2$ |  |  |  |
| May 8,10 | 219 | XXXIV（Bhorgarh） | D 0.2316 .8 | 6 | $1 \cdot 2$ | I |  |  |  |  |  | 315177 | 3154：11 | 377 |
| Apr． 30 | 220 | XXXV（Ankai） | D O $1225^{\circ} \mathrm{O}$ | 6 | 1．7 | $5 \cdot 1$ | 2422 | 143 | 059 | $-387.0$ | 3154.1 |  |  |  |
| May 8,10 | I 42 | XXXIV（Bhorgarh） | D $02915^{\circ} 2$ | 6 | I•3 | $5^{\circ} 1$ |  |  |  |  |  |  |  |  |
| Feb． 3 | 141 | XXXVII（Sinnar） | E O II 9．6 | 6 | I． 8 | $5^{\circ} \mathrm{O}$ | 1229 | 78 | －063 | $-730 \cdot 4$ | 2810．7 |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  | 28II•I | $2818 \cdot 44$ | $1 \cdot 4$ |
| Apr． 30 | 132 | XXXV（Ankai） | D O 19 5I． 4 | 6 | 1•7 | $5^{\circ} 1$ | 1847 |  |  | $-340 \cdot 3$ | 28II 4 |  |  |  |
| Feb．3，4 | 124 | XXXVII（Siunar） | Do 720.2 | 10 | 1 7 | $5^{\circ}$ | 1847 | 112 | 061 | $-340 \cdot 3$ | 114 |  |  |  |
| May 8,10 | 236 | XXXIV（Bhorgarh） | E○20 11．5 | 6 | 1•7 | $5^{\circ} 1$ | 1862 |  |  |  |  |  |  |  |
| Feb．9，10 | 147 | $\mathbf{X X X I X}$（Kalsubai） | D $04729^{\circ} 4$ | 6 | $1 \cdot 7$ | $5^{1} 1$ | 1862 | 116 | － 062 | ＋1854＊ | $5397{ }^{1} 1$ |  |  |  |
| Mar． 6 | 241 | XXXVI（Gambírgarh） | E 01839.6 | 6 | I．8 | $6 \cdot 7$ |  |  |  |  |  |  |  |  |
| Feb．9，10 | 1 57 | XXXIX（Kalsubai） | D $05839^{\circ} 9$ | 6 | $3 \cdot 2$ | $5 \cdot 1$ | 2761 | 184 | － 067 | ＋3142．7 | $5395^{\circ}$ | $5398 \cdot 3$ | 5400 | 4＊3 |
| ＂ 3 | 29 | XXXVII（Sinnar） | E 05027.6 | 6 | 2．7 | $5^{\circ}$ |  |  |  |  |  |  |  |  |
| ＂ 8 | 2 I | XXX1X（Kalsubai） | D $11136 \cdot 9$ | 4 | $2 \cdot 5$ | 5．1 | 1440 | 89 | － 062 | $+2587.4$ | $5402 \cdot 8$ |  |  |  |
| Apr． 30 | 144 | XXXV（Ankai） | Do 21 15＊7 | $6$ |  | $5^{\circ} 1$ |  |  |  |  |  |  |  |  |
| Jan．27，28 | 210 | XXXVIII（Hewargaon） | D $01740 \cdot 7$ | 8 | I• 7 | $5^{1} 1$ | 2652 | 161 | ：061 | －139 7 | 3014＊ 4 |  |  |  |
| Feb． 3 | 156 | XXXVII（Sinnar） | D $0880 \cdot 1$ | 6 | 1＇9 | $5^{\circ} 0$ |  |  |  |  |  |  |  |  |
| Jan． 27 | 25 | XXXVIII（Hewargaon） | D $01618 \cdot 1$ | 6 | $1 \cdot 9$ | $5 \cdot 1$ | 1656 | 103 | －062 | ＋202．2 | $3017^{\circ} 6$ | 3014＊6 | 3017 | $1 \cdot 7$ |
| Feb． 8 | 131 | XXXIX（Kalsubai） | J） $0575 \mathrm{I}^{\circ} \mathrm{O}$ | 4 | I＇9 | $5^{1} 1$ |  |  |  |  | 3011．8 |  |  |  |
| Jan． 26 | 1 56 | XXXVIII（Hewargaon） | E 03112.4 | 6 | $1 \cdot 7$ | $5^{1} 1$ | 1821 | 116 | －064 | $-2386 \cdot 5$ | 3011•8 |  |  |  |
| Mar． 6 | 219 | XXXVI（Gambírgarh） | Do 19 5＊5 | 6 | $3 \cdot 0$ | $6 \cdot 7$ |  |  |  |  |  |  |  |  |
| Feb． 28 | 232 | XL（Kámandrug） | D 01549.4 | 6 | $2 \cdot 5$ | .$^{\circ} 2$ | 2425 | 169 |  | －117 ${ }^{\circ} 2$ | $2135^{\circ} \mathrm{I}$ |  |  |  |
| $9,10$ |  |  | D $1039^{\circ} 5$ | 6 | $3 \cdot 0$ |  |  |  |  |  |  | 2135＇9 | 2138 | $\dagger$ |
| ＂ 9,10 | I 48 | XXXIX（Kalsubai） | $\begin{array}{lllll}\text { D I O } & 39 & 5\end{array}$ | 6 | $3 \cdot 0$ | $5^{\circ} 1$ | 2674 | 186 | － 070 | $-326 \mathrm{r} \cdot 6$ | $2136 \cdot 7$ |  |  |  |
| ＂22，24 | 150 | XL（Kámandrug） | E $02210 \cdot 7$ | 8 | I． 8 | $7^{\circ} 2$ | 2674 | 186 | － |  | 2136 |  |  |  |
| Jan．． 26 | I 37 | XXXVIII（Hewargaon） | D o 439.8 | 6 | I＇5 | $5^{\circ} 1$ |  |  |  |  |  |  |  |  |
| ＂ 19 | I 26 | $\mathbf{X X X}$（Singi） | D 03513.2 | 4 | $2 \cdot 0$ | $5^{\circ} 2$ | 2716 | 164 | －060 | ＋1221＊6 | $4236^{\circ} 2$ |  |  |  |
| Feb．8，10 | 157 | XXXIX（Kalsubai） | D o 33 58•I | 6 |  |  |  |  | － 063 | －1161．9 | $4236 \cdot 4$ |  |  |  |
| Jan． 19 | I 46 | $\mathbf{X X X}$（Singi） | D O 0 26．3 | 4 | I•8 | $5 \cdot 2$ | 2355 | 149 | －063 | －1161．9 | $423{ }^{\circ} 4$ | $4235{ }^{\circ} 9$ | 4243 | $\bigcirc$ |

Norr．－Station XXX（Singi）appertains to the Bombay Longitudinal Series of the Southeru Irigon．
＋See descriptions of these stations，page 8－H．

| Astronomical Date |  | Number and Name of Station | Observed Vertical Angle |  | Height in feet |  |  | Terrestrial Refraction |  |  | Height in feet of 2nd Station above Mean Sea Level |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1885 | Mean of Times of obser－ ration |  |  |  | ${ }^{\text {a }}$ | 免 |  | $\begin{aligned} & \text { 若 } \\ & \text { R } \end{aligned}$ |  |  | $\left.\right\|_{\text {Resu }} ^{\text {Trigonon }}$ | metrical <br> ults |  |  |
|  |  |  |  |  |  | 竒 |  | $\stackrel{\square}{1}$ | － |  | $\begin{gathered} \text { By each } \\ \text { deduc- } \\ \text { tion } \end{gathered}$ | Mean | Result |  |
|  | h m |  | －＇＂ |  |  |  | ＂ |  |  |  |  |  |  | feet |
| Feb． 28 | 224 | XL（Kámandrug） | E o 4 9 9．9 | 8 | 1－3 |  | 2863 |  | －067 |  |  |  |  |  |
| Jan． 20 | 218 | $\mathbf{X X X}$（Singi） | D 045 37．1 | 6 | $3 \cdot 0$ | $5 \cdot 2$ | 2863 | 191 | 067 | ＋2099 1 | $4235^{\circ}$ |  |  |  |
| 25 | I 42 | XXXVIII（Hewargaon） | D ○ 749.7 | 6 | I．2 | 5．1 | 1674 |  |  | $+223 \cdot 8$ | $3238 \cdot 4$ |  |  |  |
| 8 | 135 | XXVI（Párner） | D 01654.0 | 6 | 1•8 | $5 \cdot 1$ | 1674 | 99 | 059 | ＋ 2238 | 3238 |  |  |  |
| Febr． 8 | 118 | XXXIX（Kalsubai） | D $04622 \cdot 9$ | 4 | $1 \cdot 2$ <br> $1 \cdot 7$ | 5．1 | 3106 | 193 | ． 062 | －2164＊4 |  | $3236 \cdot 2$ |  | $3 \cdot 2$ |
| Jan． 11 | 145 | XXVI（Párner） | E O 058.6 | 6 | 1•7 | $5^{\prime} 1$ | 3106 | 193 |  | －2104 4 | 323 | 3236 | 3239 | 32 |
| ＂ 19 | 18 | XXX（Singi） | D ○ 31 57.3 | 4 | 2.8 | $5 \cdot 2$ |  | 162 |  | $\mid-9.99 \cdot 6$ | $3236 \cdot 3$ |  |  |  |
| 8 | 135 | XXVI（Párner） | Do $530 \cdot 3$ | 6 | 1．8 | 5．1 | 2567 |  |  |  |  |  |  |  |

Notr．－Stations XXVI（Parner）and XXX（Singi）appertain to the Bombay Longitudinal Series of the Southern Trigon．

## Description of Spirit－levelled Points．

When determining the Spirit－levelled heights，given on pages 6 ＿$_{\text {＿}}$ to 67 ＿$^{\text {，}}$ ，the levelling staff stood on the surfaces hereafter described．

XXIII（Sidpur）
On a peg at the foot of the station，height $=162 \cdot 88$ feet．To this value， $5 \cdot 84$ feet （the height of the upper surface of the rectangular protecting pillar above this peg） being added，the height of the upper surface of the protecting pillar was found to be $168 \cdot 72$ feet．

XXXIII（Párnera）
On a peg below the station，height $=565 \cdot 62$ feet．To this value， $48 \cdot 34$ feet（the height of the station mark cut on the rock in situ above this peg）being added， the height of the station mark was found to be $613 \cdot 96$ feet．

XXXV（Ankai）
XXXVII（Sinnar）
\} On the upper mark-stone.


W．H．COLE
In charge of Computing Office．

## SINGI MERIDIONAL SERIES.

## PRINCIPAL TRIANGULATION. AZIMUTHAL OBSERVATIONS.

## At XIII (Patángri)

Lat. N. $22^{\circ} 52^{\prime} 15^{\prime \prime} \cdot 70$; Long. E. $73^{\circ} 55^{\prime} 49^{\prime \prime} \cdot 52=\begin{array}{cc}h^{n} & 4 \\ 4 & 55 \\ 50\end{array} 3^{\prime} \cdot 3$; Height above Mean Sea Level, 923 feet. December 1861 ; observed by Lieutenant C. T. Haig, r.e., with Troughton and Simms' 18 -inch Theodolite No. 2.

Star observed
Mean Right Ascension $1861 \cdot 0$
Mean North Polar Distance 1861.0
Local Mean Times of Elongation, December 21
$\delta$ Urse Minoris (East and West).
$18^{\mathrm{h}} 17^{\mathrm{m}} 11^{\mathrm{s}}$
$3^{\circ} 23^{\prime} \quad 51^{\prime \prime} \cdot 55$
$\left\{\begin{array}{llll}\text { Eastern } & 18^{\mathrm{h}} & 20^{\mathrm{m}} \\ \text { Western } & 6 & 10\end{array}\right.$

| Astronomical Dale |  |  | pact lipt |  |  |  | fact right |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Observed Horizontal Angle: Diff. of Readings Ref. Mark - Star |  | Reduction in Arc to Time of Flongation | Reduced Observation Kef. Mark - Star at EMongation | Observed Horizontal Angle : Diff. of Readings Bof. Mark-Star |  | Reduction in Arc to Time of FHongation | Reduced Observatio Rof. Mark - 8 tar at FMongation |
| Dec. 21 | E. | $\begin{array}{cc} \circ & 1 \\ 179 & 44 \\ \& & \\ 359 & 44 \end{array}$ | - 1 | $\boldsymbol{m} 8$ | 1 " | - " | - 1 | $\boldsymbol{m} 8$ | , " | - $\quad$ " |
|  |  |  | - $35647 \cdot 13$ | $\begin{array}{ll}18 & 23 \\ 16 & 33\end{array}$ | - 042.49 034.42 | - $357 \begin{array}{r}29.62 \\ 29.29\end{array}$ | - 35721.24 | 654 057 | $-06600$ | - $357 \begin{array}{r}27.24 \\ 26.14\end{array}$ |
|  |  |  | $57 \quad 27 \cdot 20$ <br> 57 <br> 7 | $\begin{array}{ll}6 & 45 \\ 8 & 25\end{array}$ | 0 0 0 | 32.95 32.62 |  |  |  |  |
| " 22 | W. | $\begin{gathered} 17944 \\ \& \\ 35944 \end{gathered}$ | $\begin{array}{rl} +\quad 324 & 43 \cdot 70 \\ 24 & 46 \cdot 40 \\ 24 & 40 \cdot 20 \\ 24 & 36 \cdot 50 \end{array}$ | $\left\|\begin{array}{rr} 10 & 26 \\ 9 & 12 \\ 10 & 51 \\ 12 & 30 \end{array}\right\|$ | $\begin{array}{r} +\begin{array}{r} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0.74 .82 \\ 0 \\ 19.68 \end{array} \end{array}$ |  | $\begin{array}{r} +\quad 33499^{\prime} 40 \\ 2358 \cdot 93 \\ 2456 \cdot 54 \\ 2455 \cdot 60 \end{array}$ | $\begin{array}{rl} 22 & 48 \\ 20 & 52 \\ 1 & 32 \\ 0 & 12 \end{array}$ | $\begin{array}{rr} +1 & 5 \cdot 69 \\ 0 & 55^{\circ} 00 \\ 0 & 0.30 \\ 0 & 0 \cdot 01 \end{array}$ | $\begin{array}{r} +32455.09 \\ 53.93 \\ 56.84 \\ 55^{\circ} 61 \end{array}$ |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
| " 22 | E. | $\begin{gathered} 24955 \\ \& \\ 6955 \end{gathered}$ | - $35631 \cdot 30$ | $\begin{array}{ll}21 & 37 \\ 19 & 28\end{array}$ | $-058 \cdot 78$ 047.66 | - $357 \begin{array}{r}30 \cdot 08 \\ 30 \cdot 76\end{array}$ | - 35719.00 | $\begin{array}{ll}9 & 0 \\ 7 & 9\end{array}$ | - 0 0 10.22 | $-357$ |
|  |  |  |  | $\begin{array}{lr} 1 & 25 \\ 3 & 6 \end{array}$ | $\begin{array}{ll} 0 & 0.25 \\ 0 & 1.22 \end{array}$ |  |  |  | 0 16.20 |  |
|  |  |  | 57 <br> 7 |  |  | 30.89 | $\begin{array}{rr}57 & 6.80\end{array}$ | $\begin{array}{ll}12 & 38 \\ 12\end{array}$ | - 20.15 |  |
| " 23 | W. | $\begin{gathered} 24955 \\ \& \\ 6955 \end{gathered}$ | $\begin{array}{r} +\quad 2449 \cdot 87 \\ \\ 2453.47 \end{array}$ | $\begin{array}{rr} 8 & 24 \\ 7 & 9 \end{array}$ | $\begin{array}{r} +08 \cdot 89 \\ 0 \\ 0.46 \end{array}$ | $+32458 \cdot 76$ | a+3243.502417.402459.072457.43 | $\begin{array}{rr} 18 & 59 \\ 17 & 43 \\ 1 & 17 \\ 0 & 9 \end{array}$ | $\begin{array}{r} +045.52 \\ 0 \\ 0 \\ 0 \\ 0.21 \\ 0 \end{array} 0.00$ | $\begin{array}{r} \left.+324 \begin{array}{r} 59 \cdot 02 \\ 57 \cdot 03 \\ 59 \cdot 28 \\ \\ 57 \cdot 43 \end{array}, \begin{array}{rl}  \\ & \end{array}\right) \end{array}$ |
|  |  |  |  |  |  | $59^{\circ} 93$ |  |  |  |  |
|  |  |  | 24 48.87 | 759 | $\begin{array}{rr} 0 & 8 \cdot 03 \\ 0 & 10 \cdot 79 \end{array}$ | 56-90 |  |  |  |  |
|  |  |  | $2445 \cdot 33$ | 915 |  | 56•12 |  |  |  |  |


|  |  |  | pact mbit |  |  |  | facr bight |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Observed Horizontal Angle Diff. of Readings Ref. Mark-Star |  | $\begin{array}{\|c} \text { Reduction in } \\ \text { Arc to Time of } \\ \text { Eloggation } \end{array}$ | Reduced Observation Ref. Mark - Star at Elongation | Obserred Horizontal Angle : Diff. of Readings Ref. Mark-Star |  | Reduction in Arc to Time of Elongation Elongation | Reduced Observation <br> Ref. Mark-Star <br> at Elongation |
| Dec. 23 | E. | $\begin{array}{rr} \circ & 1 \\ 320 & 6 \\ 3 & 6 \\ 140 & 5 \end{array}$ |  | $\begin{array}{rr} \boldsymbol{m} & 8 \\ 25 & 82 \\ 23 & 17 \\ 17 \\ 1 & 43 \\ 0 & 16 \end{array}$ | $\begin{array}{rrr} -1 & 21 \cdot 87 \\ 1 & 8 \cdot 17 \\ 0 & 0.37 \\ 0 & 0.01 \end{array}$ |  | $\left\|\begin{array}{rr} -3 & 57 \\ \hline & 3.80 \\ 57 & 6.27 \\ & 57 \\ & 17.06 \\ & 57 \\ 9.67 \end{array}\right\|$ | $\begin{array}{rrr} m & 8 \\ 14 & 24 \\ 12 & 37 \\ 9 & 8 \\ 9 & 8 \\ 11 & 15 \end{array}$ | $\left\lvert\, \begin{array}{rr} -0 & 26 \cdot 10 \\ 0 & 20 \cdot 02 \\ 0 & 10.52 \\ 0 & 15.98 \end{array}\right.$ | $\begin{array}{r} \circ \quad, \quad \% \\ -35729.90 \\ 26.29 \\ 27.58 \\ 25.65 \end{array}$ |
| , 24 | W. | $\begin{array}{rrr}320 & 6 \\ 140 & 6\end{array}$ |  | $\begin{array}{r\|r} 1034 \\ 856 \\ 953 \\ 9 & 53 \end{array}$ |  | $+324 \begin{array}{r} 56 \cdot 94 \\ 57 \cdot{ }^{4} \\ 56 \cdot 16 \\ 55 \cdot 91 \end{array}$ | $\left\lvert\, \begin{array}{r} 3246 \cdot 60 \\ 2412.20 \\ 245630 \\ 2455 \cdot 97 \end{array}\right.$ | $\begin{array}{\|l\|l} 19 & 33 \\ 1816 \\ 0 & 16 \\ 020 \\ 1 & 26 \end{array}$ | $\left\lvert\, \begin{array}{rr} 0 & 48 \cdot 27 \\ 0 & 42 \cdot 12 \\ 0 & 0.01 \\ 0 & 0.26 \end{array}\right.$ | $+324 \begin{array}{r} 54 \cdot 87 \\ 54 \cdot 32 \\ 56 \cdot 3 \mathrm{~B} \\ 56 \cdot 23 \end{array}$ |
| , 24 | E. | 3012 <br> 8 <br> 210 <br> 11 | - $\begin{array}{r}5648 \cdot 53 \\ 5657 \cdot 70 \\ 5729 \cdot 87 \\ 5729 \cdot 60\end{array}$ | $\begin{array}{\|ll} 17 & \begin{array}{ll} 49 \\ 15 & 51 \\ 1 & 19 \\ 2 & 54 \end{array} \\ \hline \end{array}$ |  | $\begin{array}{r} -35728.45 \\ 29.28 \\ 30.09 \\ 30.67 \end{array}$ | $\left\lvert\, \begin{array}{r} -35725.06 \\ 575.07 \\ 5718.50 \\ 5713.90 \end{array}\right.$ | $\begin{array}{rrr} 7 & 37 \\ 6 & 8 \\ 9 & 23 \\ 11 & 17 \end{array}$ | $\left\|\begin{array}{ccc} -0 & 7 \cdot 32 \\ 0 & 4.74 \\ 0 & 1.713 \\ 0 & 16.06 \end{array}\right\|$ | $\left\|\begin{array}{r} -35732 \cdot 38 \\ 29.81 \\ 29 \cdot 63 \\ 29 \cdot 96 \end{array}\right\|$ |
| $\cdot{ }^{\prime} 25$ | W. |  |  | $\begin{array}{r} 115 \\ 937 \\ 8551 \\ 8032 \\ 1032 \end{array}$ | $+0.15 \cdot 49$ - 11.69 $\begin{array}{ll}-1.85 \\ - & 9.85 \\ -13.97\end{array}$ | $\begin{array}{r} 324 \\ 55 \cdot 85 \\ 54.86 \\ \\ 54 \cdot 85 \\ \\ 54 \cdot 74 \end{array}$ |  | 21 19 19 0 0 196 1 1 11 | $\begin{array}{rl} + & 0 \\ \hline & 57.41 \\ \circ & 47.85 \\ 0 & 0.01 \\ 0 & 0.18 \end{array}$ | $\begin{array}{r} 32453.94 \\ 56.35 \\ 59 \cdot 24 \\ 59.92 \end{array}$ |
| " 25 | E. | $\begin{aligned} & 100 \\ & \hline \end{aligned}{ }^{23}$ |  | $\begin{array}{rr} 24 & 3 \\ 21 & 10 \\ 1 & 0 \\ 1 & 0 \\ 3 & 5 \end{array}$ |  | $\begin{array}{r} -357 \begin{aligned} & 32.47 \\ & 32.74 \\ & 28.96 \\ & 31.45 \end{aligned}, ~ \end{array}$ |  | $\begin{array}{rlr} 10 & 15 \\ 8 & 22 \\ 12 & 45 \\ 14 & 29 \end{array}$ | $\begin{array}{rl} -0 & 13.25 \\ - & 8.82 \\ 0 & 8.82 \\ \hline & 20.54 \\ 0 & 26.46 \end{array}$ | $\begin{array}{rl} -357 & 26 \cdot 52 \\ 27 \cdot 42 \\ 27 \cdot 70 \\ 27 \cdot 33 \end{array}$ |
| „ 26 | W. | $\begin{gathered} 100 \\ { }_{8}^{2} \\ 280 \\ 280 \end{gathered}$ |  | $\begin{array}{r} 90 \\ 750 \\ 8 \quad 29 \\ 1018 \end{array}$ | $\begin{array}{rr} \circ & 10 \cdot 22 \\ + & 7.74 \\ 0 & 7.06 \\ 0 & 9 \cdot 06 \\ 0 & 13.37 \end{array}$ | $+324 \begin{array}{r} 53 \cdot 58 \\ 52 \cdot 30 \\ 54 \cdot 70 \\ 51 \cdot 11 \end{array}$ |  | $\begin{array}{r} 1745 \\ 168 \\ 025 \\ 18 \\ 146 \end{array}$ | $\begin{array}{r} \circ 39 \cdot 8_{1} \\ +32 \cdot 87 \\ \circ \\ \circ \\ \circ \cdot 02 \\ \circ \end{array} \circ \cdot 39$ | $+324 \begin{array}{r} 59 \cdot 64 \\ 60 \cdot 51 \\ 60 \cdot 45 \\ 59.79 \end{array}$ |
| " 26 | E. | $\begin{gathered} 170 \quad 34 \\ { }_{3}{ }^{3} \\ 35033 \end{gathered}$ | $\begin{array}{r} -\quad \begin{array}{r} 5615 \cdot 84 \\ 56 \\ 26 \cdot 50 \\ 5733 \cdot 80 \\ 5721 \cdot 26 \end{array} \end{array}$ | $\begin{array}{rr} 24 & 56 \\ 23 & 2 \\ 4 & 0 \\ 10 & 0 \end{array}$ | $\begin{array}{ccc} 1 & 18.09 \\ 1 & 6.64 \\ 0 & 2.01 \\ 0 & 14.31 \end{array}$ | $\begin{array}{r} -35733.93 \\ 33.14 \\ 35 \cdot 8 \mathrm{I} \\ 35 \cdot 57 \end{array}$ | $\left\lvert\, \begin{array}{rll} -3 & 57 & 9.13 \\ 57 & 25.80 \\ & 5642.44 \\ & 56 & 16.96 \end{array}\right.$ | $\begin{array}{r} 130 \\ 4 \\ 42 \\ 1922 \\ 29 \\ 24 \end{array}$ |  | $\begin{array}{r} -357 \begin{aligned} 30 \cdot 40 \\ 28 \cdot 78 \\ 29 \cdot 83 \\ 33 \cdot 72 \end{aligned} \\ \\ 38 \end{array}$ |
| 27 | W. | $\begin{aligned} & 170 \quad 34 \\ & \& 50 \quad 33 \\ & 350 \end{aligned}$ | $+\begin{array}{r} 3246 \cdot 64 \\ 2453 \cdot 17 \\ 2450 \cdot 16 \\ \\ 2447 \cdot 84 \end{array}$ | $\begin{array}{ll} 7 & 15 \\ 5 & 59 \\ 6 & 53 \\ 8 & 9 \end{array}$ | $\begin{array}{rr} +\circ & 6.63 \\ \circ & 4.51 \\ \circ & 5.98 \\ \circ & 8.36 \end{array}$ | $\begin{array}{r} 34 \begin{array}{r} 53 \cdot 27 \\ 57 \cdot 68 \\ 56 \cdot 14 \\ 56 \cdot 20 \end{array}, ~ \end{array}$ |  | $\begin{array}{r} 1536 \\ 143 \\ 14 \\ 044 \\ 042 \end{array}$ |  | $\begin{array}{r} 32458 \cdot 37 \\ 57 \cdot 29 \\ 69 \cdot 34 \\ 59 \cdot 54 \end{array}$ |

Abstract of Astronomical Azimuth observed at XIII (Patángri) 1861.

1. By Eastern Elongation of $\delta$ Ursæ Minoris.

| Face <br> Zero | $\begin{gathered} \mathbf{L} \\ 180^{\circ} \end{gathered}$ | $\begin{aligned} & \mathbf{R} \\ & \mathbf{0}^{\circ} \end{aligned}$ | $\begin{gathered} \mathbf{L} \\ 250^{\circ} \end{gathered}$ | $\begin{gathered} \mathbf{R} \\ 70^{\circ} \end{gathered}$ | $\begin{gathered} \mathbf{L} \\ 320^{\circ} \end{gathered}$ | $\begin{gathered} \mathbf{R} \\ 140^{\circ} \end{gathered}$ | $\begin{gathered} \mathrm{L} \\ 30^{\circ} . \end{gathered}$ | $\begin{gathered} \mathbf{R} \\ 210^{\circ} \end{gathered}$ | $\begin{gathered} \mathbf{L} \\ 100^{\circ} \end{gathered}$ | $\begin{gathered} \mathbf{R} \\ \mathbf{2 8 0 ^ { \circ }} \end{gathered}$ | $\begin{gathered} \mathbf{I} \\ 171^{\circ} \end{gathered}$ | $\begin{gathered} \mathbf{R} \\ \mathbf{3 5 1} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Date | December 21 |  | December 22 |  | December 23 |  | December 24 |  | December 25 |  | December 26 |  |
|  | $" \quad 7$ |  | $"$ | " | " | " | " | " | " | * | " | " |
| Observed difference | 29.62 |  | 30.08 29.22 |  | 28.81 | 29.90 | $28 \cdot 45$ | 32•38 | $32 \cdot 47$ | 26.52 | 33.93 | $30 \cdot 40$ |
| of Circle-Readings, | 29.2932.95 |  | $30 \cdot 76$31.15 | 27.72 | $28 \cdot 04$ | 26.29. | 29.28 | 29.81 | $32 \cdot 74$ | $27 \cdot 42$ | 33.14 | $28 \cdot 78$ |
| Ref. M. - Star |  |  | $\begin{aligned} & 27 \cdot 80 \\ & 26 \cdot 95 \end{aligned}$ | $\begin{aligned} & 30 \cdot 80 \\ & 29.95 \end{aligned}$ | $\begin{aligned} & 27 \cdot 58 \\ & 25 \cdot 65 \end{aligned}$ | $\begin{aligned} & 30 \cdot 09 \\ & 30 \cdot 67 \end{aligned}$ | $\begin{aligned} & 29 \cdot 63 \\ & 29.96 \end{aligned}$ | $28.96$ | 27.70 | $35 \cdot 81 \quad 29.83$ |  |
| reduced to Elongation | $32 \cdot 95$$32 \cdot 62$ |  |  |  |  |  |  |  | $\begin{aligned} & 3 \mathrm{I} \cdot 15 \\ & 30 \cdot 89 \end{aligned}$ | $27 * 33$ | $35^{\circ} 57$ | $33^{\cdot 72}$ |
| Means | 31:12 26•69 |  | $30 \cdot 72$ | $27 \cdot 92$ | $29^{\circ} 40$ | $27 \cdot 36$ | $29 \cdot 62$ | $30 \cdot 45$ | 31.41 | $27^{\circ} 24$ | $34 \cdot 61$ | $30 \cdot 68$ |
| - | 1 |  | n |  |  | " |  |  |  |  |  |  |
| Means of both faces Az. of Star fr. S., by W. Az. of Ref. M. | $\begin{array}{ll} 57 & 28 \cdot 91 \\ 41 & 13 \cdot 19 \\ 43 & .44 \cdot 28 \end{array}$ |  | 29*32 |  | 28-38 |  | 30.03 |  | 29.32 |  | 32.64 |  |
|  |  |  | $13 \cdot 52$ |  | $13 \cdot 84$ |  | F4•17 |  | 14.60 |  | 14.93 |  |
|  |  |  | 44*20 |  | $45 \cdot 46$ |  | 44*14 |  | $45^{\circ} 28$ |  | $42 \cdot 29$ |  |

2. By Western Elongation of $\delta$ Ursæ Minoris.


| Astronomical Azimuth of Referring Mark ... | ... | ... | 179 | 43 | $\begin{aligned} & 44 \cdot 28 \\ & 42 \cdot 42 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | ... | ... | ," |  |  |
| Mean | ... | $\ldots$ | " |  | $43 \cdot 35$ |
| Angle Referring Mark and XVII (Bhor) see following page | ... | ... | -162 | 56 | $12 \cdot 71$ |
| Astronomical Azimuth of Bhor ly observation | ... | ... | 16 | 47 | $30 \cdot 64$ |
| Geodetical Azimuth of $\quad$ by calculation from that adopted (Vol. II, page 141) at Kaliánpur : see page 60_r. ante | ... | ... | 16 | 47 | 29*94 |
| Astronomical - Geodetical Azimuth at XIII (Patángri) ... | ... | ... | + |  | $0 \cdot 70$ |


| At XIII (Patángri) <br> December 1861 ; observed by Lieutenant C. T. Haig, R.E., with Troughton and Simms' 18-inch Theodolite No. 2. |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\underset{\text { between }}{\substack{\text { Angle }}}$ | Circle readings, telescope being set on R.M. <br>  |  |  |  |  |  |  |  |  | $M=$ Mean of Groups $w=$ Relative Weight <br> $\stackrel{w}{\boldsymbol{w}} \mathbf{C}=$ Reonative Weight |
| $\begin{gathered} \text { R.M. } \\ \text { and } \\ \text { XVII (Bhor) } \end{gathered}$ | $l_{11} \cdot 96 l_{13} \cdot 30 h_{11} \cdot 60 h_{10} \cdot 23 h_{12} \cdot 50 h_{17} \cdot 07 h_{15} \cdot 73 h_{13.47} h_{12} \cdot 04 h_{10} \cdot 33 h_{15 \cdot 27} h_{10} \cdot 30$ <br>  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=12^{\prime \prime \prime} \cdot 7 \mathbf{I} \\ & w=2 \cdot 16 \\ & \frac{1}{w}=0 \cdot 46 \\ & C=162^{\circ} 5^{\circ} 12 \cdot{ }^{\prime \prime \prime} 71 \end{aligned}$ |
|  | $12.06 \quad 13.20 \quad 11.65$ | $10.22 \quad 11.66$ |  |  |  | $11 \times 59$ |  | $15.30 \quad 10 \cdot 42$ |  |  |

Notr.-R. M. denotes Referring Mark.

## At XXXII (Sáler)

Lat. N. $20^{\circ} 43^{\prime} 18^{\prime \prime} \cdot 44$; Long. E. $73^{\circ} 58^{\prime} 49^{\prime \prime} \cdot 11=\stackrel{h}{m}={ }_{50}^{m} 55^{\prime} \cdot 3$; Height above Mean Sea Level, 5140 feet. March 1845 ; observed by Lieutenant H. Rivers, with Dollond's 15 -inch Theodolite.

| Star observed | $a$ Ursm Minoris (East and |
| :---: | :---: |
| Mean Right Ascension 1845.0 | $\mathbf{I}^{\text {b }} 3^{\text {m }} 35^{\text {s }}$ |
| Mean North Polar Distance 1845.0 | $1^{\circ} 33^{\prime} 1^{\prime \prime \prime} .41$ |
| Local Mean Times of Elongation, March 28 | $\begin{cases}\text { Eastern } & 18^{\mathrm{h}} \\ \text { Western } & 6 \\ 3^{0 \mathrm{~m}}\end{cases}$ |


|  |  |  | pace lift |  |  |  | pack bioht |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Obeerved Horizontal Angle: Diff. of Readings Ref. Mark-Star |  | Reduction in Arc to Time of Elongation | Reduced Observation Ref. Mark - Star at Elongation | Observed Horizontal Angle Diff. of Reading Ref. Mark-Star |  | Reduction in Arc to Time of Elongation | Reduced Obserration Ref. Mark-Star at Elongation |
| Mar. 28 | E. | $\bigcirc \quad \prime$ | - 1 | $\boldsymbol{m} \quad \boldsymbol{8}$ | ' " | $\left\lvert\, \begin{array}{cccc}0 & \prime \prime \\ -3 & 1 & 17 & 46 \\ -3\end{array}\right.$ | - 1 | m | , | - " |
|  |  | $\begin{array}{cc}200 & 0 \\ \& & \\ 20 & 0\end{array}$ | $\begin{array}{r} -2539 \cdot 00 \\ 5333 \cdot 34 \\ 5416 \cdot 00 \\ 5938 \cdot 66 \\ 5944 \cdot 00 \\ 5952 \cdot 33 \end{array}$ | $\begin{array}{rrr}94 & 44 \\ 92 & 2\end{array}$ | - 8 8 $8 \cdot 46$ |  | -25545.3356565620.665827.33585959 | $76 \quad 42$ | $\left\lvert\, \begin{array}{rrr} -5 & 22 \cdot 13 \\ 5 & 5 \cdot 56 \end{array}\right.$ | $-31 \begin{array}{ll}7 \times 46 \\ 6.56\end{array}$ |
|  |  |  |  | $88 \quad 9$ | $7 \quad 3.89$ | 19.89 |  | 7253 | 4 51.12 | 11.78 |
|  |  |  |  | 4247 | $1{ }^{1} 1 \cdot 01$ | 19.67 |  | 5427 | $243 \cdot 19$ | $10 \cdot 52$ |
|  |  |  |  | 41 O | 132.78 | $16 \cdot 78$ |  | 5239 | $232 \cdot 70$ | 11.70 |
|  |  |  |  | $39 \quad 4$ | 124.31 | $16 \cdot 64$ |  | 512 | $23^{\circ} 51$ | $13 \cdot 17$ |
| " 29 | W. | $\begin{array}{cc} 200 & 0 \\ \& & 0 \\ 20 & 0 \end{array}$ | +01312 $0 \cdot 66$ | 512 | $\left\|\begin{array}{rr\|} +0 & 1 \cdot 50 \\ 0 & 2 \cdot 53 \\ 0 & 3 \cdot 83 \\ 0 & 5 \cdot 34 \\ 0 & 6.73 \\ 0 & 7.98 \end{array}\right\|$ | $\begin{array}{r} +01262 \cdot 16 \\ 59 \cdot 86 \\ 60 \cdot 16 \\ 65 \cdot 34 \\ 66 \cdot 40 \\ 64 \cdot 65 \end{array}$ |  | 554431 |  | ($+01261 \cdot 10$$60 \cdot 46$ |
|  |  |  |  | 645 |  |  |  |  |  |  |
|  |  |  |  | 819 |  |  |  | 3 3 2 | 0 | 64.04 64.06 |
|  |  |  |  | 949 |  |  |  | 239 | $\bigcirc \quad 0 \cdot 39$ | 64.06 |
|  |  |  |  | 11 |  |  |  | 2656 | - $40 \cdot 11$ | 61.11. |
|  |  |  |  | 120 |  |  |  | $28 \quad 24$ | - $44 \cdot 60$ | $65 \cdot 60$ |
| , 30 | E. | $\begin{array}{rr} 220 \\ \& 8 \\ 40 & 1 \end{array}$ | $\begin{array}{r} 6027 \cdot 34 \\ -\quad 2028 \cdot 00 \\ 6036 \cdot 00 \\ 6036 \cdot 66 \end{array}$ | $\begin{array}{lr} 28 & 6 \\ 26 & 57 \\ 24 & 41 \\ 23 & 43 \end{array}$ | $\begin{array}{r} -043 \cdot 67 \\ 040 \cdot 17 \\ 033 \cdot 73 \\ 031.14 \end{array}$ | $\left\lvert\, \begin{array}{lll} -3 & 1 & 11 \cdot 01 \\ & 8.17 \\ & 9.73 \\ & & 7 \cdot 80 \end{array}\right.$ | - 25828.67 | 5314 | $\begin{array}{r} 236.07 \\ -24.60 \end{array}$ |  |
|  |  |  |  |  |  |  | 58 <br> 58 <br> 58 <br> 8.00 | $\begin{array}{rrr}51 & 14 \\ 519 \\ 49 \\ 49\end{array}$ |  | - $31 \begin{aligned} & 4.74 \\ & \\ & \\ & \\ & \\ & \\ & \\ & 4.60 \\ & 4.11\end{aligned}$ |
|  |  |  |  |  |  |  |  |  | $\begin{array}{ll} 2 & 24.60 \\ 2 & 13.11 \end{array}$ |  |
|  |  |  |  |  |  |  | 58159.676058.00 | 4720 | $\begin{array}{rrr} 2 & 13 \cdot 11 \\ 2 & 3 \cdot 55 \end{array}$ | $4.11{ }^{2}$ $3 \cdot 22$ |
|  |  |  |  |  |  |  |  | 1625 | $\begin{array}{lll} 0 & J .7 J \\ 0 & 14 & 4 \\ 0 & 13 & .36 \end{array}$ | 12.93 |
|  |  |  |  |  |  |  | $6058 \cdot 67$ | 1532 |  | $12.03$ |



Abstract of Astronomical Azimuth observed at XXXII (Sáler) 1845.

1. By Eastern Elongation of $a$ Ursæ Minoris.


Abstract of Astronomical Azimuth observed at XXXII (Sáler) 1845-(Continued).
2. By Western Elongation of a Ursæ Minoris.


## At XXXIII (Párnera)

Lat. N. $20^{\circ} 32^{\prime} 56^{\prime \prime} \cdot 85$; Long. E. $72^{\circ} 59^{\prime} 23^{\prime \prime} \cdot 60=\stackrel{h}{4} 5^{m} 57^{\prime} \cdot 6$; Height above Mean Sea Level, 614 feet.
February 1843; observed by Lieutenant H. Rivers with Dollond's 15 -inch Theodolite.

Star observed
Mean Right Ascension 1843.0
Mean North Polar Distance 1843.0
Local Mean Times of Elongation, February 6

Draconis (1135 A.S.C.)* (East and West).
$\left\{\begin{array}{llll} & 9^{\mathrm{b}} & 14^{\mathrm{m}} & 11^{\mathrm{s}} \\ 7^{\circ} & 59^{\prime} & 21^{\prime \prime} \cdot 08 \\ \text { Eastern } & 6^{\mathrm{b}} & 22^{\mathrm{m}}\end{array}\right.$


[^29]Abstract of Astronomical Azimuth observed at XXXIII (Párnera) 1843.

1. By Eastern Elongation of Draconis (1135 A.S.C.).

| Face <br> Zero | $\begin{gathered} \text { L } \\ 355^{\circ} \end{gathered}$ | $\begin{gathered} \mathbf{R} \\ 175^{\circ} \end{gathered}$ | I $15^{\circ}$ | $\begin{gathered} \text { R } \\ 195^{\circ} \end{gathered}$ | $\begin{gathered} \mathbf{L} \\ 35^{\circ} \end{gathered}$ | $\begin{gathered} \mathbf{R} \\ 215^{\circ} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Date | February 6 |  | February 7 |  | February 8 |  |
|  | " | " | " | " | " | " |
| Observed difference |  | 31.48 | $59 \cdot 67$ | $30 \cdot 27$ | $56 \cdot 97$ |  |
| of Circle-Readings, | $58 \cdot 50$ | $32 \cdot 61$ | $59 \cdot 19$ | 34.99 | $56 \cdot 25$ | $33^{\circ} 09$ |
| Ref. M.-Star | 58.94 | $34 \cdot 03$ | 60.04 | $37 \cdot 89$ | $52 \cdot 11$ | 34.01 |
| reduced to Elongation | $53.25$ | $28 \cdot 91$ | 59*77 | $34 \cdot 46$ | $49^{\circ} 20$ | 32-35 |
| Means | $56 \cdot 89$ | 31•76 | $59 \cdot 67$ | $34 \cdot 40$ | $53 \cdot 63$ | 3313 |
|  | - , |  |  |  |  |  |
| Means of both faces | - 49 | $44 \cdot 32$ |  |  | . |  |
| Az. of Star fr. S., by W. | 18832 | 18.04 |  |  |  |  |
| Az. of Ref. M. " | 18422 | $33^{\prime 72}$ |  |  |  |  |

2. By Western Elongation of Draconis (1135 A.S.C.).


| (by Eastern Elongation | ... | ... |  |  |  | 32.81 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Astronomical Azimuth of Referring Mark ... by Western | ... | ... |  | " |  | 34.37 |
| Mean.. | ... | ... |  | " |  | $33 \cdot 59$ |
| Angle Referring Mark and XXXVI (Gambirgarh) see following page | ... | ... | + | 164 | 37 | $53 \cdot 38$ |
| Astronomical Azimuth of Gambirgarh by observation ... | ... | ... |  | 349 |  | $26 \cdot 97$ |
| Geodetical Azimuth of ", by calculation from that adopted (Vol. II, page 141) at Kaliánpur, see page 61__ ante | ... | ... |  | 349 | - | $16 \cdot 15$ |
| Astronomical-Geodetical Azimuth at XXXIII (Párnera) ... | ... |  | + |  |  | $10 \cdot 82$ |


| February 1843; observed by Lieutenant H. Rivers with Dollond's 15-inch Theodolite. |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Anglebetween | Circle readings, telescope being set on R.M. |  |  |  |  |  | $M=$ Mean of Groups <br> wo - Relative Weight <br> C = Concluded Angle |
|  | $355^{\circ} \mathbf{2 8}$ | $175^{\circ} 23^{\prime}$ | $15^{\circ} 22^{\prime}$ | $195^{\circ} 22^{\prime}$ | $85^{\circ} 23^{\prime}$ | $215^{\circ} 28^{\prime}$ |  |
| R.M. <br> and XXXVI (Gambírgarh) | " | " | " | " | " | " | $\begin{aligned} M & =53^{\prime \prime} \cdot 3^{8} \\ w & =0 \cdot 18 \\ \frac{1}{w} & =5 \cdot 5^{6} \\ C & =164^{\circ} 37^{\prime} 53^{\prime \prime} \cdot 3^{8} \end{aligned}$ |
|  | K $65 \cdot 00$ | $h_{51} \cdot 67$ | $h_{50} \cdot 33$ | ${ }_{2} 57 \cdot 33$ | $\hbar 44 \cdot 67$ | h 65.00 |  |
|  | $h_{56} 566$ | $\mathfrak{h} 48 \cdot 34$ | h50.00 | $h_{57} 567$ | $h 44.67$ | h 54.33 |  |
|  | h $58 \cdot 00$ $h 55 \cdot 67$ | $\begin{aligned} & h_{49.66} \\ & h_{54} .00 \end{aligned}$ |  |  |  | h 55.33 |  |
|  | $58 \cdot 83$ | 50`92 | 50'17 | 57*50 | $44 \cdot 67$ | $58 \cdot 22$ |  |

Nots.-R.M. denotes Referring Mark.

## At XXXIX (Kalsubai). By Cephei 51 (Hev.).


December 1842 ; observed by Lieutenant H. Rivers with Dollond's 15 -inch Theodolite.

Star observed
Mean Right Ascension 1842.0
Mean North Polar Distance 1842.0
Local Mean Times of Elongation, December 28

|  | Cephei 51 (Hev.) $6^{\mathrm{h}} 24^{\mathrm{m}} 27^{\mathrm{s}}$ | (East and West). |
| :---: | :---: | :---: |
|  | $2^{\circ} 44^{\prime} 21^{\prime \prime} \cdot 70$ |  |
| \{ Eastern | $6^{\text {h }} 3^{\text {m }}$ |  |
| \{ Western |  |  |

$2^{\circ} 44^{\prime} 21^{\prime \prime} \cdot 70$
$\left\{\begin{array}{llll}\text { Eastern } & 6^{\mathrm{h}} & 3^{\text {m }}\end{array}\right.$
$\{$ Western 1753



Abstract of Astronomical Azimuth observed at XXXIX (Kalsubai) 1842.

1. By Eastern Elongation of Cephei 51 (Hev.).


## PRINCIPAL TRIANGULATION. AZIMUTHAL OBSERVATIONS.

Abstract of Astronomical Azimuth observed at XXXIX (Kalsubai) 1842-(Continued).
2. By Western Elongation of Cephei 51 (Hev.).

(For deduction of Astronomical - Geodetical Azimuth at XXXIX (Kalsubai), see page 81_n.)

## At XXXIX (Kalsubai). By ס Urse Minoris.

December 1842 ; observed by Lieutenant H. Rivers with Dollond's 15 -inch Theodolite.

| Star observed | $\delta$ Ursæ | Minoris (East and West). |
| :---: | :---: | :---: |
| Mean Right Ascension 1842.0 |  | $18^{\text {b }} 23^{\text {m }} 18^{\text {a }}$ |
| Mean North Polar Distance 1842.0 |  | $3^{\circ} 24^{\prime} 27^{\prime \prime} \cdot 07$ |
| Local Mean Times of Elongation, December 28 | $\left\{\begin{array}{l} \text { Eastern } \\ \text { Western } \end{array}\right.$ | $\begin{array}{cc} 17^{h} & 59^{m} \\ 5 & 51 \end{array}$ |



Abstract of Astronomical Azimuth observed at XXXIX (Kalsubai) 1842.

1. By Eastern Elongation of $\delta$ Ursæ Minoris.

2. By Western Elongation of $\delta$ Ursæ Minoris.

| Face <br> Zero | $\begin{gathered} \mathrm{L} \\ 100^{\circ} \end{gathered}$ | $\begin{gathered} \mathbf{R} \\ 280^{\circ} \end{gathered}$ | $\begin{gathered} \mathrm{L} \\ 120^{\circ} \end{gathered}$ | $\begin{gathered} \mathbf{R} \\ 300^{\circ} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| Date | December 29 |  | December 30 |  |
|  | " | " | " | $"$. |
| Observed difference | 20.61 | 11.48 | 13.01 | 9.88 |
| of Circle-Readings, | 18.30 | 11.54 | $12 \cdot 77$ | 12.47 |
| Ref. M.-Star | 19.63 | 14.81 | 18.10 | 14.32 |
| Reduced to Elongation | 17.80 | 12.49 | 19.28 | 11:50 |
|  | 17.90 |  |  | 9.89 |
| Means | 18.85 | 12.58 | 15:79 | II 61 |
|  | - | " |  | " |
| Means of both faces | + 39 | $15 \cdot 72$ |  | 13.70 |
| Az. of Star fr. S., by W. | 17622 | $57^{\circ} 92$ |  | 57.58 |
| Az. of Ref. M. " | 17932 | $13 \cdot 64$ |  | 11.28 |


| (by Eastern Elongation ... | $\ldots$ | $179{ }^{1} 3{ }^{\prime}$ |  | 15 " ${ }_{18} 8$ |
| :---: | :---: | :---: | :---: | :---: |
| Astronomical Azimuth of Referring Mark ... by Western " $^{\text {, }}$ | ... | , |  | 12.46 |
| Mean | ... |  |  |  |
| Concluded by both Stars, see page 79-m. ... | ... | 14.23 |  |  |
| Angle Referring Mark and XL (Kámandrug) see following page ... ... - 106 30-06 |  |  |  |  |
| Astronomical Azimuth of Kámandrug by observation ... ... ... 73 14.17 |  |  |  |  |
| Geodetical Azimuth of ", by calculation from that adopted (Vol. II, page 141) at Kaliánpur, see page $61_{-}$. ante |  |  |  |  |
| Astronomical-Geodetical Azimuth at XXXIX (Kalsubai) | ... | + |  |  |


| At XXXIX (Kalsubai) <br> December 1842; observed by Lieutenant H. Rivers ioith Dollond's 15.inch Theodolite. |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Angle between | $79^{\circ} 34^{\prime}$ | Circle re $259^{\circ} 33^{\prime}$ | ings, tele $99^{\circ} 31^{\prime}$ | e being <br> $279^{\circ} 30^{\prime}$ | on R.M. <br> $119^{\circ} 31^{\prime}$ | $299{ }^{\circ} 31^{\prime}$ | $M=$ Mean of Groups <br> ${ }^{20}=$ Relative Weight <br> $\boldsymbol{C}=$ Concluded $\mathbf{A n g l e}$ |
| $\begin{gathered} \text { R.M. } \\ \text { and } \\ \text { XL (Kámandrug) } \end{gathered}$ | h 64.00 h61.33 \& 59.67 <br> $61 \cdot 67$ | h $58 \cdot 66$ h $644^{\circ} 00$ h61.67 <br> 6 I•44 | h 58.66 h61.00 h6I.00 <br> $60 \cdot 22$ | h61.00 h 58.00 $h_{56.67}$ <br> $58 \cdot 56$ | h 58.66 h 62.66 h 55.67 <br> $59^{\circ} 00$ | h 59.33 <br> h $60 \cdot 66$ <br> h 58 •34 <br> $59^{\circ} 44$ | $\begin{aligned} M & =60^{\prime \prime} \cdot 06 \\ w & =8 \cdot 27 \\ \frac{1}{w} & =3 \cdot 80 \\ C & =106^{\circ} 30^{\prime} \quad 0^{\prime \prime} \cdot 06 \end{aligned}$ |

Notr.-R.M. denotes Referring Mark.
April, 1890.
W. H. COLE,

In charge of Computing Office.

## PRINOIPAI TRIANGUIATION-EINGI MAHRIDIONAI SHEIMB.



## ABU MERIDIONAL SERIES.

Dogreedy, Google

## ABU MERIDIONAL SERIES.

## INTRODUCTION.

The Abu Meridional Series of the South-West Quadrilateral is the small chain of principal triangles that follows the meridian of $72 \frac{3}{4}^{\circ}$ from the parallel of $24 \frac{1}{2}^{\circ}$ to that of $23^{\circ}$. It starts from Jeraj-Márd, a side of the Karáchi Longitudinal Series, situated immediately south of Mount Abu and it closes near Ahmedabad (Amdávad) on the side SanodaMirzapur of the Guzerat Longitudinal Series: it consists of three hexagons and one single triangle, and extends over a distance of 95 miles.

The Abu Meridional Series was designed in 1850 for two purposes: firstly, it was to connect the Karachi Longitudinal Series with the Gulf of Cambay (Khambhat) and thus furnish an independent check on the heights of the former : and secondly, it was to afford a trigonometrical basis for the topographical surveys of Gujarát and the Káthiáwár (Káthiávad) Peninsula, countries not then incorporated in the Indian Atlas. As moreover the accurate delineation of the Coast Line from Cambay southwards was a matter of great importance, it was originally intended to carry the Abu Series not only to the parallel of $23^{\circ}$ as has been actually done, but down the Sábarmati river through Kaira (Kheda), and thence along the Coast Line through Cambay and Broach (Bharúch), until it should join a little south of Surat on the side Tarbhán-Dopari** of the Singi Meridional Series.

During the summer of 1850 the Bombay Triangulation Party, then located at Neemuch (Nimach) under Lieutenant Harry Rivers of the Bombay Engineers, received orders to discontinue their work on the Gurhagarh Meridional Series, and to take up instead the triangulation on the meridian of Mount Abu. Captain A. Strange had by this time carried the principal work of the Karachi Longitudinal Series from Sironj to within a few miles of Mount Abu and the approximate work some 40 miles to the westward beyond, and Lieutenant Rivers had to select a base from the latter.

On receipt of Strange's chart of the approximate work Rivers decided to make his

[^30]new series start from the side Jeráj-Márd of the Gúru Sikkar-Belka Double Pentagon*, both of which stations were on the edge of a range of hills and possessed a commanding view.

On the Singi and Khánpisura Series, Rivers had always worked with Dollond's Season 1850-51. 15-inch Theodolite, but this had now been discarded;

Personnel.
Lieutenant H. Rivers, Bombay Engineers, 1st Assistant, G. T. Survey.
Mr. J. Fraser, Senior Sub-Assistant.
" T. Sanger, Sub-Assistant.
" J. DaCosta Ditto.
", John McGill, (Probationer). its results had of late been very unsatisfactory and it had become from constant use and occasional accidents thoroughly out of repair. In its stead was to be used an 18 -inch theodolite $\dagger$ by Troughton and Simms, which had been employed with considerable success on the Amua and Budhon Series, and which airived at Neemuch from Dehra Dún in September 1850.

In the middle of October the party set out from Neemuch for the field, but owing to very heavy rain that lasted without intermission from the 20th to the 25th, their progress was much delayed. Rivers himself left Neemuch on November 5th and proceeded to Mount Abu where Captain Strange was passing the recess season.

As no approximate work as yet existed on the Abu Meridian south of his side of origin Rivers had himself to undertake the selection of stations. At the outset he met with but few obstacles, and by December 5th he had constructed a polygon round Gori as a centre. The northern portion of the Series was situated in a mountainous district, where the Sábarmati, Banás, and other Gujarát rivers rise. The few inhabitants that there were were Bheels; they were quite lawless and in fact professional robbers. Individuals if travelling singly were not safe and even parties were liable to be robbed and molested. South of the side Kárdo-Kaináth the country became very difficult and unsuitable for triangulation: it was absolutely flat and covered with trees; towers $\ddagger$ had to be built at all the stations, and many delays were encountered in clearing the rays: if Rivers could have seen the country before commencing work he would have recommended the adoption of a single series instead of a double one, but now that he was on the ground it was too late to get his instructions changed. The advantages of a double series did not, he thought, compensate for its additional expense; for, owing to the great number of towers that had to be built and to the vast quantities of fruit trees that had to be cleared, triangulation in such a country was most costly. Rivers was very averse to adopting Everest's system of ray-tracing; he regarded it as a slow and laborious process, and, in order to avoid its necessity, he endeavoured to so select his stations that large fires at the two extremities of his rays would serve as sufficient guides for the clearance: this method however involved much loss of time in the choice of the stations, and had consequently to

[^31]be abandoned : he tried in its stead, in order to obtain the line of a ray, the plan of lighting fires at close intervals over the whole distance between the two stations, but this invariably failed also.

Neither Rivers nor his assistants possessed any experience of systematic ray-tracing, a fact that had greatly increased his reluctance to adopt it, but towards the end of December he decided that he had no alternative but to resort to it. He commenced the new system on the Pára Polygon, all the rays of which with the exception of Kárdo-Kaináth had to be cleared, and the whole of December was spent on this work. The ray-traces, however, proved most unsatisfactory; the country was intersected with ravines which caused errors in the perambulator readings, and the angles of the traverses were not observed with sufficient care : the line first cut invariably had to be altered, and immense loss of time, double expense, and great additional injury to the trees of the country were entailed.

By January 1st, the approximate work had only reached Lakwára, but after that, in spite of the lines laid off from the ray-traces at Rakhial being far from true, better progress was made: on the eastern flank of the third hexagon there was some rising ground and advantage was taken of this, which obviated the necessity of towers. By the end of January the approximate work, with the exception of the tower-building, had been carried down to the stations of Lakwára-Rakhiál-Amalyára, and the final angles had been commenced.

The first station visited was Wantra and then Morali, and observations were completed at both. Only the northern angles at Rakhial and Amalyara were observed, as the stations of Sanoda and Bardoli were not selected till the following year. At Warsora Rivers was delayed by Dhámanwa not being visible and he eventually had to leave without observing it: several trees had been cut on the line, but the ray had proved untrue. At Pára also Dhámanwa was invisible and remained unobserved. Rivers was unable to waste time in waiting for the successful clearance of the rays, as dust-storms and smoke come on with the hot weather, and he wished to make sure of the northern stations during this season, the more especially as they are dangerous to visit immediately after the rains. During March he completed the observations at Kherwa, Kaináth and Márd, and in April he finished those at Gori and Jeraj: he also visited the stations of Kárdo and Siniána, but at each he was troubled with dust-storms and prevented from observing all the angles.

The soil of the country was very sandy and afforded no foundation to such massive structures as the towers. Two of these, the external portion of which consisted of sun-dried mud bricks, fell, and it was found necessary to face them and others with burnt bricks set in lime to a foot in depth.

On the Abu Series, Rivers adopted a slightly different method of changing zero to the one that he had employed before. On the Khánpisura and Gurhágarh Series he had followed the established practice of the Great Trigonometrical Survey in the case of three-
microscope instruments and had worked with the ordinary six pairs of zeros,* viz.:-

$$
\frac{\circ^{\circ} 0^{\prime}}{180^{\circ} 0^{\prime}}, \frac{10^{\circ} \circ^{\prime}}{190^{\circ} 0^{\prime}}, \frac{20^{\circ} \circ^{\prime}}{200^{\circ} 0^{\prime}}, \frac{30^{\circ} 0^{\prime}}{210^{\circ} 0^{\prime}}, \frac{40^{\circ} \circ^{\prime}}{220^{\circ} 0^{\prime}} \text { and } \frac{50^{\circ} 0^{\prime}}{230^{\circ} 0^{\prime}}
$$

In order to bring the zero of the micrometer over every 10 minutes of the degree and to shift the reading so as to cancel error of "run" he employed the following zeros on this Series :

$$
\frac{\circ^{\circ} 1^{\prime}}{180^{\circ} 1^{\prime}}, \frac{10^{\circ} 12^{\prime}}{190^{\circ} 12^{\prime}}, \frac{20^{\circ} 20^{\prime}}{200^{\circ} 20^{\prime}}, \frac{30^{\circ} 29^{\prime}}{210^{\circ} 29^{\prime}}, \frac{40^{\circ} 38^{\prime}}{220^{\circ} 38^{\prime}} \text { and } \frac{50^{\circ} 50^{\prime}}{230^{\circ} 50^{\prime}} \text {. }
$$

The party closed the field season towards the beginning of May, and proceeded to Ahmedabad where they established their recess-quarters for the summer.

In August, 1851, Mr. Fraser resigned his appointment: he had entered the Bombay Survey Department in 1822 and had been employed from 1828 to 1834 on the Trigonometrical Survey of the Bombay Presidency, which was being carried out by Lieutenant R. Shortrede under the orders of Captain J. Jopp. On the amalgamation of this Survey in 1834 with the Great Trigonometrical Survey of India, he had been transferred to the latter and had worked for the last seventeen years of his service under Lieutenants W. S. Jacob and H. Rivers. He was succeeded by Mr. McGill, who had been working with the party as a probationer during the field season of 1850-51.

In October, 1851, Mr. J. W. Rossenrode was appointed an additional assistant to the Bombay Party : his services were at the time in much request in Bengal and he was ill-able to be spared, he had had great experience of trigonometrical operations in flat and wooded countries, and was sent at the urgent demand of Lieutenant Rivers to instruct the assistants of the Bombay Party in the ray-trace system and to thus prevent a repetition of the failures of the previous season. He left Calcutta in October, but owing to the immense distance that he had to march, he did not join Lieutenant Rivers till the middle of February; when it was too late for him to be of much use.

The main body of the party were not in a fit state to leave Ahmedabad for the field

Scason 1851-52.
Persomerith
Lieutenant H. Rivers, Bombay Engineers, 1st Assistant, G. T. Surrey.
Lieutenant D. J. Nasmyth, Bombay Fingineera, 2nd Assistant.
Mr. T. Banger, Senior Sub-Assistant.
" J. DaCosta, Sub.A ssistant.
"J. W. Rossenrode, Ditto.
" J. McGill, before November, owing to the native portion having suffered so much from fever towards the end of the raing season. During October, however, Rivers himself succeeded in selecting a few stations of the Guzerat Longitudinal Series in the neighbourhood of Ahmedabad. In November, he regularly took up the approximate work of this latter series and proceeded westward from the meridian of $71 \frac{1}{9}^{\circ}$ along the parallel of $23^{\circ}$. Messrs,

[^32]Sanger and DaCosta were left behind on the Abu Series north of Ahmedabad clearing the lines by the ray-trace system. They were the only two assistants with the party available for work, but as the nature of the country was such that every line required a ray-trace survey, and numerous fruit trees of great value had to be cut, Rivers considered it advisable to place them both on this duty. Rivers returned to the Abu Series on December 15th, in the hopes of finding sufficient rays cleared to allow him to commence the observations of the final angles, but he was disappointed, as only a few were ready.

On December 22nd, he went to Sanoda as being the station at which the Meridional. Series of Abu and the Longitudinal Series of Guzerat meet, and observed $\delta$ Ursæ Minoris for azimuth. He was joined here on December 29th, by Lieutenant Nasmyth, a young Officer of the Bombay Engineers, who had been appointed to the Great Trigonometrical Survey of India a few weeks previously. At the beginning of January, Rivers proceeded to the head of the Gulf of Cambay to make arrangements for connecting the heights of the stations of the Guzerat Series and thence those of the Abu and Karáchi Longitudinal Series with mean sea level: his plan was to erect a tidal station near the mouth of the Sábarmati river and to then connect it by levelling with the nearest principal station of the Guzerat Longitudinal Series : he found however afterwards that such operations would occupy him entirely to the exclusion of trigonometrical work, and as, too, he had much difficulty in obtaining a level capable of such accurate observations as were required, he abandoned the enterprise and substituted for his line of levels a minor series of triangulation, the approximate work of which Mr. DaCosta proceeded to take up*. On his return from Cambay he took up the final angles of the Abl̆ Series: his progress was again much impeded by finding lines not properly cleared and by having to set to work and do it himself : the result was that by the end of January he had been only able to observe at the two stations of Kárdo and Warsora. During February he succeeded in completing the observations at all the stations of the series with the exception of Siniana, notwithstanding that the height of the towers at several had to be increased on his arrival because the effect of refraction on which he depended for the visibility of his stations was less in April than it was in November when they were built. From the 1st of March to the end of the field season he was employed in observing the final angles of the Guzerat Longitudinal Series: in April, however, an opportunity offered, and he visited Siniána and observed the two angles at that station, thus finishing the principal work of the Abu Series. Mr. Rossenrode had joined him in February, but the clearance of the rays, the special work for which he had been sent, had by that time been carried out with much annoyance and trouble in the most difficult parts of the country, and so he was detached on approximate work to the western extremity of the Guzerat Longitudinal Series. The party established their recess quarters for the summer of 1852 at Ahmedabad.

When the results of the past season came to be computed out it was found that the geometrical conditions of the Pára Hexagon could not be satisfied $\dagger$ unless a correction exceeding $3^{\prime \prime}$ in amount was applied to the angle Kárdo-Dhámanwa-Pára.

[^33]On this account Lieutenant Rivers decided to re-visit the station of Dhámanwa, and observe the faulty angle again. He left cantonments accompanied by Nasmyth on Novem. ber 1st, 1852, and completed the observations on November 4th. The final angle Kárdo-Dhámanwa-Pára as derived from the observations taken on the former occasion was $55^{\circ} 15^{\prime}$ $29^{\prime \prime} \cdot 59$, a value that had been shewn by the computations to be somewhat over $3^{\prime \prime}$ in defect. The result of the second visit to Dhámanwa was to make the angle $55^{\circ} 15^{\prime} 32^{\prime \prime} .96$ which agreed within a quarter of a second of are with the computed value. Rivers however did not feel justified in rejecting the earlier result in toto, and he therefore combined the two. The concluded angle finally adopted was equal to

$$
55^{\circ} 15^{\prime}+\frac{0.58 \times 29^{\prime \prime} \cdot 59+2 \cdot 01 \times 32^{\prime \prime} \cdot 96}{0.58+2 \cdot 01}=55^{\circ} 15^{\prime} 32^{\prime \prime} \cdot 23
$$

the quantities 0.58 and 2.01 being the respective weights of the two observed results.
By November 6th the party had returned to Ahmedabad, and were preparing to start for the Káthiáwar Peninsula to commence the triangulation there. As Rivers had applied for furlough, and had every expectation of its being granted, he handed the party over to Nasmyth, and when they left for the field he remained behind: on November 22nd, however, he received official intimation that his furlough had been refused; he left Ahmedabad the same evening for Káthiáwár, and on overtaking Nasmyth some weeks later he again resumed charge of the work.

The closing errors at Mirzápur in latitude, longitude, azimuth and side may be exhibited as follows :-

| Vaitis. | Latitude. | Longitade. | Azimutht. | Side in feett. |
| :---: | :---: | :---: | :---: | :---: |
| When calculated from the side Jeraj-Márd of the Karáchi Longitudinal Series via the Abu Series. | $22^{\circ} 59^{\prime} 17^{\prime \prime} \cdot 859$ | $72^{\circ} 52^{\prime} 34^{\prime \prime} \cdot 694$ | $154^{\circ} 36^{\prime} 50^{\prime \prime} \cdot 047$ | $53857 \cdot 2$ |
| When calculated from the side Tána-Lakarwas of the Karachi Longitudinal Series $v i d$ the northern section of the Singi Series and the central section of the Guzerat Longitudinal Series. | $22^{\circ} 59^{\prime} 17^{\prime \prime} \cdot 708$ | $72^{\circ} 52^{\prime} 34^{\prime \prime} \cdot 708$ | ${ }^{1} 54^{\circ} 36^{\prime} 47^{\prime \prime} \cdot 090$ | $53859 \times 5$ |
| Closing errors ... | $+0.11{ }^{51}$ * | - 0'1.014* | $+2^{\prime \prime} \cdot 957$ | $2 \cdot 3$ |

[^34]On the completion of the Simultaneous Reduction of the South-West Quadrilateral, it was found that the portions of the corrections which had actually fallen to the Abu Meridional Series were:-

| In Latitude of Mirzipur (xvi) |  | $\ldots$ |  |  | 0" $\cdot 070$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| , Longitude of | " | $\ldots$ |  | $+$ | - $\cdot 005$ |
| ,, Azimuth of Mirzapur (xvi)-Sanoda (xix) |  |  |  | $+$ | - 843 |
| $\text { ide }\left\{\begin{array}{l} \text { Logarithm of feet } \end{array}\right.$ |  |  |  |  |  |

Astronomical observations for azimuth have never been taken at any of the stations of the Abu Meridional Series: Sanoda, where Rivers observed $\delta$ Ursæ Minoris, now appertains to the Guzerat Longitudinal Series،

## Secondary Triangulation.

So many difficulties were encountered in selecting the stations and clearing the rays for the principal triangulation of the Abu Series, that Rivers had been obliged to employ all his Assistants on that work, and consequently there had never been any one available for secondary operations. The result was that not nearly so many points were laid down trigonometrically as was desirable: this was the more to be regretted as the Topographical Survey of the country had yet to be carried out.

In the Gori Hexagon some balf-dozen hill peaks, a few temples, and a dome in Pálanpur were fixed, and the position of a point in the large town of Idar near the principal station of Kaináth was determined. In the Pára Hexagón the Harsol Residency and four or five trees were laid down: a point in a village two miles from Ahmednagar (Ahmadnagar) was intersected from two principal stations, but neither in this important town nor in the great fort of Bijápur* was any secondary station established : these omissions are probably due to the Rajput chiefs refusing to allow the Surveyors to enter their strongholds. Between the principal side Warsora-Moráli of the Abu Series and the Guzerat Longitudinal Series, though seven principal triangles intervened, no secondary station was established and no intersected point laid down.

[^35]June, 1889.

## S. Q. BURRARD.

Dovisesoy Google

## ABU MERIDIONAL SERIES:

PRINCIPAL TRIANGULATION. ALPHABETICAL LIST OF STATIONS.


## ABU MERIDIONAL SERIES.

## PRINCIPAL TRIANGULATION. NUMERICAL LIST OF STATIONS.



## ABU MERIDIONAL SERIES.

## PRINCIPAL TRIANGULATION. DESCRIPTION OF STATIONS.

Of the 14 Principal Stations of this Series those numbered I to V and VII, IX and XII, as also XL and XLIII of the Karáchi Longitudinal Series from which this triangulation emanantes, are situated on hills. All these save XLIII consist of solid, circular and isolated pillars of masonry, from 3 to 10 feet in height, having marks engraved either on the rock in situ or on stones imbedded at about the ground level and one or more other marks cut on stones inserted in the normals of the former marks. Around the pillars and level with their surfaces, platforms of loose stone masonry or of sun-dried bricks and mud were constructed for the observatory tent to rest on. At Station XLIII, where the rock rises sufficiently above the surface of the hill, there is no other mark than that on the rock. The remaining stations, together with the two of the Guzerat Longitudinal Series on which this triangulation terminates, being situated in the plains, it was found necessary to construct towers to overlook the curvature of the earth. These are solid structures-either circular or square, built of sundried bricks and mud and faced with kiln-burnt bricks-18 to 32 feet in height, enclosing central, solid pillars of masonry which carry marks at top, bottom and intermediately, the upper portion of each pillar being circular and isolated.

The following descriptions have been compiled from those given by the Officers who executed the Series, supplemented as regards adjacent villages from information obtained from other original records of the Series, and corrected in respect to the local sub-divisions in which the several stations are situated from the latest Annual Reports furnished by the District Officers to whose charge the stations have been committed.
XL.-(Of the Karáchi Longitudinal Series). Márd, locally known as Mad, Hill Station, lat. $24^{\circ}$ 24', long. $73^{\circ} 0^{\circ}$-observed at in February and March 1851 -is situated on one of a group of high hills forming a portion of the southern face of the Aravalli range, in lands appertaining to the town of Posina from which the ascent to the station is long and tedious: Edar State, Mahi Kánta Agency.

The station as built for the Karáchi Longitudinal Series consists of a platform, 3.75 feet in height, enclosing a solid, isolated pillar of masonry which has a mark-stone at level of the foundation, another at the top and a third 2 feet above the former. When again visited in March 1851 for originating the Abu Meridional Series no alteration appears to have been made in the construction of the station.
XLIII.-(Of the Karáchi Longitudinal Series). Jeraj Hill Station, lat. $24^{\circ} 25^{\prime}$, long. $72^{\circ} 32^{\prime}$ —olserved at in 1851-is situated on the summit of a high and extensive hill lying between Mount Abu and Deesa and is on the boundary between the Sirohee and Pálanpur States. The hill is locally known as Jásor but is named Jeraj from a deity said to reside at its foot : sub-division Dántiwara, Pálanpur State.

No pillar and platform could be built and the station is marked by a circle and dot engraved on a large rock crowning the hill.
I. Gori, locally known as Gori Dungri, Hill Station, lat. $24^{\circ} 10^{\prime}$, long. $72^{\circ} 51^{\prime}$-observed at in 1851 is on a high peak of a mountain range running S.W. and N.E. The station is in lands appertaining to the village of Kaiwad : ‘Dánta State, Mahi Kảnta Agency.

The station cousists of a platform enclosing a solid, circular and isolated pillar of masonry, containing two marks, the lower engraved on the rock in situ and the upper (level with the surface of the platform) $2 \cdot 75$ feet above it. The directions aud estimated distances of the circumjacent villages are :-Punádra W., miles $1 \frac{1}{2}$; Kaiwad W., at foot of hill; and Dánta N.W., miles 6.
II. Kherwa Hill Station, lat. $24^{\circ} 7^{\prime}$, long. $73^{\circ} 8^{\prime}$-observed at in 1851 -is situated on a small, round hill appertaining to the lands of Kherwa village, and about 9 miles E. of Unchi Dhunal : Edar State, Mali Kánta Agency.

The station consists of a platform enclosing a solid, isolated pillar of masonry, containing two marks, the lower engraved on the rock in sitú and the upper 3 feet above it. The directions and estimated distances of the circumjacent villages are:Wurtol S., miles 4;Kherwa E., miles $1 \frac{1}{2}$; aud Bramanchi Kheri S., miles 7 .
III. Siniána Hill Station, lat. $24^{\circ} 7^{\prime}$, long. $72^{\circ} 35^{\prime}-$ observed at in $1851-52$-is on a small hill capped with immense masses of rock, in lands appertaining to Siniána village : pargana and State Pálanpur.

The station consists of a platform enclosing a solid, isolated pillar of masonry, 3.93 feet in height, which contains two marks, the lower engraved on the rock in situl and the upper 3.92 feet above it. The directions and estimated distances of the circumjaceut villages are :-Siuiána N.W., miles $1 \frac{1}{\frac{1}{2}}$; and Gola N., miles 2.
IV. Kaináth, locally known as Kulnáth, Hill Station, lat. $23^{\circ} 51^{\prime}$, long. $73^{\circ} 1^{\prime}$-observed at in 1851 is situated on a large, flat-topped hill composed of granite and porphyry, and called Kaináth from its being dedicated to a deity of that name; the station is about 3 miles N.W. of the town of Edar : Edar State, Mahi Kánta Agency.

The station consists of a platform of loose stones and earth enclosing a solid, isolated pillar of masonry, which contains two marks, the lower engraved on the rock in situ and the upper $2 \cdot 92$ feet above it.
V. Kárdo Hill Station, lat. $23^{\circ} 57^{\prime}$, long. $72^{\circ} 46^{\prime}$-observed at in 1851 and 1852 -is situated on the western extremity of a small, steep hill of that name which is crowned with enormous masses of rock; the hill though detached forms part of the range on which are several temples called Táranga, Ajitnáth, \&c., lying about 4 miles to N.E. of the station : sub-division Kheralu, Baroda State.

The station consists of a platform enclosing a solid, isolated pillar of masonry, 3.75 feet in height, which contains two marks, the lower engraved on the rock in situ and the upper $3 \cdot 75$ feet above it. The directions and estimated distances of the circumjacent villages are :-Wauri N.E., miles 4 ; Kadi S., miles 2 ; Chotia S.W., miles 4 ; and Dabhoda W., miles 2.
VI. Pára Tower Station, lat. $23^{\circ} 35^{\prime}$, long. $72^{\circ} 50^{\prime}-$ observed at in 1851 and 1852 -stands on the rising ground about $\frac{3}{4}$ of a mile W. of the village of Pára, and $2 \cdot 16$ miles E.N.E. of the town of Vijápur : sub-division Kadi, Baroda State.

The station consists of a tower faced with burnt bricks, 20 feet in height, enclosing a solid pillar of masonry of which the upper 4 feet is circular and isolated. The azimuths and perambulated distances of the circumjacent villages are:-Ganeshpur $181^{\circ} 8^{\prime}$, mile $0 \cdot 46$; and Ranchirpur $5^{\circ} 8^{\prime}$, mile $0 \cdot 42$.
VII. Wantra Hill Station, lat. $23^{\circ} 37^{\prime}$, long. $73^{\circ} 7^{\prime}$-observed at in 1851 -is situated towards the western edge of a flat hill detached from the table-land lying to the eastward of it. The station obtains its name from the small village of Wantra which is in one of the valleys on the southern side of the hill : Edar State, Mahi Kánta Agency.

The station consists of a square platform, 4 feet in height, enclosing a solid, isolated pillar of masonry which contains two marks, the lower engraved on the rock in sitt and the upper $2 \cdot 92$ feet above it. The directions and estimated distances of the circumjaceut villages are :-Gamri S.S.W., miles 2; Virawára W., miles 2; and Kamp N., mile 1.
VIII. Dhámanwa Tower Station, lat. $23^{\circ} 32^{\prime}$, long. $72^{\circ} 33^{\prime}$-observed at in 1852 -stands on a low, sandy ridge about $\frac{8}{4}$ of a mile S.E. of the village Dhámanwa, and the same distance N.W. of that of Puraria: Baroda State.

The station consists of a tower of sun-dried bricks and mud and faced with burnt bricks, which encloses a solid pillar of masonry 32 feet in height the upper 5 feet of which is isolated; it has a mark-stone at the ground level, another at top 32 feet above it, and five others placed iutermediately. Four small pillars with marks thereon are built outside the tower, the intersection of liues joiuing these marks indicates the exact position of the mark-stone at the summit.
IX. Moráli Hill Station, lat. $23^{\circ} 25^{\prime}$, long. $73^{\circ} 0^{\prime}$-observed at in 1851 -is situated on a small piece of rising ground composed of iron ore, which appertains to the land of Moráli village: taluka Parántij, district Ahmedabad.

The station consists of a platform of sun-dried bricks enclosing a pillar of masonry, 10 feet in height and with 1.25 feet foundation; the pillar, of which the upper 5 feet is isolated, contains three marks, one at the top and the others at $5 \cdot 25$ and 10.00 feet respectively below it. The directions and estimated distances of the circumjacent villages are :-Gari N., miles $1 \frac{1}{2}$; aud Moráli N.W., mile 1.
X. Warsora 'Tower Station, lat. $23^{\circ} 25^{\prime}$, long. $72^{\circ} 47^{\prime}$-observed at in 1851-52-stands at the southern extremity of the village of Warsora. The spot is somewhat above the general level, having been the site of a large building of which however no trace remains above ground. The land in the neighbourhood is much cut up with deep ravines which drain into the Sábarmati river, about a mile E. of Warsora: sub-division Saber Kánata, Mahi Kánta Agency.

The station consists of a tower faced with burnt bricks, 25 feet in height, enclosing a solid pillar of masonry of which the upper 4 feet is isolated.
XI. Rakhiál Tower Station, lat. $23^{\circ} 16^{\prime}$, long. $72^{\circ} 57^{\prime}$-observed at in $1851-52$-stands on the rising ground about 5 furlongs N.W. of the village of Rakhiál: sub-division Báwisi, Mahi Kánta Agency.

The station consists of a tower of sun-dried bricks and mud and faced with burnt bricks, 18 feet square at base and 13 feet at top, which encloses a solid pillar of masoury, 22 feet in height, diminishing from $4 \frac{1}{2}$ feet square at base to $3 \frac{1}{2}$ feet square near summit; the pillar, of which the upper 4 feet is circular and isolated, has a foundation of 5 feet, and mark-stones are fixed in it at $6,12,18$ and 22 feet respectively above the one at the ground level. Four small pillars with marks thereon are built at 20 yards from the central pillar, and the intersection of lines connecting them indicates the position of the upper mark. The azimuths and perambulated distances of the circumjacent villages are :-Pipria $92^{\circ} 31^{\prime}$, mile 0.75 ; Nawánagar $111^{\circ} 1^{\prime}$, miles 1.78 ; and Bhadrunda $196^{\circ} 1^{\prime}$, mile 0.68.
XII. Amalyára Hill Station, lat. $23^{\circ} 14^{\prime}$, long. $73^{\circ} 6^{\prime}$-observed at in $1851-52$-is situated on the rising ground about $\frac{3}{4}$ of a mile N.E. of the village of Amalyára: sub-division Wátrak Kánta, Mahi Kánta Agency.

The station consists of a platform of sun-dried bricks enclosing a circular, solid pillar of masonry, 5 feet in height, which contains two marks, one at the ground level and the other 5 feet above it. The village of Chandrej lies to the N.E. at a distance of about 1 mile.
XIII. Lakwára Tower Station, lat. $23^{\circ} 16^{\prime}$, long. $72^{\circ} 44^{\prime}$-observed at in 1852 -stands close to the left bank of the Sábarmati river and some 200 yards N.E. of the village from which the station obtains its name: sub-division Degám, Baroda State.

[^36]XIV. Bárdoli Tower Station, lat. $23^{\circ} 5^{\prime}$, long. $72^{\circ} 58^{\prime}$-observed at in 1852 -stands on the rising ground about $\frac{8}{4}$ of a mile $W$. of the village from which it is named : sub-division Atarsumba, Baroda State.

The station consists of a tower of sun-dried bricks and mud and faced with burnt bricks, enclosing a solid pillar of man sonry, 22 feet in height, which contains mark-stones at every 5 feet.
XVI.-(Of the Guzerat Longitudinal Series). Mirzapur Tower Station, lat. $22^{\circ} 59^{\prime}$, long. $72^{\circ} 53^{\prime}$ observed at in 1852 and 1858-is situated on a sandy hill about a mile W. by S. of the village of Mirzápur, and 4 miles N.N.W. of the large village of Haldarwás on the right bank of the Wátrak river : taluka Daskroi, district Ahmedabad.

The station consists of a tower enclosing a solid pillar of masonry, 18 feet in height, which has a mark-stone at top and others at 3, 8, 13 and 18 feet respectively below it, the lowest being at the ground level. The directions and estimated distances of the circumjacent villages are :-Chándivel Bhátpura W.N.W., mile $\frac{3}{4}$; Warod (on the left bank of the Meswo river) W.S.W., miles 2 ${ }^{\frac{3}{4}}$; Kaniel S. by E., miles $1 \frac{1}{2}$; and Patáwat (on the western bank of the Wátrak) S.E., miles 3. When visited in 1858 in the course of Guzerat Longitudinal Series operations, no alteration appears to have been made in the construction of the station.
XIX.-(Of the Guzerat Longitudinal Series). Sanoda Tower Station, lat. $23^{\circ} 7^{\prime}$, long. $72^{\circ} 48^{\prime}$ observed at in 1852 -stands on the rising ground about $\frac{8}{4}$ of a mile S.E. of the village from which the station has been named. The whole country in the neighbourhood is much covered with large trees: sub-division Degám, Baroda State.

The station consists of a tower (most probably built in a manner similar to those at the adjacent stations) enclosing a solid pillar of masonry. Four small pillars have been built outside the tower, and the intersection of lines engraved on them will give the position of the upper station mark. Other mark-stones have also been fixed at every 5 feet in the pillar.
J. B. N. HENNESSEY,

In charge of Computing Office.

$$
7-1
$$

## ABU MERIDIONAL SERIES.

PRINCIPAL TRIANGULATION. OBSERVED ANGLES.

## At XL (Márd)

March 1851; observed by Lieutenant H. Rivers with Troughton and Simms' 18-inch Theodolite No. 2.

| $\underset{\text { betwoen }}{\substack{\text { Angle }}}$ | $0^{0} 1^{\prime}$ | $180^{\circ} 1^{\prime}$ | $10^{\circ} 12^{\prime}$ | $\begin{aligned} & \text { Circle } \\ & 190^{\circ} 12^{\prime} \end{aligned}$ | e readin <br> $20^{\circ} 20^{\prime}$ | gs , telesc <br> $200^{\circ} 20^{\circ}$ | ope bein <br> $80^{\circ} 29$ | $210^{\circ} 29^{\prime}$ | II <br> $40^{\circ} 38^{\prime}$ | $220^{\circ} 38^{\prime}$ | $50^{\circ} 50^{\circ}$ | $280^{\circ} 50^{\prime}$ | $M=$ Mean of Groupe <br> ${ }^{\infty}$ - Relative Wright <br> C = Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| II \& I |  <br>  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=25^{\prime \prime} \cdot 93 \\ & w=0 \cdot 78 \\ & \frac{1}{w}=1 \cdot 29 \\ & C=5^{\circ} 34^{\prime} 25^{\prime \prime} \cdot 93 \end{aligned}$ |
|  | $18 \cdot 7$ | $20 \cdot 77$ | $26 \cdot 20$ | 24.23 | $29^{\circ} 05$ | 23.39 | 33.04 | 28.25 | 29.40 | 27.43 | 26•08 | 24.55 |  |
| I \& XLIII | $\begin{array}{ll} \boldsymbol{h} & 9.2 \\ h & 11.6 \\ h & 12.6 \end{array}$ | $\begin{array}{ll} K & 9.76 \\ k & 10 \cdot 20 \end{array}$ | $\begin{array}{lll} 5.54 & l 12.46 \\ 5.60 & l & 13.04 \end{array}$ |  | $\begin{array}{ll} l & 13 \cdot 16 \\ l & 9 \cdot 00 \\ l & 91 \cdot 20 \end{array}$ | $\begin{array}{ll} l & 11.23 \\ l & 13.20 \\ l & 12.23 \end{array}$ | $0 \circ 07$ $0.53$ | $\begin{array}{llllll} l & 13.17 & l & 7.87 & l \\ l & 13.10 & l & 10.14 & l \end{array}$ |  | $\begin{aligned} & 7.472 \\ & 6.046 \end{aligned}$ | $\begin{array}{ll} 3.60 l \\ 4.74 l \end{array}$ | 773 7750 | $\begin{aligned} & M=8^{\prime \prime} \cdot 65 \\ & w=0 \cdot 77 \\ & \frac{1}{w}=1 \cdot 3 \mathrm{I} \\ & C=63^{\circ} 29^{\prime} 8^{\prime \prime} \cdot 66 \end{aligned}$ |
|  | 11'1 | . $9 \cdot 98$ | $5 \times 57$ | 12.75 | .1112 | 12.22 | 0.30 | 13.14 | $9^{\circ} 00$ | 6.76 | 417 | 7.61 |  |

EOTm-Btations XI and XIIII appertain to the Kartchi Longitudinal Sevies of the North-Weat Quadrilateral.


## At I (Gori)

April 1851; observed by Lieutenant H. Rivers with Troughton and Simms' 18-inch Theodolite No. 2.

| $\underset{\text { between }}{\text { Angle }}$ | $0^{\circ} 1^{\prime}$ | $180^{\circ} 1^{\prime}$ | $10^{\circ} 19^{\prime}$ | $\begin{gathered} \text { Circle } \\ 190^{\circ} 12^{\prime} \end{gathered}$ | reading <br> $20^{\circ}: 0^{\prime}$ | s, telesc <br> $200^{\circ} 20^{\prime}$ | ope bein <br> $30^{\circ} 29^{\prime}$ | get on <br> $210^{\circ} 29$ | $\begin{aligned} & \text { n XL } \\ & 40^{\circ} 38^{\prime} \end{aligned}$ | $220^{\circ} 38^{\prime}$ | $50^{\circ} 50^{\prime}$ | $230^{\circ} 50^{\prime}$ | $M=$ Mean of Groupe <br> w = Relative Weight <br> $\boldsymbol{C}=$ Concluded Anglo |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| XL \& II | " | " | " | " | " | " | " | " | " | " | " |  | $\begin{aligned} & M=37^{\prime \prime} \cdot 54 \\ & w=1 \cdot 59 \\ & \frac{1}{w}=0 \cdot 63 \\ & C=72^{\circ} \quad 4^{\prime} 37^{N \cdot} \cdot 54 \end{aligned}$ |
|  | $\begin{array}{r} l 35.23 \\ l \\ l \end{array}$ | $\begin{array}{r} l 33.93 \\ l 36.56 \end{array}$ | $\begin{aligned} & h 39 \cdot 87 \\ & h 41 \cdot 17 \end{aligned}$ | h 34 : 17 h 37.40 h 35.20 | h 35.50 $h \cdot 36 \cdot 00$ d $36 \cdot 17$ | $\begin{aligned} & h 33 \cdot 93 \\ & h 30 \cdot 73 \\ & h 32 \cdot 76 \end{aligned}$ | k 37.44 h $38 . c 0$ | $\begin{aligned} & h 38 \cdot 00 \\ & h 39^{\prime} 17 \end{aligned}$ $k 37.67$ | $\begin{aligned} & l 39.77 \\ & l \\ & 38.94 \end{aligned}$ | $\begin{aligned} & h 38 \cdot 20 \\ & h 39 \cdot 77 \end{aligned}$ | $l$ 37.94 39.33 | $\begin{aligned} & l 42.20 \\ & l 42.93 \\ & l \\ & l \end{aligned}$ |  |
|  | $35 \cdot 60$ | 35.25 | $40 \cdot 52$ | $35 \times 59$ | $35 \cdot 89$ | 32.47 | 37'72 | 38.28 | 39.35 | 38.99 | 38.63 | 42.24 |  |
| II \& IV |  <br>  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =47^{\prime \prime} \cdot 41 \\ w & =2 \cdot 60 \\ \frac{1}{w} & =0 \cdot 38 \\ C & =53^{\circ} 18^{\prime} 47^{\prime \prime} \cdot 42 \end{aligned}$ |
|  | 4700 | 49*8 | 43.88 | 4772 | $48 \cdot 20$ | 4915 | 48.83 | 50.71 | 44.53 | $46 \cdot 70$ | $46 \cdot 12$ | 46.22 |  |
| IV \& V |  <br>  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & \boldsymbol{M}=16^{n} \cdot 70 \\ & w=1 \cdot 17 \\ & \frac{1}{w}=0 \cdot 85 \\ & C=46^{\circ} 7^{\prime} 16^{n} \cdot 70 \end{aligned}$ |
|  | 2159 | 14.03 | 16.40 | 14.93 | 17.93 | $18 \cdot 18$ | 23.05 | 14.98 | 1563 | $16 \cdot 04$ | 15.98 | 11.66 |  |

Nors.-Stations XL and XLIII appertain to the Karachi Longitudinal Series of the North-Weat Quadrilateral.


## At II (Kherwa)

March 1851; observed by Lieutenant H. Rivers with Troughton and Simms' 18-inch .Theodolite No. 2.


NOTn.-Stations XL and XLIII appertain to the Karachi Longitudinal Sories of the North-Weat Quadrilateral.

## At III (Siniána)

April 1852; observed by Lieutenant H. Rivers with Troughton and Simme' 18-inch Theodolite No. 2.

| $\underset{\text { Angle }}{\text { betwoen }}$ |  | Circle readings, telescope being set on XLIII |  |  |  |  |  |  |  |  |  |  | $M=$ Mean of Groupe <br> ${ }^{20}$ - Relative Weight <br> C = Concluded Anglo |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $90^{\circ} 6^{\prime \prime}$ | $280^{\circ} 17^{\prime}$ | 106 ${ }^{\text {17 }}{ }^{\prime}$ | $296^{\circ} 25^{\prime}$ | $116^{\circ} 25^{\prime}$ | $806^{\circ} 34$ | $126^{\circ} 34^{\prime}$ | $316^{\circ} 43^{\prime}$ | $186^{\circ} 43^{\prime}$ | $826^{\circ} 65^{6}$ | $146^{\circ} 54{ }^{\prime}$ |  |
| XLIII \& I | * | " | " | " | " | " | " | " | " | " | " |  | $\begin{aligned} M & =5^{\prime \prime} \cdot 11 \\ w & =0 \cdot 99 \\ \frac{1}{w} & =1 \cdot 01 \\ C & =83^{\circ} 55^{\prime} 5^{*} \cdot 11 \end{aligned}$ |
|  | h6.67 | l7'20 | 113.87 | 77.43 | $l 730$ | $l 5 \cdot 60$ | h $1 \cdot 57$ | h $2 \cdot 83$ | ho. 20 | h 2.37 | k 3.07 | h 5 \% 90 |  |
|  | K $7 \cdot 67$ | 16.00 | l147 | $l 6.94$ | $l 940$ | $\begin{array}{ll} l & 2.60 \\ l & 5.00 \end{array}$ | $h 1.07$ | h 3.73 | $h_{1} 17$ | his94 | $h 2.03$ | $h 4.24$ |  |
|  | 717 | $6 \cdot 60$ | 12.57 | 7•19 | 8.35 | 4.40 | 133 | 3.28 | 0.68 | $2 \cdot 16$ | $2 \cdot 55$ | 5.07 |  |
| $I \& \nabla$ |  <br>  <br>  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=61^{N} \cdot 39 \\ & w=0 \cdot 92 \\ & \frac{1}{w}=1 \cdot 09 \\ & C=54^{\circ} 11^{\prime} 1^{N} \cdot 39 \end{aligned}$ |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 57*95 | 58.60 | 58.45 | $58 \cdot 58$ | 64:09 | $55^{\circ} 85$ | 6733 | 63.83 | 64.26 | 64.62 | 60.28. | 62.81 |  |

## At IV (Kaináth)

March 1851; observed by Lieutenant H. Rivers with Troughton and Simms' 18-inch Theodolite No. 2.

| $\underset{\text { Between }}{\substack{\text { Angle }}}$ | $185^{\circ} 16^{\prime}$ | $6^{\circ} 16^{\prime}$ | $195^{\circ} 27^{\prime}$ | Circle r <br> $15^{\circ} 27^{\prime}$ | readings, <br> $205^{\circ}$ 35' | , telesco $25^{\circ} 34^{\prime}$ | pe being <br> $215^{\circ} 444^{\prime}$ | set on $85^{\circ} 43^{\prime}$ | $\begin{aligned} & \text { VII } \\ & 225^{\circ} 53^{\prime} \end{aligned}$ | $45^{\circ} 58^{\prime}$ | $236{ }^{\circ} 5^{\prime}$ | $56^{\circ} 5^{\prime}$ | $M=$ Mean of Groupe <br> $w$ = Relative Weight <br> C = Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VII \& VI |  | " | " | " |  |  | " | " | $\cdots$ | " | - | " | $\begin{aligned} M & =61^{\prime \prime} \cdot 13 \\ w & =0 \cdot 85 \\ \frac{1}{w} & =1 \cdot 17 \\ C & =53^{\circ} 30^{\prime} \quad 1^{\prime \prime} \cdot 12 \end{aligned}$ |
|  |  <br>  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 61.20 | 64.32 | 62.71 | 61.23 | 64:30 | 67.67 | 60.43 | 59.78 | 60.24 | 61.62 | 53.33 . | 56•73 |  |
| VI \& V |  <br>  <br>  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =24^{\prime \prime} \cdot 16 \\ w & =0 \cdot 8 \mathbf{1} \\ \frac{1}{w} & =1 \cdot 24 \\ C & =80^{\circ} \quad 1^{\prime} 24^{\prime \prime} \cdot 18 \end{aligned}$ |
|  | 24.72 | 18.94 | 25.90 | 19.14 | 25:18 | 18.34 | 22.30 | 25.53 | $28 \cdot 88$ | 29.74 | 25.90 | 25.30 |  |
| V \& I |  <br>  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =58^{\prime \prime} \cdot 00 \\ w & =0 \cdot 9 \mathbf{1} \\ \frac{1}{w} & =1 \cdot 10 \\ C & =41^{\circ} 13^{\prime} 5^{\prime \prime} \cdot \infty \end{aligned}$ |
|  | 60.37 | $64 \cdot 16$ | 58.00 | 60.83 | 57.94 | $62 \cdot 16$ | 57.57 | $55^{1} 16$ | 54:33 | 51.29 | 56.73 | 57.40 |  |

Morm.-Station XLIII appertains to the Karsohi Lopgitudinal Seriee of the North-Weat Quadrilatoral.


## At VI (Pára)

*March 1851; and †February 1852; observed by Lieutenant H. Rivers with Troughton and Simms' 18-inch Theodolite No. 2.

| $\begin{gathered} \text { Angle } \\ \text { betwoen } \end{gathered}$ | $0^{\circ} 2^{\prime}$ | $180^{\circ} \mathrm{Z}$ | $10^{\circ} 13^{\prime}$ | $\begin{aligned} & \text { Circle } \\ & 190^{\circ} 19^{\prime} \end{aligned}$ | reading <br> $20^{\circ} 20^{\prime}$ | $\begin{gathered} \text { gs, telese } \\ 200^{\circ} 20^{\prime} \end{gathered}$ | cope bein <br> $80^{\circ} 30^{\prime}$ | ng set on $210^{\circ} 30^{\prime}$ | $\mathrm{n} \mathbf{X}$ <br> $40^{\circ} 38^{\prime}$ | $220^{\circ} 38^{\prime}$ | $50^{\circ} 50^{\circ}$ | $280^{\circ} 50^{\prime}$ | $\boldsymbol{M}=$ Mean of Groups <br> ${ }^{\infty}$ = Relative Weight <br> C = Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\stackrel{\dagger}{\mathrm{X} \& \nabla I I I}$ |  <br>  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =65^{\prime \prime} \cdot 89 \\ w & =0 \cdot 85 \\ \frac{1}{w} & =1 \cdot 18 \\ C & =68^{\circ} \quad 8^{\prime} \quad 5^{\prime \prime} \cdot 89 \end{aligned}$ |
|  | 67:23 | 6575 | 69.69 | 62.76 | 68.02 ${ }^{\text { }}$ | 55.93 | 64.60 | 65.05 | $67 \times 47$ | $67 \cdot 13$ | 68.48 | $68 \cdot 62$ |  |
| $\stackrel{\dagger}{\text { VIII \& } V}$ |  <br>  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=17^{\prime \prime} \cdot 95 \\ & w=0 \cdot 59 \\ & \frac{1}{w}=1 \cdot 71 \\ & C=91^{\circ} 40^{\prime} 17^{\prime \prime} \cdot 95 \end{aligned}$ |
|  | 12.09 | 12.40 | 17.21 | 16.34 | 1778 | 24.05 | 21.29 | $20 \cdot 37$ | 25.97 | 19.73 | 12.76 | 15.45 |  |
| V * IV |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =7^{\prime \prime} \cdot 5^{8} \\ w & =1 \cdot 16 \\ \frac{1}{w} & =0 \cdot 87 \\ C & =40^{\circ} 10^{\prime} \quad 7^{N} \cdot 59 \end{aligned}$ |
|  | 10'91 | $8 \cdot 27$ | 5.66 | 8.97 | $0 \cdot 89$ | 4*68 | $57^{72}$ | $7 \times 03$ | 6.24 | $10 \cdot 16$ | 12.03 | $10 \cdot 34$ |  |
| IV \& VII |  <br>  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =33^{\prime \prime} \cdot 13 \\ w & =1 \cdot 67 \\ \frac{1}{w} & =0 \cdot 60 \\ C & =47^{\circ} 56^{\prime} 33^{\prime \prime} \cdot 13 \end{aligned}$ |
|  | 32.35 | 37.03 | 34.69 | $36 \cdot 27$ | 30*95 | 34.97 | 33.47 | 32:33 | 28.68 | $30 \cdot 15$ | 35.67 | 30'97 |  |
| VII \& IX |  <br>  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =64^{\prime \prime} \cdot 88 \\ w & =1 \cdot 19 \\ \frac{1}{w} & =0 \cdot 84 \\ C & =52^{\circ} 40^{\prime} \quad 4^{\prime \prime} \cdot 87 \end{aligned}$ |
|  | 61.85 | $63 \cdot 36$ | $66 \cdot 63$ | 65.03 | 73.69 | 63.62 | 62.71 | 64.72 | $65 \cdot 38$ | 65.69 | $62: 77$ | $63 \cdot 16$ |  |
| IX\& X |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =50^{\prime \prime} \cdot 42 \\ w & =0 \cdot 43 \\ \frac{1}{w} & =2 \cdot 30 \\ C & =59^{\circ} 24^{\prime} 50^{\prime \prime} \cdot 43 \end{aligned}$ |
|  | 55.35 | 56.05 | 49.43 | $55^{12}$ | 43.35 | 60.93 | $46 \cdot 21$ | $47 \cdot 64$ | $48 \cdot 42$ | $47 \times 48$ | 48.05 | $46 \cdot 99$ |  |

## At VII (Wantra)

January 1851; observed by Lieutenant H. Rivers with Troughton and Simms' 18-inch Theodolite No. 2.

| $\begin{gathered} \text { Angle } \\ \text { betwoen } \end{gathered}$ | Circle readings, telescope being set on IX |  |  |  |  |  |  |  |  |  |  |  | $\boldsymbol{M}=$ Mean of Groupe $^{2}$ <br> ${ }^{w}$ - Relative Weight <br> C - Concluded Anglo |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $0^{\circ} 1^{\prime}$ | $180^{\circ} 1^{\prime}$ | $10^{\circ} 12^{\prime}$ | $190^{\circ} 12^{\prime}$ | $20^{\circ} 20^{\circ}$ | $200^{\circ} 20^{\prime}$ | 800 29 | 210 29 | $40^{\circ} 38^{\prime}$ | $220^{\circ} 38^{\prime}$ | $50^{\circ} 50^{\prime}$ | $230^{\circ} 50^{\prime}$ |  |
| IX \& VI | " | " | " | " | " | " | - | " | " | " | " | " | $\begin{aligned} & M=33^{N \cdot} \cdot 74 \\ & w=3 \cdot 01 \\ & \frac{1}{w}=0 \cdot 33 \\ & C=52^{\circ} 15^{\prime} 33^{N \cdot 74} \end{aligned}$ |
|  | ${ }^{l} 34.34$ | $l 33.40$ | $732 \cdot 20$ | $l 35.26$ | $l 36.27$ | $l 34.60$ | $l 35.20$ | $l 32.16$ | $l 32.07$ | ${ }^{2} 32.74$ | $l 31.47$ | $l 34.33$ |  |
|  | $l 34.63$ | $\begin{array}{r} l 35.66 \\ k 29.30 \end{array}$ | l31.30 | l 3736 | $l 35^{\circ} \mathbf{2 7}$ | $l 32.07$ | $\begin{array}{r} l 37.90 \\ l 36.90 \end{array}$ | $\begin{array}{r} l 35.33 \\ l 35.97 \\ l \\ l \end{array}$ | $\begin{aligned} & l 31 \circ 07 \\ & l \\ & 3 \mathrm{I} \cdot 43 \end{aligned}$ | $l 30 \cdot 33$ | $\begin{aligned} & l 35.54 \\ & l \\ & l \end{aligned}$ | $l 32 \cdot 8$ |  |
|  | 34.49 | 32'79 | 3175 | 36.31 | $35 \times 77$ | 33.33 | $36 \cdot 67$ | 33*99 | $31 \times 52$ | 31•54 | $33 \cdot 17$ | 33.58 |  |
| VI \& IV |  <br>  h 24.77 $l 25.60$ $l 25.00 \quad l 26.10$ $l 28.07 l 33.73$ |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =26^{\prime \prime} \cdot 41 \\ w & =1 \cdot 03 \\ \frac{1}{w} & =0 \cdot 97 \\ C & =78^{\circ} 33^{\prime} 26^{\prime \prime} \cdot 42 \end{aligned}$ |
|  | 22.69 | 24.57 | 23.02 | 26.69 | 22.73 | 23.90 | 25.05 | 28.42 | 28.61 | 28.31 | 33.42 | 29.52 |  |

## At VIII (Dhámanwa)

$\ddagger$ February; and § November 1852 ; observed by Lieutenant H. Rivers with Troughton and Simms' 18-inch Theodolite No. 2.

| Angle <br> between | 804 ${ }^{\circ} 46^{\prime} \quad 1$ | $124{ }^{\circ} 45^{\prime}$ | $314^{\circ} 57{ }^{\prime}$ | $\begin{gathered} \text { Circl } \\ 184^{\circ} 57^{\prime} \end{gathered}$ | le readin $326^{\circ} 5^{\prime}$ | ngs, tele <br> $145^{\circ} 4^{\prime}$ | $835^{\circ} 15^{\circ}$ | eing set <br> $155^{\circ} 14^{\prime}$ | $\begin{aligned} & \text { on } \nabla \\ & 845^{\circ} 22^{\prime} \end{aligned}$ | $165^{\circ} 22^{\prime}$ | $855^{\circ} 35^{\prime}$ | $175^{\circ} 35^{\prime}$ | $M=$ Mean of Groups <br> ${ }^{\infty}=$ Relativo Weight <br> C = Concluded Anglo |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | " | * | " | " | " | " | " | " | " | ". | " |  | $\begin{aligned} & M=32^{m} \cdot 96 \\ & w=100 \end{aligned}$ |
|  |  <br>  $l 33^{\circ} 93{ }^{l} 39^{\circ} 00135^{\circ} 3^{6}$ |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 30.27 | $35^{*} 5^{2}$ | $33 \cdot 88$ | 31*55 | 33.95 | $38 \cdot 44$ | 34*08 | 30.68 | $30 \cdot 82$ | 31'93 | 3214 | 32.23 |  |
| Hemer oircle reading | $287^{\circ} 1^{\prime}$ | $87^{\circ} 1^{\prime}$ | $277^{\circ} 12^{\prime}$ | $97^{\circ} 12^{\prime}$ | $287^{\circ} 20^{\prime}$ | $107^{\circ} 20^{\prime}$ | $297^{\circ} 29^{\prime}$ | $117^{\circ} 29^{\prime}$ | $307^{\circ} 38^{\prime}$ | $127^{\circ} 38^{\prime}$ | $317^{\circ} 50^{\prime}$ | $187^{\circ} 50^{\prime}$ |  |
| $\mathbf{V}{ }_{\&}^{\ddagger} \mathrm{VI}$ |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & w=2 \cdot 59 \\ & \frac{1}{w}=0 \cdot 39 \\ & C=55^{\circ} 15^{\prime} 32^{N \prime} \cdot 23 \\ & M=29^{\prime \prime} \cdot 59 \\ & w=0 \cdot 58 \end{aligned}$ |
|  | $30 \cdot 72$ | 23.84 | 34.03 | $34 \cdot 56$ | 29.95 | $35^{\circ} 05$ | 34.94 | 30*37 | 21.99 | $26 \cdot 30$ | 26.57 | $26 \cdot 72$ |  |
| VI $\stackrel{\ddagger}{\&} \mathrm{X}$ |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =47^{\prime \prime} \cdot 37 \\ w & =0 \cdot 78 \\ \frac{1}{w} & =1 \cdot 29 \\ C & =37^{\circ} 44^{\prime} 47^{\prime \prime} \cdot 37 \end{aligned}$ |
|  | 5232 | 54:86 | 4712 | $45^{\circ} \mathrm{OI}$ | 48.92 | $45^{\circ} 52$ | $41 \cdot 83$ | 41.20 | 48.95 | 48.74 | $46 \cdot 43$ | 47.56 |  |

## At IX (Morali)

February 1851; observed by Lieutenant H. Rivers with Troughton and Simms' 18-inch Theodolite No. 2.

| $\underset{\substack{\text { Angle } \\ \text { between }}}{ }$ | $0^{\circ} 1^{\prime}$ | $180^{\circ} 1^{\prime}$ | $10^{\circ} 12^{\prime}$ | Circle <br> $190^{\circ} 12^{\prime}$ | readings $20^{\circ} 20^{\prime}$ | s, telesco $200^{\circ} 20^{\prime}$ | ope bein <br> $30^{\circ} 28^{\prime}$ | g set on <br> $210^{\circ} 29^{\prime}$ | $\begin{aligned} & \text { XII } \\ & 40^{\circ} 38^{\prime} \end{aligned}$ | $220^{\circ} 38^{\prime}$ |  |  | $M=$ Mean of Groupe <br> ${ }^{w}=$ Relative Weight <br> C = Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| XII \& XI | " | " | " | " | " | " | " | " | " | " | " |  | $\begin{aligned} M & =21^{\prime \prime} \cdot 08 \\ w & =0 \cdot 47 \\ \frac{1}{w} & =2 \cdot 12 \\ C & =40^{\circ} 3^{6^{\prime}} 21^{\prime \prime} \cdot 08 \end{aligned}$ |
|  | $\begin{array}{ll} l & 12.16 \\ l & 15.20 \\ l & 15.73 \end{array}$ | $\begin{array}{r} l 12.90 \\ l 15.23 \end{array}$ | $\begin{aligned} l 17.23 l \\ l 15.30 h \\ h \end{aligned}$ | $\begin{array}{ll} l & 18.87 \\ h & 18.87 \\ h & 19.37 \end{array}$ | $\begin{aligned} & h 26 \cdot 27 \\ & h 23.46 \\ & h 24.83 \end{aligned}$ | $\begin{array}{ll} h 15.50 l \\ h 1576 l \end{array}$ | $\begin{aligned} & l 23.97 \\ & l \\ & l \end{aligned} 25.97$ | $\begin{aligned} & l 22.63 \\ & l 23.44 \end{aligned}$ | $\begin{array}{r} l 26 \cdot 77 \\ l 29 \cdot 16 \end{array}$ | $\begin{aligned} & l 26 \cdot 00 \\ & l 27 \cdot 67 \end{aligned}$ | h22.60 | K 24.04 h 24.47 |  |
|  | 14*36 | 14.07 | $16 \cdot 26$ | $19^{\circ} 04$ | 24.85 | 15.63 | 24.97 | 23.04 | 27.96 | $26 \cdot 84$ | 21*73 | 24.26 |  |
| XI \& X | $\begin{aligned} & l 64.94 \\ & l 65.90 \\ & l 63.77 \end{aligned}$ | $\begin{aligned} & l 62.23 \\ & l 60.90 \end{aligned}$ | $\begin{aligned} & l \\ & l \\ & l \\ & l \end{aligned} \cdot 87$ | $\begin{aligned} & l 62.40 \\ & h 61.33 \\ & l \\ & l \end{aligned}$ | $\begin{aligned} & h 59.30 \\ & h 60.30 \end{aligned}$ | $\begin{aligned} & h 58 \cdot 74 \\ & h_{59} .97 \end{aligned}$ | $\begin{aligned} & l 53 \cdot 83 \\ & l \\ & l 4: 23 \end{aligned}$ | $\begin{array}{r} l 65.87 \\ l 63.66 \end{array}$ | $\begin{aligned} & l 53.27 \\ & l 53.40 \end{aligned}$ | $\begin{aligned} & l 62.43 \\ & l 61.36 \end{aligned}$ | $\begin{aligned} & h 58.53 \\ & 575 \cdot 63 \end{aligned}$ | $h 58.66$ | $\begin{aligned} & M=60^{\prime \prime} \cdot 23 \\ & w=0 \cdot 80 \\ & \frac{1}{w}=1 \cdot 25 \\ & C=72^{\circ} 42^{\prime} 0^{\prime \prime} \cdot 23 \end{aligned}$ |
|  | $64 \cdot 87$ | 61.57 | 64.55 | 62.00 | 59.80 | 59.35 | 54*03 | 64.77 | 53.33 | 61.90 | 58.08 | 58.54 |  |
| X \& VI | $\begin{array}{ll} l & 24.06 \\ l & 21.00 \\ l & 21.80 \end{array}$ | $\begin{array}{r} l \\ l \\ l \\ l \end{array} 2.575$ |  | $\begin{aligned} & h 22.36 \\ & h 20 \cdot 57 \end{aligned}$ | $\begin{aligned} & h 25.33 \\ & h 25 \cdot 60 \end{aligned}$ | $\begin{aligned} & h 25 \cdot 16 \\ & h 24 \cdot 93 \end{aligned}$ | $\begin{aligned} & l 30 \cdot 67 \\ & l 29.20 \end{aligned}$ | $\begin{aligned} & l 20 \cdot 10 \\ & l 19^{\circ} 00 \end{aligned}$ | $\begin{aligned} & l 32 \cdot 80 \\ & l 29 \cdot 74 \end{aligned}$ | $\begin{array}{r} l 24.60 \\ l 24.24 \end{array}$ | $\begin{array}{r} h 27.84 \\ h 27.27 \end{array}$ | $\begin{aligned} & h 26 \cdot 84 \\ & h 26 \cdot 30 \end{aligned}$ | $\begin{aligned} M & =24^{\prime \prime} \cdot 99 \\ w & =0 \cdot 99 \\ \frac{1}{w} & =1 \cdot 01 \\ C & =44^{\circ} 12^{\prime} 24^{\prime \prime} \cdot 99 \end{aligned}$ |
|  | 22.29 | 23.94 | $22 \cdot 32$ | 21.46 | 25.47 | $25^{\circ} 04$. | . $29 \times 94$ | 19.55 | 31.27 | 24.42 | $27 \times 55$ | $26 \cdot 57$ |  |
| VI \& VII | $\begin{aligned} & l 23.00 \\ & l \\ & l \\ & l \end{aligned} 26.27$ | $\begin{aligned} & l 24.30 \\ & l 24.44 \end{aligned}$ | h 26.93 h 24.47 | h25.50 | h 17.80 <br> $h 19$ <br> 9.90 | $h 23.00 l$ $h 21.60$ | $\begin{aligned} & l 15 \circ 03 \\ & l 15 \% \end{aligned}$ | $\begin{aligned} & l 22.07 \\ & l 25.77 \\ & l 24.70 \end{aligned}$ | $\begin{aligned} & l 14.80 \\ & l 15.00 \end{aligned}$ | $\begin{aligned} & l 18.97 \\ & l 18.23 \end{aligned}$ | $h 17.26$ $h 17.83$ | $h_{1} 7.86$ $h_{1} 9.34$ | $\begin{aligned} & M=20^{\prime \prime} \cdot 93 \\ & w=0 \cdot 7 \mathrm{I} \\ & \frac{I}{w}=1 \cdot 40 \\ & C=75^{\circ} 4^{\prime} 20^{\prime \prime} \cdot 94 \end{aligned}$ |
|  | 25.25 | 24.37 | 25.70 | $25^{\circ} 50$ | 18.85 | $22 \cdot 30$ | 15.37 | 24.18 | 14.90 | 18.60 | 17.54 | 18.60 |  |

## At X (Warsora)

January 1852; observed by Lieutenant H. Rivers with Troughton and Simms' 18-inch Theodolite No. 2.

| $\begin{gathered} \text { Angle } \\ \text { between } \end{gathered}$ | $285^{\circ} 54^{\prime} 105^{\circ} 544^{\prime}$ | $2966^{\circ} 6^{\prime}$ | $\begin{aligned} & \text { Circle } \mathrm{r} \\ & 116^{\circ} 5^{\prime} \end{aligned}$ | readings, $306^{\circ} 13^{\prime}$ | , telesco $126^{\circ} 13^{\prime}$ | ope bein <br> $316^{\circ} 22^{\prime}$ | get on $136^{\circ} 22^{\prime}$ | $\begin{aligned} & n \text { VIII } \\ & 2^{\prime} \\ & \hline 266^{\prime} 31^{\prime} \end{aligned}$ | $146^{\circ} 31^{\prime}$ | $336^{6} 43^{\prime}$ |  | $\begin{aligned} & M=\text { Mean of Groupp } \\ & w=\text { Relative Weight } \\ & C=\text { Concluded Angle } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VIII \& VI | " " | " | " | " | " | " | " | " | " | " |  | $\begin{aligned} & M=7^{*} \cdot 79 \\ & w=0 \cdot 57 \\ & \frac{1}{w}=1 \cdot 74 \\ & C=74^{\circ} 7^{\prime} 7^{N} \cdot 79 \end{aligned}$ |
|  |  | $k$ $l$ $l$ 9 | h 7.20 $h 8.96$ | ${ }_{l}^{l 10.17} 8$ |  | l $\begin{aligned} & l \\ & l \\ & 3 \\ & 3\end{aligned}$ |  | $\begin{array}{ll}h & 2 \cdot 63 \\ h & 2.67\end{array}$ | $h 6.00$ $h$ $5 \cdot 30$ | $\begin{array}{ll}h & 1 \\ h & 0 \times 7\end{array}$ | $k$ $h$ $h$ 7 |  |
|  |  |  | h 9.40 |  |  | , | $l 3.76$ |  |  |  |  |  |
|  | $14.42 \quad 14.88$ | 9.70 | 8.52 | 9.50 | $12 \cdot 10$ | $4 \cdot 49$ | 3.59 | $2 \cdot 65$ | $5 \cdot 65$ | $\bigcirc \cdot 88$ | $7 \times 13$ |  |



- Correction to reduce to position of present station mark; see description of station XIII.

NoTs.-Station XIX appertains to the Guzerat Longitudinal Seriee.


Nors.-SLation XIX appertains to the Guzerat Longitudinal Series.


Note.-Stations XVI and XIX appertain to the Guzerat Longitudinal Series.


Nori.-Stations XVI and XIX appertain to the Guzerat Longitudinal Series. R.M. denotes Roferring Mark.

| At XIX (Sanoda)-(Continued). |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Angle between |  |  |  |  |  |  |  |  |  |  |  |
| XIV \& XVI |  <br>  $h 55{ }^{\circ} 93 \quad h 58.60$ h62.64 |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =60^{\prime \prime} \cdot 83 \\ w & =1 \cdot 66 \\ \frac{1}{w} & =0 \cdot 60 \\ C & =49^{\circ} 52^{\prime} \quad 0^{\prime \prime} \cdot 82 \end{aligned}$ |
|  | $63.84 \quad 59.58$ | 56.72 | 63.30 62:37 |  | 61.99 56.81 |  | $\begin{array}{llllll}60.49 & 59.75 & 58.64 & 64.51 & 61.96\end{array}$ |  |  |  |  |
| At XVI (Mirzápur) <br> February 1852; observed by Lieutenant H. Rivers with Troughton and Simms' 18-inch Theodolite No. 2. |  |  |  |  |  |  |  |  |  |  |  |
| Anglo betweon |  |  |  |  |  |  |  |  |  |  | $M=$ Mean of Groupe $^{\prime}$ <br> ${ }^{\infty}=$ Relative Weight <br> C = Concluded Angle |
| XIX \& XIV |  <br>  <br> h 7.27 |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=10^{\prime \prime} \cdot 74 \\ & w=2 \cdot 12 \\ & \frac{I}{w}=0 \cdot 47 \\ & C=67^{\circ} 3^{6^{\prime}} 10^{\prime \prime} \cdot 73 \end{aligned}$ |
|  | 11.19 13.13 | 1131 | 14.51 | 8.06 | $6 \cdot 46$ | 9:74 | $8 \cdot 97$ | 12.62 | 9.85 | $12.43 \quad 10.63$ |  |

Norm.-Stations XVI and XIX appertain to the Guzerat Longitudinal Series.
August 1879.
J. B N. HENNESSEY,

In charge of Oomputing Office.

ABU MERIDIONAL SERIES.

PRINCIPAL TRIANGULATION. SUMS OF SQUARES OF APPARENT ERRORS.


Sums of Squares of Apparent Errors of Single Observations, and of Apparent Errors of Single Zeros.


Nors.-Stations XL and XLIII appertain to the Karachi Longitudinal Series of the North-Weat Quadrilateral.

| Station of Obeervation | Obeerred Angle | Number of Observations | Sum of Squares of Errors of single Observations | $\underset{\text { Neros }}{\substack{\text { Number of } \\ \hline}}$ | Sum of Squares of Errors of single Zeros | Rrmaris |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| V | III \& I | 25 | $26 \cdot 22$ | 12 | $102 \cdot 05$ |  |
| " | I \& IV | 28 | $26 \cdot 32$ | 12 | 132.06 |  |
| " | IV \& VI | 25 | 15.53 | 12 | 127.86 |  |
| " | VI \& VIII | 27 | $10 \cdot 87$ | 12 | 102.88 |  |
| VI | X \& VIII | 26 | 24.13 | 12 | $150 \cdot 37$ |  |
| " | VIII \& V | 24 | $9 \cdot 40$ | 12 | 223.22 |  |
| " | V \& IV | 27 | $21 \cdot 87$ | 12 | 110.00 |  |
| " | IV \& VII | 26 | 11.18 | 12 | $76 \cdot 81$ |  |
| " | VII \& IX | 29 | 25.16 | 12 | 106.84 |  |
| " | IX \& X | 30 | 54.63 | 12 | 294.98 |  |
| VII | IX \& VI | 30 | $55 \cdot 63$ | 12 | 35.07 |  |
| " | VI \& IV | 30 | $42 \cdot 77$ | 12 | 121•79 |  |
| VIII | $\boldsymbol{V}$ \& VI | 27 | 24.24 | 12 | $60 \cdot 93$ |  |
| " | V \& VI | 27 | 24.07 | 12 | 223.86 |  |
| " | VI \& X | 27 | 18.95 | 12 | 166.11 |  |
| IX | XII \& XI | 27 | $24 \cdot 35$ | 12 | 275.61 |  |
| " | XI \& X | 26 | $8 \cdot 80$ | 12 | 163.00 |  |
| " | X \& VI | 27 | 14.52 | 12 | 131.11 |  |
| " | VI \& VII | 26 | $22 \cdot 83$ | 12 | 180.51 |  |
| $\mathbf{X}$ | VIII \& VI | 26 | 11.36 | 12 | 227.63 |  |
| " | VI \& IX | 29 | 39.91 | 12 | 194.72 | Theodolite No. 2. |
| " | IX \& XI | 26 | 7-28 | 12 | 159.51 |  |
| " | XI \& XIII | 29 | 23.75 | 12 | . $85 \cdot 70$ |  |
| XI | XII \& XIV | 25 | 20. 12 | 12 | 82.16 |  |
| " | XIV \& XIX | 26 | 24.48 | 12 | 155.15 | . |
| " | XIX \& XIII | 24 | 16.22 | 12 | 81.53 |  |
| " | XIII \& X | 25 | 11.88 | 12 | $67 \cdot 26$ |  |
| " | $\mathbf{X}$ \& IX | 30 | 40'77 | 12 | $253 \cdot 81$ |  |
| " | IX \& XII | 30 | $50 \cdot 48$ | 12 | 260. 20 |  |
| XII | XIV \& XI | 26 | $25 \cdot 04$ | 12 | 55.51 |  |
| " | XI \& IX | 29 | 40.17 | 12 | $89 \cdot 29$ |  |
| XIII | X \& XI | 29 | $33 \cdot 48$ | 12 | $146 \cdot 97$ | . |
| " | XI \& XIX | 29 | 35.88 | 12 | $76 \cdot 42$ |  |
| XIV | XVI \& XIX | 29 | 29.39 | 12 | $97 \cdot 89$ |  |
| " | XIX \& XI | 28 | $32 \cdot 59$ | 12 | $175 \cdot 72$ | , |
| " | XI \& XII | 29 | 40'36 | 12 | $290 \cdot 27$ |  |
| XIX | XIII \& R.M. | 27 | 28.22 | 12 | $143 \cdot 16$ |  |
| " | XIII \& XI | 29 | 20.82 | 12 | $66 \cdot 00$ |  |
| " | XI \& XIV | 25 | 22.30 | 12 | 50.08 |  |
| " | XIV \& XVI | 27 | 26.80 | 12 | $74 \cdot 40$ |  |
| XVI | XIX \& XIV | 27 | $25 \cdot 27$ | 12 | $57 \cdot 26$ |  |

Notr.-R.M. denotes Referring Mark. Stations XVI and XIX apportain to the Guzerat Longitudinal Seriee.

From the preceding data of the sums of the squares of the apparent errors, in the measurement of each angle, we may ascertain the c.m. . (error of mean square) of observation of a single measure of an angle, and the e.m.s. of groduation and observation of the mean of the measures on a single zero, for each group of angles measured with the same instrument, by the same observer, and under similar circumstances.

The instrument employed was Troughton and Simms' 18 -inch Theodolite No. 2, having 3 microscopes to read 'the azimuthal circle; observations were taken on 6 pairs of zeros (face left and face right) giving circle readings at $10^{\circ}$ apart.

The e.m.s of observation of a single measure of an angle $=\sqrt{\frac{\text { Sum of squares of apparent errors of observations. }}{\text { No. of observations }- \text { No. of angles } \times \text { No. of changes of zero }}}$
$\left.\begin{array}{l}\text { The e.m.s. of graduntion and obsorvation of the mean of the } \\ \text { measures on a single zero }\end{array}\right\}=\sqrt{\frac{\text { Sum of squares of apparent errors of zero. }}{\text { No. of angles } \times \text { (No. of changes of zero }-1) .}}$

| Group | Instrument and Obeerver |  |  | Number of |  |  |  | e. m. s. of observation of a single measure | c. m. s. of graduation and observation of a single zero |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | $\begin{aligned} & \frac{8}{60} \\ & \frac{0}{4} \\ & \hline \end{aligned}$ | Single measures |  |  |  |
| I | $\left\{\begin{array}{l}\text { Troughton and Simms' } 18 \text { inch } \\ \text { Theodolite No. 2;Lieutenant } \\ \text { H. Rivers. }\end{array}\right\}$ | Hills, | $\bullet$ 10 | $2 \cdot 24$ | 30 | 807 | 360 | $\left\{\frac{785 \cdot 27}{807-360}\right\}^{\frac{1}{3}}= \pm 1^{\prime \prime} \cdot 325$ | $\left\{\frac{3732 \cdot 39}{360-30}\right\}^{\prime \prime}= \pm{ }^{\prime \prime} \times 363$ |
| II | Ditto. | Plains, | $100$ | 2•26 | 29 | 786 | 348 | $\left\{\frac{705 \cdot 53}{786-348}\right\}^{\frac{1}{2}}= \pm 1 \cdot 269$ | $\left\{\frac{4057 \cdot 61}{348-29}\right\}^{\frac{1}{4}}= \pm 8 \cdot 566$ |

## Lugust 1879.

J. B. N. HENNESSEY,

In charge of Computing Office.

## ABU MERIDIONAL SERIES.

## PRINCIPAL TRIANGULATION. REDUCTION OF FIGURES.

Figure No. 15.
 In the tables of the equations between the factors the co-efficients of the terms belo
term in the qth line being always the same as the co-eficient of the qth term in the pth line.

Figure No. 16.


Figure No. 17.


## August 1879.

J. B. N. HENNESSEY,

In charge of Computing Office.

## ABU MERIDIONAL SERIES.

PRINCIPAL TRIANGULATION. TRIANGLES.


NOTFS.-1. The values of the sides are given in the same lines with the opposite angles.
2. Stations XI (Márd) and XLIII (Jeráj) appertain to the Karáchi Longitudinal Series of the North-West Quadrilateral.


| No. of Triangle |  | Number and Name of Station |  | Corrections to Observed Angle |  |  |  | Corrected Plane Angle | Distance |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Cirouit | Noncircuit |  |  | Figure | Circuit | Noncircuit | Total |  | Log. feet | Feot | Miles |
| 99 | 213 | XII (Amalyára) XI (Rakhiál) XIV (Bárdoli) | $\prime \prime$ $\cdot 24$ $\cdot 25$ $\cdot 24$ $\cdot$ | $\prime \prime$ $-\quad .12$ $+\quad .06$ $+\quad 30$ | " | $\begin{array}{r}\prime \prime \\ -\quad .10 \\ +\quad .46 \\ -\quad 36 \\ \hline\end{array}$ | $\prime \prime$ <br> $-\quad .22$ <br> +.52 <br> -.06 | $\circ$ $\prime$ $\prime \prime$ <br> 64 20 $56 \cdot 71$ <br> 72 25 $53 \cdot 55$ <br> 43 13 9.74 | $\begin{aligned} & 4 \cdot 8 \mathbf{1} 49672,4 \\ & 4 \cdot 8392820,2 \\ & 4 \cdot 6955860,6 \end{aligned}$ | 65308•13 69068•81 4961I•93 | $12 \cdot 369$ 13.081 9•396 |
|  |  |  | 73 |  |  |  | + 24 | 180 |  |  |  |
|  |  | XIV (Bárdoli) <br> XIX (Sanoda) <br> XVI (Mirzápur) | $\begin{array}{r} \cdot 18 \\ \cdot 18 \\ \cdot 19 \\ \hline 19 \\ \hline \end{array}$ | $\begin{array}{r} +\quad 51 \\ +\quad 39 \\ +\quad 30 \\ \hline \end{array}$ | $+\quad 04$ $+\quad 19$ $-\quad 23$ |  | $\begin{array}{r} +\quad 55 \\ +\quad .58 \\ +\quad 07 \\ \hline \end{array}$ | $\begin{array}{rrr} 62 & 31 & 48 \cdot 17 \\ 49 & 51 & 1 \cdot 22 \\ 67 & 36 & 10 \cdot 61 \\ \hline \end{array}$ | $\begin{aligned} & 4.73 \mathrm{I} 254 \mathrm{I}, \mathrm{O} \\ & 4.6666 \mathrm{I} 28, \mathrm{I} \\ & 4.749 \mathrm{I} 444,6 \end{aligned}$ | $\begin{aligned} & 53858 \cdot 48 \\ & 46410 \cdot 13 \\ & 56123 \cdot 46 \end{aligned}$ | $\begin{array}{r} 10.200 \\ 8.790 \\ 10.629 \end{array}$ |
|  |  |  | $\cdot 55$ | $\xlongequal[+1.20]{ }\left\|\begin{array}{lll}180 & 0 & 0.00\end{array}\right\|$ |  |  |  |  |  |  |  |

Notr.-Stations XVI (Mirzápur) and XIX (Sanoda) appertain to the Guzerat Longitudinal Series.

July, 1890.
W. H. COLE,

In charge of Computing Office.

## ABU MERIDIONAL SERIES.

PRINCIPAL TRIANGULATION. LATITUDES, LONGITUDES AND AZIMUTHS.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Station A} \& \multicolumn{3}{|c|}{Side AB} \& Station B <br>
\hline Circuit No. \& Number and Name of Station \& Latitude North \& Longitude East of Greenwich \& Aximuth at A \& Log. Feet \& Aximuth at B \& Number and Name of Station <br>
\hline \multirow{6}{*}{40} \& \multirow[b]{2}{*}{XL (Márd)} \& - , " \& - , " \& \multirow[t]{2}{*}{$$
92 \times 19 \times 17
$$} \& \multirow[b]{2}{*}{5•1803796,3} \& \multirow[t]{2}{*}{$\begin{array}{ccc}\circ \\ 271 & 50 & \\ 2 \cdot 18\end{array}$} \& \multirow[b]{2}{*}{XLIII (Jeráj)} <br>
\hline \& \& $2424 \quad 9.27$ \& $725948 \cdot$ or \& \& \& \& <br>
\hline \& " " \& \multirow[t]{2}{*}{"} \& " \& \multirow[t]{2}{*}{$$
\begin{array}{r|r|r}
28 & 32 \times 1 \times 67 \\
336 & 57 & 43.23
\end{array}
$$} \& 4.9893075,5 \& $2082844 \cdot 65$ \& I (Gori) <br>
\hline \& \& \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 72 \\
& 7232 \\
& \hline 29.86
\end{aligned}
$$} \& \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 5 \cdot 0473571,6 \\
& 5^{\prime} 1424568,8
\end{aligned}
$$} \& $157 \times 56 \cdot 82$ \& II (Kherwa) <br>
\hline \& XLIII (Jeráj) \& $$
24 \quad \text { " } 24 \text { 59•77 }
$$ \& \& 3104813.23 \& \& 13056 \& I (Gori) <br>
\hline \& " " \& " \& " \& 3532952.58 \& $$
5 ` 0494583,6
$$ \& 1733048.87 \& III (Siniána) <br>
\hline 41 \& I (Gori) \& $24 \quad 959.83$ \& $725124 \cdot 66$ \& 2803322.06 \& 4.9629541,6 \& $10040 \quad 0.65$ \& II (Kherwa) <br>
\hline " \& " " \& " \& " \& 773242.02 \& 4.9761913,7 \& 2572553.97 \& III (Siniána) <br>
\hline " \& " " \& " \& " \& 333529.55 \& 50977631,3 \& $1535611 \cdot 38$ \& IV (Kaináth) <br>
\hline " \& \multirow[t]{2}{*}{II (Kherwa)} \& \multirow[t]{2}{*}{$$
24 \quad 712 \cdot 30
$$} \& \multirow[b]{2}{*}{$73 \quad 739^{115}$} \& \multirow[t]{2}{*}{$$
\begin{array}{r|rll}
19 & 59 & 26 \cdot 27 \\
20 & 16 & 17 & 755
\end{array}
$$} \& \multirow[t]{2}{*}{$$
4 \div 9171924,5
$$
$$
5^{\circ} 0080204,4
$$} \& 1995722.09 \& V (Kárdo) <br>
\hline \& \& \& \& \& \&  \& IV (Kaináth) <br>
\hline \& III (Siniána) \& $$
24 \quad 636 \cdot 64
$$ \& $723446 \cdot 84$ \& $3113655^{\prime} 10$ \& 4.9345184,3 \& 131413741 \& $\nabla$ (Kárdo) <br>
\hline \& IV (Kaináth) \& $$
235125^{\circ} 42
$$ \& $\begin{array}{llll}73 & 118.93\end{array}$ \& 1124212.08 \& 4.9560453,2 \& $\begin{array}{lllll}292 & 36 & 784\end{array}$ \& " $\quad$ " <br>
\hline \& " " \& \multirow[t]{2}{*}{",} \& \multirow[t]{2}{*}{"} \& 32404741 \& 5.0831504,3 \& 21236467 \& VI (Pára) <br>
\hline \& \multirow[t]{2}{*}{$$
" \text { (Kárdo) }
$$} \& \& \& $3391044 \% 79$ \& 4.9625492,7 \& 15913506 \& VII (Wantra) <br>
\hline 42 \& \& $235710 \cdot 29$ \& 7246 20.06 \& 3522438.84 \& $5^{\prime} 1398441$, 8 \& $\begin{array}{rrrr}172 \\ 1725 & 57\end{array}$ \& VI (Pára) <br>
\hline \& \& \multirow[t]{2}{*}{23 " 34.02} \& \multirow[t]{2}{*}{$$
724935 \cdot 98
$$} \& $252850 \cdot 78$ \& 5.2249280,3 \& 2052338.30 \& VIII (Dhámanwa) <br>
\hline 43 \& VI (Pára) \& \& \& \multirow[t]{2}{*}{$$
\left\lvert\, \begin{array}{r|r}
2603237 \cdot 75 \\
80 \quad 4539 \cdot 27
\end{array}\right.
$$} \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 4.9970515,3 \\
& 4.9620342,2
\end{aligned}
$$} \& \multirow[t]{2}{*}{$$
\begin{array}{rrr}
80 & 39 & 39.55 \\
260 & 39 & 10 \cdot 83
\end{array}
$$} \& \multirow[t]{2}{*}{$$
\begin{aligned}
& \text { VII (Wantra) } \\
& \text { VIII (Dhámanwa) }
\end{aligned}
$$} <br>
\hline " \& \multirow[t]{2}{*}{" "} \& \multirow[t]{2}{*}{} \& " \& \& \& \& <br>
\hline " \& \& \& \multirow[t]{2}{*}{"} \& \multirow[t]{2}{*}{$$
\left\lvert\, \begin{array}{rlll}
313 & 12 & 42.98 \\
12 & 37 & 33.44
\end{array}\right.
$$} \& \multirow[t]{2}{*}{$4.9100222,7$
$4.7658033,1$} \& \multirow[t]{2}{*}{\[
$$
\begin{array}{llll}
133 & 16 & 56 \cdot 65 \\
192 & 36 & 38.87
\end{array}
$$

\]} \& \multirow[t]{2}{*}{| IX (Moráli) |
| :--- |
| X (Warsora) |} <br>

\hline " \& " \& " \& \& \& \& \& <br>

\hline \& \multirow[t]{2}{*}{| VII (Wantra) |
| :--- |
| VIII (Dhámanwa) |} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{llll}
23 & 37 & 15 \cdot 71 \\
23 & 32 & 8 \cdot 41 \\
23 & 25 & 23 \cdot 18
\end{array}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{ccc}
73 & 7 & 9 \cdot 60 \\
72 & 33 & 24 \cdot 0
\end{array}
$$

\]} \& 28244.97 \& 4.9124013,8 \& 2082118.36 \& \multirow[t]{2}{*}{| IX (Moráli) |
| :--- |
| X (Warsora) |} <br>

\hline \& \& \& \& \multirow[t]{2}{*}{} \& 4.9465124,5 \& \multirow[t]{2}{*}{$$
\begin{aligned}
& 118 \quad 2930 \cdot 20 \\
& 268 \quad 5923.38
\end{aligned}
$$} \& <br>

\hline \& IX (Moráli) \& \& 73 O 12.14 \& \& 4-8573475,5 \& \& \multirow[t]{3}{*}{| " XI (Rakhiál) |
| :--- |
| XII (Amalyára) |} <br>

\hline \& \& $232523 \cdot 18$ \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{\[
\left|$$
\begin{array}{rrr}
16 & 22 & 30 \cdot 2 \mathrm{I} \\
335 & 46 & 9 \cdot 89
\end{array}
$$\right|

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 4 \cdot 7855507,0 \\
& 48811514,6
\end{aligned}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 1962117 \times 10 \\
& 1554822.43
\end{aligned}
$$
\]} \& <br>

\hline \& \& \& \& \& \& \& <br>
\hline
\end{tabular}

Note.-Stations XL (Márd) and XLIII (Jeráj) appertain to tho Karáchi Longitudinal Series of the North-West Quadrilatoral.

PRINCIPAL TRIANGULATION. LATITUDES, LONGITUDES AND AZIMUTHS.

| Station A |  |  |  | Side A B |  |  | Station B |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\left\lvert\, \begin{gathered} \text { Circuit } \\ \text { No. } \end{gathered}\right.$ | Number and Name of Station | Latitude North | Longitude East of Greenwich | Azimuth at A | Log. Feet | Aximuth at B | Number and Namo of Station |
| 44$\#$ | X (Warsora) | - , " | - , " |  | 4.8995182,6 | $\begin{array}{cccc}\circ & \prime \prime \prime \\ 136 & 18 & 37 & 57\end{array}$ | XI (Rakhiál) |
|  |  | $232511 \cdot 13$ | 72471910 |  |  |  |  |
|  |  | $231542.94$ | $7257 \text { " } 7 \cdot 61$ | $17 \quad 455.66$ | 4*7708929,5 | $197 \quad 342.00$ | XIII (Lakwára) |
|  | XI (Rakhiál) |  |  | 2823324.24 | 4•6955860,6 | $1023649 \times 17$ | XII (Amalyára) |
|  | " | $231542 \cdot 94$ | $72 \quad 57 \quad 7 \cdot 61$ | 90 47 9.74 | 4-8585993,1 | $27042 \quad 3.88$ | XIII (Lakwára) |
|  | " " |  | " | 3545918.04 | 4.8149672,5 | 1745942.09 | XIV (Bárdoli) |
| 45 | $"$ | 23 " 355.83 | $73 \quad \begin{array}{ll}73 & 46 \cdot 86\end{array}$ | 434429.32 | 4-8465645,9 | 22341442 | XIX (Sanoda) |
|  | XII (Amalyára) |  |  | 381552.22 | 4.8392820,2 | 2181252.07 | XIV (Bárdoli) |
|  | XIII (Lakwára) | $231552^{\circ} 23$ | $\begin{array}{rrrrr}73 & 5 & 46 \cdot 86 \\ 72 & 44 & 13 \cdot 21\end{array}$ | $3352120 \cdot 99$ | $4 \cdot 7549607,2$ | 155231.07 | XIX (Sanoda) |
|  |  | $23 \quad 458 \cdot 28$ | $7258 \quad 8 \cdot 71$ | 421512.39 | 4.6666128,1 | 222131169 |  |
|  |  | " |  | $\begin{array}{lll} 104 & 47 & 0.74 \\ 154 & 36 & 50 \cdot 89 \end{array}$ | $\begin{aligned} & 4 \cdot 7491444,6 \\ & 4 \cdot 7312541,0 \end{aligned}$ | 28443 12.61 | XIX (Sanoda) |
|  | XVI (Mirzápur) XIX (Sanoda) | $\begin{aligned} & 22 \quad 5917.79 \\ & 23 \quad 7 \quad 19.89 \end{aligned}$ | $\begin{aligned} & 725234 \cdot 70 \\ & 724827 \cdot 32 \end{aligned}$ |  |  | 3343514.01 | XIX (Sanoda) |
| 46 |  |  |  |  |  |  |  |

Notr.-Stations XVI (Mirzápur) and XIX (Sanoda) appertain to the Guzerat Longitudinal Series.

July, 1890.
W. H. COLE,

In charge of Computing Office.

## ABU MERIDIONAL SERIES.

## PRINCIPAL TRIANGULATION. HEIGHTS ABOVE MEAN SEA LEVEL.

The following table gives, first, the usual data of the observed vertical angles and the heights of the signal and instrument, \&c., in pairs of horizontal lines, the first line of which gives the data for the lst or the fixed station, and the second line the data for the 2nd or the deduced station. This is followed by the arc contained between the two stations, and then by the terrestrial refraction and the height of the 2nd station above or below the lst, as computed from the vertical angles in the usual manner. This difference of height applied to the given height above mean sea level of the fixed station, gives that of the deduced station. Usually there are two or three independent values of the height of the deduced station; the details are so arranged as to show these consecutively and their mean in the columns of "Trigonometrical Results." The mean results thus obtained are however liable to receive corrections for the errors generated in the trigonometrical operations, which are shown up by the spirit levelling operations, wherever a junction between the two has been effected, or, which are developed on the completion of a trigonometrical chain forming a circuit or lying between points already fixed. The last mentioned case is the one presented by the present series, which is adjusted between the stations of Márd and Jeráj of the Karáchi Longitudinal Series of the NorthWest Quadrilateral, and Sanoda and Mirzápur of the Guzerat Longitudinal Series. The trigonometrical heights always refer to the upper mark in the surface of the circular pillar on which the theodolite stood.

The height given in the last column is the approximate height of the structure above the ground at the base of the station.

The heights of the initial stations above Mean Sea Level are taken from the Karáchi Longitudinal Series of the North-West Quadrilateral, and are as follows :-

$$
\text { XL (Márd) } 3080 \cdot 3 \text { feet; }
$$

XLIII (Jeráj) $3575^{\circ} 2$ feet


| Astronomical Date |  | Number and Name of Station | Observed Vertical Angle |  | Height in feet |  |  | T＇errestrial Refraction |  |  | Height in feet of 2nd Station above Mean Sea Level |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1851 | Mean of Times of obser－ vation |  |  |  | －${ }^{\text {a }}$ | 若 |  | 苞 |  |  | Trigonon Kesu | metrical <br> uits |  |  |
|  |  |  |  |  |  | 免 |  |  | ค |  | $\begin{gathered} \text { By each } \\ \text { deduc. } \\ \text { tion } \end{gathered}$ | Mean | Result |  |
|  | $h \quad m$ |  | ○ , " |  |  |  | ＂ |  |  |  |  |  |  | feet |
| Mar．$\quad 31$ | 253 | XL（Márd） | $\text { D } 11059.4$ | 4 | 3．8 |  | 1104 | 61 |  | －2036＊2 | 1044 1 |  |  |  |
| 28 | 328 | II（Kherwa） | E 054 31＊O | 4 | $3 \cdot 7$ | $5 \cdot 3$ | 1104 |  |  | －2036 2 | 1044 |  |  |  |
| Apr． 7 | 253 | I（Gori） | D 11259.5 | 6 | 3.9 | $5 \cdot 3$ |  |  |  |  |  | 1044＊9 | 1045 | 3 |
| Mar． 28. | 320 | II（Kherwa） | E $05941 \cdot 5$ | 4 | $5 \cdot 2$ | $5 \cdot 3$ | 905 | 55 |  | －1771 7 | 1045 7 |  |  |  |
| Apr．$\quad 18$ | 39 | XLIII（Jeráj） | D $12880{ }^{\circ} 2$ | 4 | $3 \cdot 8$ | 5．5 | 1110 |  |  |  | 953.9 |  |  |  |
| ＂ 11 | 323 | III（Siniána） | EII2 4.6 | 4 | $2 \cdot 5$ | $5 \cdot 3$ | 110 |  |  |  | 9539 |  |  |  |
| ＂ 7 | 318 | I（Gori） | D 11436.2 | 4 | 3.6 | $5 \cdot 3$ |  |  |  |  |  | 953.4 | 953 | 9 |
| \％ 10 | 323 | III（Siniána） | E 1046.9 | 4 | 3.7 | $5 \cdot 3$ | 933 | 55 |  |  | 9 |  |  |  |
| ＂ 7 | 36 | I（Gori） | D 0428.3 | 4 | 3.8 | $5 \cdot 3$ |  |  |  |  |  |  |  |  |
| Mar． 22 | 359 | IV（Kaináth） | E 023 52．9 | 4 | 3.6 | $5 \cdot 3$ | 1240 | 75 |  | －12029 | 16145 |  |  |  |
| ＂ 28 | 342 | II（Kherwa） | E O II 48.4 | 4 | $3 \cdot 8$ | $5 \cdot 3$ | 1009 | 62 |  | ＋ $569 \cdot 8$ | $1614^{\circ} 7$ | 1614．5 | 1615 | $2 \cdot 9$ |
| ＂ 22 | 326 | IV（Kaináth） | D $\bigcirc 2639^{\circ} 4$ | 4 | $3 \cdot 7$ | $5 \cdot 3$ | 1009 |  |  | ＋ 5698 | 1614 | 16145 | 1615 | 29 |
| ＂ 18 | 327 | V（Kárdo） | E o 836.4 | 4 | $3 \cdot 7$ | $5 \cdot 3$ | 891 |  |  | ＋ 399.9 | 1614.2 |  |  |  |
| ＂ 22 | 349 | IV（Kaináth） | D 02148.8 | 4 | 3.9 | $5 \cdot 3$ | 891 |  |  | ＋ 3999 | 16142 |  |  |  |
| Apr． 5 | 315 | I（Gori） | D 112.46 .2 | 4 | 3.9 | $5 \cdot 3$ | 818 |  |  | $-1603 \cdot 8$ | 1213.6 |  |  |  |
| Mar． 18 | 341 | V （Kárdo） | EI 037.5 | 4 | 3.6 | $5 \cdot 3$ | 818 |  |  |  |  |  |  |  |
| Apr． 10 | 335 | III（Siniána） | E 0488 | 4 | 3．9 | $5 \cdot 3$ | 849 |  |  | ＋261．6 | $1215^{\circ}$ | 1214.4 | 1214 | 3．8 |
| Mar． 18 | 347 | V（Kárdo） | D $01646 \cdot 5$ | 4 | 3.9 | $5 \cdot 3$ | 849 |  |  | ＋ 2616 | 1215 | 1214 | 1214 |  |
| ， 22 | 349 | IV（Kaináth） | D 02148.8 | 4 | 3.9 | $5 \cdot 3$ | 891 |  |  |  | $1214{ }^{\circ}$ |  |  |  |
| ＂ 18 | 327 | V（Kárdo） | E $\circ 836.4$ | 4. | $3 \cdot 7$ | $5 \cdot 3$ | 891 | 53 |  | － 3999 | 1214 |  |  |  |
| ＂ 22 | 341 | IV（Kaináth） | D $04140 \cdot 7$ | 4 | 3.8 | 5．3 | 1198 | 72 |  |  | $457 \cdot 1$ |  |  |  |
| ＂12，13 | 344 | VI（Pára） | E○ 04 177 | 8 | 3.7 | $5 \cdot 3$ | 1198 | 72 |  |  |  |  |  | 20 |
| 》 18 | 335 | V（Kárdo） |  | 4 | 3．9 | $5 \cdot 3$ |  |  |  |  |  | 458 | 9 |  |
| ＂ 13 | 334 | VI（Pára） | E $0836 \cdot 8$ | 4 | 3.9 | $5 \cdot 3$ | 367 | 76 |  |  | 460 |  |  |  |
| ＂ 22 | 332 | IV（Kaináth） | D ○ $3739^{\circ} 9$ | 4 | 3.9 | 5•3 | 908 |  |  | $-825 \cdot 2$ | $789 \cdot 3$ |  |  |  |
| Jan． 29 | 256 | VII（Wantra）${ }^{\circ}$ | E $02410 \cdot 7$ | 4 | 3.9 | $5 \cdot 3$ |  | 53 |  |  |  | $788 \cdot 5$ | 789 | $2 \cdot 9$ |
| Mar． 12 | 322 | VI（Pára） | E $0357 \cdot 8$ | 4 | 3.9 | 5•3 |  |  |  |  |  |  |  |  |
| ${ }_{1852}^{\text {Jan. }} 29$ | 313 | VII（Wantra） | D 018473 | 4 | 3.8 | $5 \cdot 3$ | 979 | 48 |  | ＋ 3287 | $787 \cdot 6$ |  |  |  |
| Jan． 233 | 243 | V（Kárdo） | D 02814.5 | 6 | 3.9 | 5.5 | 1661 |  |  |  |  |  |  |  |
| „31，Feb． 2 | 324 | VIII（Dhámanwa） | EO 4004 | 8 | 3.8 | $5 \cdot 4$ | 1661 | 106 |  | － 787.4 | $427^{\circ}$ |  |  |  |
| Feb． 5 | 453 | VI（Pára） | Do 888 | 4 | 3.8 | $5 \cdot 4$ |  |  |  |  |  | $429{ }^{\circ}$ | 429 | 32 |
| ＂ 2 | 422 | VIII（Dhámanwa） | D $0541 \cdot 7$ | 4 | 13.8 | $5 \cdot 4$ | 903 | 29 |  | － 27 | 4313 |  |  |  |
| Mar． 13 | 355 | VI（Pára） | D o $637 \times 9$ | 4 | 3.9 | 5＊3 |  |  |  |  | $464 \cdot 4$ |  |  |  |
| Feb． 4 | 30 | IX（Moráli） | D○ 7 2：7 | 4 | $5 \cdot 5$ | $5 \cdot 3$ |  |  |  |  |  |  |  |  |
| Jan． 29 | 322 | VII（Wantra） | D ○ $1939^{\circ} \mathrm{r}$ | 4 | 3.8 | $5 \cdot 3$ | 809 | 49 | －060 | $-324 \cdot 8$ | $463 \cdot 7$ | $465 \cdot 8$ | 466 | 10 |
| Feb． 4 | 249 | IX（Moráli） | E $0740^{\circ} 2$ | 4 | 3.9 | $5 \cdot 3$ | 809 | 49 |  | － 3248 | 463 | 465 |  |  |


| Asironomical Date |  | Number and Name of Station | Observed Vertical Angle |  | Height in feet |  |  | $\begin{aligned} & \text { Terrestrial } \\ & \text { Refraction } \\ & \hline \end{aligned}$ |  |  | Height in feet of 2nd Station above Mean Sea Level |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1851 | $\left.\begin{gathered} \text { Mean of } \\ \text { Times } \\ \text { of obser-- } \\ \text { vation } \end{gathered} \right\rvert\,$ |  |  |  | ］ | 若 |  | 皆 |  |  | $\underset{\text { Trigono }}{\text { Res }}$ | metrical <br> ults |  |  |
|  |  |  |  |  |  | 急 |  | $\stackrel{\square}{\square}$ |  |  | By each deduc－ tion | Mean | Result |  |
|  | h m |  | ○ , " |  |  |  | $"$ |  |  |  |  |  |  | feet |
| Mar．$\quad 4$ | 331 | X（Warsora） | $\text { D o } 219.6$ |  |  |  |  |  |  |  |  |  |  |  |
| Feb． <br> 1852 | 310 | IX（Moráli） | D o 855．3 | 4 | $4 \cdot 3$ | $5 \cdot 3$ | 709 | 21 | 029 | $+693$ | $469{ }^{2}$ |  |  |  |
| ＂ 5 | 335 | VI（Pára） | Do 821.0 | 4 | 4.0 | 5＊4 |  |  |  |  |  |  |  |  |
| Jan． 17 | 248 | X（Warsora） | D $0115 \%$ | 4 | $3 \cdot 8$ | $5 \cdot 5$ | 578 |  | － 010 | $-60 \cdot 3$ | $398 \cdot 6$ |  |  |  |
| ＂31，Feb． 2 | 329 | VIII（Dhámanwa） | D o 82.3 | 8 | 4.0 | 5.4 | 872 | 22 |  | － 28.0 | 401＊2 | $398 \cdot 2$ |  |  |
| $" 18511^{16}$ | 340 | X（Warsora） | Do 5 51．2 | 6 | $4 \cdot 3$ | 5．5 | 872 | 22 |  | － 28.0 | 4012 | 3982 | 398 | 25 |
| Feb． 4 | 310 | IX（Moráli） | D o 855．3 | 4 | 4.3 | $5 \cdot 3$ |  |  |  |  |  |  |  |  |
| Mar．$\quad 4$ | 331 | X（Warsora） | D ○ 219.6 | 4 | $3 \cdot 9$ | $5 \cdot 3$ | 709 | 21 |  | $-69 \cdot 3$ | 3948 |  |  |  |
| Feb．$\quad 5$ | 327 | IX（Moráli） | D ○ II 34.5 | 4 | $3 \cdot 7$ | 5＊3 | 604 | 16 |  |  |  |  |  |  |
| 25 | 256 | XI（Rakhiál） | E $0152 \cdot 1$ | 4 | $3 \cdot 9$ | $5 \cdot 2$ | 604 | 16 |  | $-119.2$ | $346 \cdot 6$ |  |  |  |
| Mar．$\quad 4$ | 440 | X（Warsora） | Do 8 4I•6 | 6 | $4 \cdot 3$ | 5＊3 |  |  |  |  |  | $346 \cdot 8$ | 347 | 22 |
| Feb． 26 | 452 | XI（Rakhiál） | D 0414.3 | 4 | $4 \cdot 4$ | $5 \cdot 2$ | 784 | 7 | －08 | $-5193$ | $346 \cdot 9$ |  |  |  |
| 5 | 316 | IX（Moráli） | D 0 10 4．8 | 4 | $3 \cdot 8$ | $5 \cdot 3$ |  |  |  |  |  |  |  |  |
| 8 | 330 | XII（Amalyára） | D ○ $146 \cdot 1$ | 4 | 3.9 | $5 \cdot 3$ | 753 | 25 |  | －91＇9 | 373.9 |  |  |  |
| ＂ 25 | 311 | XI（Rakhiál） | Do 23.3 | 6 | 3．9 | 5：2 |  |  |  |  |  | $374 * 3$ | 375 | 5 |
| ＂ $1852{ }^{8}$ | 320 | XII（Amalyára） | Do 5 56．1 | 4 | $3 \cdot 7$ | $5 \cdot 3$ | 489 | 11 | －022 | ＋ 27.9 | $374 * 7$ |  |  |  |
| Jan． 17 | 258 | X（Warsora） | D 01022.8 | 4 | $4 \cdot 2$ | 5＊5 |  |  |  |  |  |  |  |  |
| Heb． 9 | $3 \quad 2$ | XIII（Lakwára） | E $\bigcirc 121 \cdot 3$ | 6 | $3 \cdot 8$ | $5 \cdot 4$ | 584 | 27 | － 045 | $-100 \cdot 9$ | $297 * 3$ |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  | 2974 | 298 | 22 |
| ＂ 11 | 452 | XI（Rakhiál） | D o 8 $8 \cdot 1$ <br> D   | 6 |  |  | 711 | 12 |  | － 49.4 | $297 * 4$ |  |  |  |
| 9 | 347 | XIII（Lakwára） | Do $3^{20 \cdot 8}$ | 4 | 6•0 | $5 \cdot 4$ | 71 | 12 | 017 | －49 4 | 2974 |  |  |  |
| ＂ 11 | 344 | XI（Rakhiál） | D ○ 1027.5 | 6 | 4．1 | 5．5 |  |  |  |  |  |  |  |  |
| 17 | 46 | XIX（Sanoda） | Do 057.2 | 6 | $3 \cdot 8$ | $5 \cdot 4$ | 694 |  |  |  | $249 \cdot 6$ |  |  |  |
| 9 | 323 | XIII（Lakwára） | D－ $756 \cdot 9$ | 4 | $4 \cdot 1$ | 5＊4 |  |  |  |  |  | $250 \cdot 2$ | 250 | $\dagger$ |
| 17 | 349 | XIX（Sanoda） | D ○ 218.4 | 6 | 3＇9 | $5 \cdot 4$ | 563 |  | －038 | $-46 \cdot 7$ | $250 \cdot 7$ |  |  |  |
| 13 | 339 | XI（Rakhiál） | D o 728.9 | 4 | $3 \cdot 8$ | 5．5 |  |  |  |  |  |  |  |  |
| 16 | 323 | XIV（Bárdoli） | D o 258.3 | 4 | $3 \cdot 8$ | $5 \cdot 4$ | 647 | 15 |  | － $42 \cdot 8$ | 304＊0 |  |  |  |
| ＂ 17 | 38 | XIX（Sanoda） | D o 122.4 | 4 | $3 \cdot 8$ | $5 \cdot 4$ |  |  |  |  |  | $302 \cdot 5$ | 303 | 22 |
| 16 | 3 31 | XIV（Bárdoli） | D ○ 733.8 | 6 | $4 \cdot 1$ | $5 \cdot 4$ | 553 |  |  | ＋507 | $300 \cdot 9$ |  |  |  |
| 16 | 338 | XIV（Bárdoli） | D ○ 826.4 | 4 | $3 \cdot 8$ | $5{ }^{\circ} 4$ |  |  |  |  |  |  |  |  |
| 23 | 316 | XVI（Mirzápur） | EO 1880 | 4 | $3 \cdot 8$ | $5 \cdot 5$ | 459 |  |  | $-647$ | 2378 |  |  |  |
| ＂ $\begin{aligned} & 17 \\ & \\ & 23\end{aligned}$ | 318 | XIX（Sanoda） | D o 510.4 | 4 | 3．8 |  |  |  | $.027$ | $-13.7$ | $236 \cdot 5$ | 237.2 | 238 | 18 |
| 23 | 36 | XVI（Mirzápur） | Do 326.1 | 4 | $3 \cdot 8$ | $5 \cdot 5$ | 533 |  |  | － 137 | 2365 |  |  |  |



Fis. No. 17


$$
\text { Soat } 1 \text { Grah }=12 \text { Anibe a } \frac{1}{y 60380}
$$

. Digitized by Goo.gle

## KATTYWAR MERIDIONAL SERIES.

KATTYWAR MERIDIONAL SERIES.

## INTRODUCTION.

The Kattywar (Káthiáwár) Meridional Series of the South-West Quadrilateral is the chain of Principal Triangles that follows the meridian of $71^{\circ}$ from the parallel of $24^{\circ} 40^{\prime}$ to that of $20^{\circ} 40^{\prime}$. It originates in the deserts of Sind, crosses the Ran and eastern districts of Cutch (Kachh), and thence runs straight down the centre of the Kattywar peninsula terminating in the island of Diu (Dív). It emanates from the side Bhilgaon-Akoria of the Karáchi Longitudinal Series: it is joined in latitude $23^{\circ} 30^{\prime}$ from the west by the Cutch Coast Series at the side Chitror-Wándia, and in latitude $23^{\circ}$ from the east by the Guzerat (Gujarát) Longitudinal Series at the side Chalarwa-Sápakra: south of this it has no further connection with any exterior Principal Triangulation. In the simultaneous reduction, therefore, of the South-West Quadrilateral, the portion of the Series under review between Bhilgaon and Wandia entered into the two circuits of triangulation situated one on either side of it, the next portion between Wándia and Sápakra entered into the eastern of these circuits, whilst the southern half from Dúngarpar to Dangarwári did not enter into the reduction at all, being only an exterior pendent of the Quadrilateral without any closing check to shew the errors accumulated in length or direction.

The Kattywar Meridional Series consists of three compound figures, one hexagon, one pentagon, three quadrilaterals and seven single triangles, and extends over a distance of 275 miles. The portion south of latitude $23^{\circ}$ was designed in 1850 in conjanction with the Abu Meridional and the western section of the Guzerat Longitudinal Series, for the purpose of affording a trigonometrical basis for the Topographical Survey of Kattywar. The northern portion, that lies between the Guzerat and Karachi Longitudinal Series, was afterwards added with the double object of checking the triangulation of the former, and of enabling the borders of the Ran to be delineated.

During the winter of 1851-52 the Bombay Triangulation Party, under Lieutenant H. Rivers of the Bombay Engineers, was employed on the final work of the Abu Meridinnal and Guzerat Longitudinal Series; and by the end of that field season the former series
had been finished and all the angles of the latter between the stations of Mirzápur and Ingrori had been observed. In March and April 1852 during the prosecution of the principal work by the main body of the party, Mr. J. W. Rossenrode, the senior assistant, carried the approximate work of the Guzerat Longitudinal Series to its western extremity and also selected the station of Rangpur of the Kattywar Meridional Series and constructed a hexagon round it.

In November, 1852 the same party resumed work on the Guzerat Longitudinal Series at the side Ingrori-Degam, with the purpose of com-

Season 1852-53.
Personnel.
Lieutenant H. Rivers, Bombay Engineers, 1st Assistant.
Lieutenant D. J. Nasmyth, Bombay Engineers, 2nd Assistant.
Mr. T. Sanger, Sub-Assistant.
" J. DaCosta, "
" J. McGill, "
pleting it to the westward. On arrival at the station of Ingrori it was found that the heights of the towers would have to be considerably increased to render the Degám heliotrope visible. While this was being done, Lieutenant Nasmyth of the Bombay Engineers, who was temporarily in charge of the party, decided to make a reconnoissance of the country to the westward with the object of improving Mr. Rossenrode's approximate series. The hexagon of the Kattywar Meridional Series, that had been constructed around the station of Rangpur was, owing to the smallness of its sides, an eyesore he especially wished to remove; and as the part of the country in which it was situated was comparatively open and favorable for triangulation, there seemed no real necessity to limit the sides to five or six miles in length as Mr. Rossenrode had done. The result of the revision was, that the triangles were made more symmetrical and only seven stations were required to span the same extent of country as had under the original arrangement taken ten. By December 1st, Nasmyth, who had in the meantime been rejoined by Rivers, had in addition selected all the stations of the hexagon round Dúngarpur. The party then returned eastwards to Ingrori to take up the final work of the Guzerat Longitudinal Series.

Mr. DaCosta, who had been detached from the main body of the party, commenced early in the same month to carry the approximate work of the Kattymar Meridional Series southwards from the side Wankaner-Chatrikhera towards the island of Diu, and by the first of January he had selected sites for stations as far south as Mumaiya; four weeks later he was within a short distance of the sea coast. Here his progress was checked by the Portuguese authorities of Diu who were jealous of a British Officer even landing on their island, and greatly objected to a tower being built and observed from. It was, however, considered a matter of importance that a station should be established on the island, and Rivers, to whom DaCosta had referred the matter, explained to the Governor that his work was being carried on purely in the interests of science, and had no military or political aspects: he also offered, if he were allowed to erect and visit a station at Diu, to give the Portuguese the co-ordinates of their town, a gift however that they do not seem to have valued, as his request was refused. He then wrote for assistance to the Political Agent of Kattywar and to the Chief Secretary to the Bombay Government, through whose representations Mr. DaCosta was at length allowed to build the station of Dangarwári.

Early in January 1853 the principal angles of the western section of the Guzerat Longitudinal Series were completed, and those of the Kattywar Meridional Series commenced: the stations of Chalarwa and Dúngarpur had already been visited during the previous month and the angles at them observed. Observations of $\delta$ Ursæ Minoris for azimuth had also been taken at Dúngarpur during the last week in December. By the sixth of February the angles at fourteen more stations had been observed, when the operations were suddenly brought to a stand-still at Mumaiya through the towers at Rangpur (south)* and Konkáwáo which Mr. DaCosta had reported to be indispensable not yet having been built. It seemed from the appearance of the country that no towers were required, and while endeavours were being made to dispense with them, operations with the large theodolite were stopped. As, however, the surrounding stations had not a sufficiently commanding view, it was found impossible to make any new arrangements that did not reject many at which final work had already been completed. It was therefore thought best to continue the building of these stations and, until they should be ready, to proceed with the angles south of the difficult ray. Before starting southwards it was found necessary to substitute the station of Jitori for Piplia, although the latter had been observed from Mumaiya and Chitália. In spite of these delays by the 19th of March all the principal angles had been observed as far south as the sea coast; the party then returned to Rangpur (south)* where, under Mr. J. McGill's directions, a tower 35 feet high had been built as well as one 30 feet high at Konkáwáo, but on setting up the instrument it was evident that all chance of observing to the Konkáwáo signal had vanished with the cold weather. A shortlived glimpse of the heliotrope in the early morning and an unsteady glimmer of the lamp in the evening, faintly struggling over the heated table-land, were all that were seen.

In the meantime Mr. DaCosta had been despatched to the neighbourhood of Mumaiya to start the western branch of a minor longitudinal series across Kattywar. The first step that he found necessary was to change the site of Mumaiya, and having done that he selected a quadrilateral on the side Mumaiya-Konkáwáo; but he subsequently found that by means of a station at Trákura he could construct a somewhat symmetrical hexagon round the new station of Mumaiya, and he consequently abandoned the quadrilateral. At the suggestion of Mr. Sanger who had been conducting the approximate work of the eastern section of the Kattywar Longitudinal Series, the stations of Rangpur (south)* and Majyásar were then omitted from the principal work; and the large compound figure as it now exists round Mumaiya and Jitori was decided upon: the symmetry of the triangles was thus greatly improved, and no grazing rays had now to be observed. These new arrangements, however, necessitated the revisiting of the stations of Manáwa, Sarkala, Mumaiya, Bháyásar and Chitália, and also final observations at two new stations, Deo-ki-Galol and Trákura, and as the season was well advanced these were serious drawbacks: the observations also to and from Rangpur (south)* and Mujyásar were rendered useless except for secondary work.

In March, Rivers received intimation that furlough had been granted him, and he handed over charge of the work, and his connection with the Great Trigonometrical Survey,

[^37]VI-J.

## KATTYWAR MERIDIONAL SERIES.

which had lasted for nine years, now terminated. The field records of the triangulation of the South-West Quadrilateral, the greater portion of which are due to him, bear witness to his conspicuous abilities and his great talents as an observer. He eventually rose under the Bombay Government to high office in the Railway Department : he died in England in 1889.

After Rivers' departure Nasmyth was much delayed by cloudy weather, fogs and storms; and at the end of April he found that he had the observations at the two stations of Itria and Sakpur still to finish, ere the hiatus in the southern section of the principal series would be filled. An interval of fine weather enabled him to observe from both; and by the 10th of May the Kattywar Meridional Series had been completed from its junction with the Guzerat Longitudinal Series in latitude $23^{\circ}$ to the island of Diu on the southern coast of the Kattywar peninsula. Nasmyth now took up the work of the eastern branch of the Kattywar Longitudinal Series, and closed the field season at Gogha on May 25th. He was here joined by Mr. J. H. Smith, who had been examined a few weeks previously by Lieutenant Rivers at Bombay and had just been appointed to the Department. The party passed the recess season at Rajkot.

The character of the country traversed by the past season's operations was as follows :The northern portion was flat and a few of the rays about Rangpur and Chalarwa had only been visible with the aid of considerable refraction. In the neighbourhood of Dúngarpur is an extensive and high table-land, much intersected by streams-perhaps more numerous here for the extent of country than anywhere else in India-and to the south of this table-land were numerous peaks rising to 2,000 or 3,000 feet. The southern and south-western portion of the Kattywar peninsula is known as the Gir ; it is a wild mountainous and deserted tract and its soil is poor, unproductive and stony: the water is bad, causing dropsy and disease of the spleen. Prior to 1800 the country had been disturbed for centuries and had never been long enough under one Government to derive the advantages even of a bad one, till at last it became deserted except by robbers and outlaws, to whom it secured but too safe a retreat. In 1850 these latter were removed, but even now in 1889 the Gír can boast of no civilisation or productiveness.

Early in October 1853, the party took the field and marched to Konkáwáo, where

Season 1853-54.
Personnel.
Lieutenant D. J. Nasmyth, Bombay Ihngineers, 2nd Assistant.
Mr. T. Sanger, Sub-Assistant.
" J. DaCosta, n
" J. McGill,
" J. H. Smith, "

Lieutenant Nasmyth wished to observe Polaris at both elongations for azimuth. A dense fog prevailed and protracted the work from six days, the normal number, to ten; and though excessive heat by day and heavy dews by night fostered fever and ague, the observations were successful. The party returned to Rajkot on October 19th.

In November Mr. DaCosta left for Cambay (Khambhat), to complete the approximate work of the Sábarmati Minor Series: a few platforms had to be built, a few rays cleared, and in one or two instances the symmetry of the triangles required improvement. Towards the middle of December he crossed the Gulf to Gogha and took up the approximate work of
the Kattywar Coast Minor Series. In the meantime Mr. Sanger had been despatched northwards to the Ran with orders to select stations for a minor longitudinal series through Cutch, to provide for the geography of that province; on completing which he was directed to carry the approximate work of the Kattywar Meridional Series northwards from Rangpur and Kákraji and connect it with a side of the Karáchi Longitudinal Series.

On November 8th, 1853, Nasmyth himself resumed work on the Kattywar Minor Longitudinal Series, and was occupied with it till December 25th. He then took up the final observations of the Sábarmati Minor Series, which employed him till the middle of February. Having completed these he returned to Kattywar, and on February 18th set up his theodolite at Chalarwa, a station of the Kattywar Meridional Series, with the intention of carrying the Principal Triangulation across the Ran into Cutch. He now met with a series of grievous delays: hardly any of the rays were cleared, and on one of them when he had spent much time in cutting down the trees a village appeared in the way and the tower had to be raised. At Kákraji he was overtaken by a violent storm, and after that till the last week of April, when the weather became more suitable, the air was seldom clear. When the storm was over he hurried back to Pangasia and then crossed the Ran to Khánmír. Water had been gradually extending over the Ran, the mud was sofft, and quicksands existed in many places, and numerous dead bullocks and carts stuck fast afforded unanswerable proofs of the difficulties of crossing, while camels could only travel with half loads. The water was particularly salt and caused any lacerations on the wayfarers' feet to smart severely. The field season was closed at Chitror in the middle of May, the Kattywar Meridional Series having been completed to Pata-i-Sháh. The party, who had experienced intense heat during April and May, remained in Mándvi on the Cutch Coast till the rains set in: they then moved to Bhúj, where they established their recess quarters; but finding it unhealthy, they returned to Mándvi in September.

During the early part of the field season 1854-55, Lieutenant Nasmyth and Mr. McGill
Season 1854-55.
were at Karachi taking part in the measurement of the Base-line, that was being carried on under Major A. Strange with the Colby apparatus of compensation bars and microscopes, while Mr. Smith had lately quitted the party and joined Lieutenant J. F. Tennant, r.e.; thus Messrs. DaCosta and Sanger were the only two officers available for trigonometrical work in Kattywar.

Mr. Sanger's approximate work of the preceding year had made the Principal Series through Cutch to depend, at its junction with the Kattywar Meridional Series, on one singletriangle and one quadrilateral, in the latter of which were two angles of less than $30^{\circ}$; and this was a flaw that Lieutenant Nasmyth wished to remove. He therefore on leaving for Karáchi placed both his remaining assistants on the duty of improving Mr. Sanger's original design. The district of Wagan in which they were to operate is bounded on the one side by the sea and on the other by the Ran, whilst its breadth is too inconsiderable for symmetrical triangles. The proposed triangles that resulted from their joint labours were approved by Nasmyth though they were still wanting in symmetry. On completion of this work Mr.

Sanger took up the approximate work of the Guzerat Longitudinal Series east of Ahmedabad (Amdávád), and Mr. DaCosta continued his observations of the angles of the Kattywar Coast Minor Series, which he had been unable to finish the previous year.

Towards the end of the measurement of the Karáchi Base-line Lieutenant Nasmyth having fallen ill, was detained on this account for some weeks at Karáchi, and when sufficiently recovered to be moved, was taken to Bombay and thence to Mahábaleshvar. No final observations were in consequence made on the Kattywar Meridional Series during the season 1854-55. Mr. DaCosta completed the angles of the Kattywar Coast Minor Series on January 25 th, 1855 , and then took up the work of connecting the triangulation with mean sea level*. His first tidal station was selected in Miáni Harbour, 35 miles south-east of


#### Abstract

* The tide gauge with an Index 2 feet long was erected about one mile up the Vartho River, where there was a depth of water sufficient to indicate the rise and fall of tides, 576 feet from its left bank, and close N.W. of the town of Miáni, Porbandar State: the position was the most sheltered in the neighbourhood, free from the influence of waves, and protected by a bar at the mouth of the river which is remarkably narrow. The box contrivance of the gauge further protected it from the undulations in the water when there happened to prevail high wind during the observations. The rise and fall of tides were satisfactorily registered to 05 of a foot. The zero of the gauge was tested almost after every registration of the tides, with a 12 -inch theodolite duly adjusted for the observations and found constant. A masonry pillar had been built at the distance of 70 feet up the bank in which two stones were imbedded, one at the level of the ground having the numeral 39 engraved thereon and the other 1 foot above it at top having the numeral 40 engraved. This latter was found aftorwards by spirit-levelling with Gravatt's level to be 38.0800 feet above the lowest water mark, or $35 \cdot 6550$ feet above mean sea level as shewn at the end of this synopsis.


Synopsis of the Tidal Observations taken at Miáni Bandar with a Fixed Scale and Floating Index 2 feet long.

| Date |  | Mean Time of Observation | Reading on the Fixed Gauge | Range of Tide | $\begin{gathered} \text { Mean Level } \\ \text { of } \\ \text { Water } \end{gathered}$ | Temperature Fahrenheit | Remaris |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Month | Day |  |  |  |  |  |  |
| $\begin{gathered} 1855 \\ \text { February } \\ " \end{gathered}$ | 8 | $\begin{array}{rl}h & m \\ 13 & 15 \\ 19 & 55\end{array}$ | $\begin{aligned} & \text { feet } \\ & 5 \cdot 10 \\ & 3 \cdot 30 \end{aligned}$ | $\begin{aligned} & \text { feet } \\ & \times \because 80 \end{aligned}$ | feet 4.200 | $\begin{gathered} \circ \\ \ldots \end{gathered}$ | Clear. W. wind. <br> " " |
| " | 9 $"$ $"$ | $\begin{array}{rr}3 & 25 \\ 11 & 20 \\ 15 & 55 \\ 21 & 5\end{array}$ | 6.75 3.19 4.85 3.55 | 3.45 3.56 1.66 1.30 | $\begin{aligned} & 5^{\circ} 025 \\ & 4.970 \\ & 4.020 \\ & 4^{\circ} 200 \end{aligned}$ | $\cdots$ $\cdots 8$ 78 $\cdots$ | Very cloudy. Calm. High S.W. wind. S.W. wind. Calm. |
| "" | 10 | $\begin{array}{rr}3 & 5 \\ 12 & 40 \\ 17 & 50 \\ 22 & 50\end{array}$ | 6.40 2.98 4.75 3.90 | $\begin{aligned} & 2.85 \\ & 3.42 \\ & 1.77 \\ & 0.85 \end{aligned}$ | 4.975 <br> $4 \cdot 690$ <br> 3.865 <br> 4.325 | $\cdots$ <br> $\dddot{68}$ <br> $\cdots$ <br> .. | High S.W. wind. S.W. Wind. N. wind. |
| " | 11 | $\begin{array}{rr}3 & 50 \\ 13 & 55 \\ 19 & 45\end{array}$ | $\begin{aligned} & 5 \cdot 85 \\ & 2 \cdot 70 \\ & 5 \cdot 05 \end{aligned}$ | $\begin{aligned} & 1 \cdot 95 \\ & 3 \cdot 15 \\ & 2 \cdot 35 \end{aligned}$ | $\begin{aligned} & 4 \cdot 875 \\ & 4.275 \\ & 3 \cdot 875 \end{aligned}$ | 56 <br> 84 <br> .. | Very foggy. Calm. Calm. <br> " |
| " | 12 | $\begin{array}{rr}0 & 35 \\ 4 & 55 \\ 15 & 35 \\ 21 & 0\end{array}$ | $\begin{aligned} & 4 \cdot 48 \\ & 5 \cdot 70 \\ & 2 \cdot 67 \dagger \\ & 5.95 \end{aligned}$ | $\begin{aligned} & 0 \cdot 57 \\ & 1 \cdot 22 \\ & 3 \cdot 03 \\ & 3 \cdot 28 \end{aligned}$ | $\begin{aligned} & 4 \cdot 765 \\ & 5 \cdot 090 \\ & 4 \cdot 185 \\ & 4 \cdot 310 \end{aligned}$ | $\begin{aligned} & \cdots \\ & \dddot{82} \\ & 69 \end{aligned}$ | Clear. Calm. Sultry. " Very calm." |

[^38]Dwárka (Dvárka). His tide-gauge, which was self-registering, had been previously prepared at Mándvi under the direction of Lieutenant Nasmyth : it consisted of two boxes in one of which the float rose and fell with the surface of the water, while in the other a counterpoise to the float left cork indices at the highest and lowest points which it had reached. These indices, which were originally of card, slid up and down on a tightly stretched brass wire, and were held by their own friction in the places to which they were carried by the counterpoise: cork had to be substituted for card, as the friction of the latter upon wire was not sufficient to support its own weight. The gauge was supported on a scaffolding of

Synopois of the Tidal Obserrations taken at Miani Bandar-(Continued).

| D^tis |  | Mean Time of Observation | Reading on the Fixed Gauge | Range of Tide | $\begin{gathered} \text { Mean Level } \\ \text { of } \\ \text { Water } \end{gathered}$ | Temperature Fahrenheit | Remarig |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Month | Day |  |  |  |  |  |  |
| 1855 February " " " | 18 | $\begin{array}{rr}n & m \\ 2 & 10 \\ 6 & 0 \\ 16 & 45 \\ 22 & 5\end{array}$ | $\begin{array}{r} f e e t \\ 4.64 \\ 5.73 \\ 2.73 \\ 6.74 \end{array}$ | $\begin{aligned} & \text { foet } \\ & 1 \cdot 31 \\ & 1 \cdot 09 \\ & 3 \cdot 00 \\ & 4 \cdot 01 \end{aligned}$ | $\begin{array}{r} \text { feet } \\ 5 \cdot 295 \\ 5 \cdot 185 \\ 4.230 \\ 4.735 \end{array}$ | $\begin{gathered} \circ \\ 63 \\ 62 \\ \dddot{64} \end{gathered}$ | Calm. <br> N. breeze. <br> 8.W. wind. Calm. |
|  | 14 | $\begin{array}{rr}4 & 0 \\ 7 & 5 \\ 17 & 20 \\ 23 & 10\end{array}$ | 4.46 <br> 6.05 <br> 2.85 <br> 7.45 | $\begin{aligned} & 2 \cdot 28 \\ & 1 \cdot 59 \\ & 3.20 \\ & 4.60 \end{aligned}$ | $\begin{aligned} & 5 \cdot 600 \\ & 5 \cdot 255 \\ & 4 \cdot 450 \\ & 5 \cdot 150 \end{aligned}$ | 65 $\ldots$ $\cdots$ $\cdots$ | N. wind. Cloudy. High S. wind. Clear |
| " | 15 | $\begin{array}{rr}5 & 20 \\ 8 & 30 \\ 18 & 20 \\ 23 & 25\end{array}$ | $\begin{aligned} & 4 \cdot 45 \\ & 6 \cdot 67 \\ & 3 \cdot 12 \\ & 7 \cdot 78 \end{aligned}$ | $\begin{aligned} & 3 \cdot 00 \\ & 2 \cdot 22 \\ & 3 \cdot 55 \\ & 4 \cdot 66 \end{aligned}$ | $\begin{aligned} & 5.950 \\ & 5.560 \\ & 4.895 \\ & 5.450 \end{aligned}$ | 71 71 73 70 | Some clouds about the horizon. Calm. Cloudy. Calm. © Perigee 15.6 <br> S.W. breeze. <br> N. breeze. |
| " | 16 | $\begin{array}{rr}6 & 35 \\ 9 & 50 \\ 19 & 0 \\ 24 & 0\end{array}$ | $\begin{aligned} & 4 \cdot 25 \\ & 7 \cdot 03 \\ & 3 \cdot 18 \\ & 8 \cdot 00 \end{aligned}$ | $\begin{aligned} & 3 \cdot 53 \\ & 2 \cdot 78 \\ & 3 \cdot 85 \\ & 4 \cdot 82 \end{aligned}$ | $\begin{aligned} & 6 \cdot 015 \\ & 5 \cdot 640 \\ & 5 \cdot 105 \\ & 5 \cdot 590 \end{aligned}$ | $\cdots$ $\cdots$ 70 60 | ```Calm. High S. wind. Perigoe. Calm. "``` |
| " | 17 | $\begin{array}{rr}7 & 15 \\ 11 & 5 \\ 19 & 35\end{array}$ | $\begin{aligned} & 4 \cdot 06 \\ & 7 \cdot 25 \\ & 3.25 \end{aligned}$ | $\begin{aligned} & 3 \cdot 94 \\ & 3 \cdot 19 \\ & 4 \cdot 00 \end{aligned}$ | $6 \cdot 030$ $5 \cdot 655$ 5.250 | $\cdots$ $\cdots 0$ | s."̈W. wind. Calm. |
| " | 18 | $\begin{array}{cc}0 & 30 \\ 7 & 15 \\ 11 & 45 \\ 20 & 10\end{array}$ | $\begin{aligned} & 8 \cdot 30 \\ & 4 \cdot 08 \\ & 7 \cdot 43 \\ & 3 \cdot 42 \end{aligned}$ | $\begin{aligned} & 5 \cdot 05 \\ & 4 \cdot 22 \\ & 3 \cdot 35 \\ & 4 \cdot 01 \end{aligned}$ | $\begin{aligned} & 5.775 \\ & 6.190 \\ & 5.755 \\ & 5.425 \end{aligned}$ | 68 70 $\ldots$ $\ldots$ | W. breeze. Spring Tide. Very calm. N.E. wind. Calm. |
| " | 19 | $\begin{array}{rr}0 & 33 \\ 8 & 50 \\ 12 & 28 \\ 20 & 35\end{array}$ | $\begin{aligned} & 8 \cdot 28 \\ & 3 \cdot 90 \\ & 7 \cdot 15 \\ & 3 \cdot 40 \end{aligned}$ | $\begin{aligned} & 4 \cdot 86 \\ & 4 \cdot 38 \\ & 3 \cdot 25 \\ & 3 \cdot 75 \end{aligned}$ | $\begin{aligned} & 5 \cdot 850 \\ & 6 \cdot 090 \\ & 5 \cdot 525 \\ & 5 \cdot 275 \end{aligned}$ | … <br> $\cdots \cdots$ <br> $\cdots$ <br> $\ldots$ | S. breeze. <br> E. breeze. <br> W. wind. <br> Calm. |

$\mathbf{x}$ —J.
piles, which were forced into the ground by the ordinary plan of lashing boats to them at high-water and thus enabling their weight to exert a downward pull as the tide fell. These piles were securely strutted and cross-bars fixed to them, on which cradles rested at intervals of a foot for the support of the gauge. The tidal observations at Miani extended from February 8th to 23 rd inclusive, and exhibited a rise of 3.2050 feet as the extreme height of the tide above mean sea level. The zero of the gauge was referred to a stone masonry pillar which was connected both trigonometrically and by levelling with the adjoining station of Sarsad Máta of the Longitudinal Series of Kattywar.

Symopsis of the Tidal Observations taken at Midni Bandar-(Continued).

| Datis |  | Mean Time of Observation | Reading on the Fixed Gauge | Range of Tide | $\begin{gathered} \text { Mean Level } \\ \text { of } \\ \text { Water } \end{gathered}$ | Temperature Fahrenheit | Reycatig |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Month | Day |  |  |  |  |  |  |
| 1855 February " " " | 20 $"$ $"$ | $\begin{array}{rr}\pi & m \\ 0 & 53 \\ 9 & 45 \\ 13 & 5 \\ 21 & 13\end{array}$ | $\begin{aligned} & \text { feet } \\ & 8 \cdot 12 \\ & 3.67 \\ & 6.80 \\ & 3.40 \end{aligned}$ | $\begin{aligned} & \text { feet } \\ & 4^{\cdot} \cdot 72 \\ & 4^{\cdot} \cdot 45 \\ & 3 \cdot 13 \\ & 3^{\cdot} \cdot 40 \end{aligned}$ | $\begin{aligned} & \text { feet } \\ & 5 \cdot 760 \\ & 5 \cdot 895 \\ & 5 \cdot 235 \\ & 5 \cdot 100 \end{aligned}$ | … <br> $\cdots$ <br> $\cdots$ <br> $\ldots$ | Calm. <br> 8. $\vec{W}$. wind. Calm. |
| " | 21 | $\begin{array}{rr}1 & 15 \\ 10 & 23 \\ 14 & 28 \\ 21 & 13\end{array}$ | $\begin{aligned} & 7 \cdot 86 \\ & 3 \cdot 45 \\ & 6 \cdot 35 \\ & 3 \cdot 48 \end{aligned}$ | $\begin{aligned} & 4.46 \\ & 4.4 \mathrm{I} \\ & 2.90 \\ & 2.87 \end{aligned}$ | $\begin{aligned} & 5.630 \\ & 5 \cdot 655 \\ & 4.900 \\ & 4.915 \end{aligned}$ | … $\cdots$ $\cdots$ $\cdots$ | Very high W. wind. Calm. |
| " | 22 | $\begin{array}{ll}1 & 45 \\ 11 & 13 \\ 15 & 40 \\ 21 & 33\end{array}$ | 7.47 3.16 5.72 3.65 | 3.99 $4 \cdot 31$ 2.56 2.07 | $\begin{aligned} & 5.475 \\ & 5 \cdot 315 \\ & 4.440 \\ & 4.685 \end{aligned}$ | … $\cdots$ … | W". wind. Very high W. wind. Calm. |
| " | 23 | 2 11 80 | 6.73 2.86 | $\begin{aligned} & 3 \cdot 08 \\ & 3 \cdot 87 \end{aligned}$ | $\begin{aligned} & 5 \cdot 190 \\ & 4 \cdot 795 \end{aligned}$ | -.. | W.'breese. |



Similar observations were taken at Diu*, in the creek which separates that island from the mainland; and the means adopted for putting up the gauge and for observing the range of the tide were identical with those followed at Miáni Bandar. As the Portuguese authorities

[^39]Synopsis of the Tidal Observations taken at Div Creek with a Fired Soale and Floating Index 8 feot long.

refused to allow a pillar to be built, the mark to which the zero of the gauge was referred was engraved upon the stone pavement of a martello tower that guarded the ferry, and was con-

Synopsis of the Tidal Observations taken at Diu Creek-(Continued).

| Date |  | Mean Time of Observation | Reading on the Fixed Gauge | Range of Tide | Mean Level of Water | Temperature Fahrenheit | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Month | Day |  |  |  |  |  |  |
| March | 11 | $\begin{array}{ll}h & m\end{array}$ | $\begin{aligned} & \text { feet } \\ & 7 \cdot 60 \end{aligned}$ | $\begin{aligned} & \text { feet } \\ & 0 \cdot 92 \\ & 4.26 \end{aligned}$ | $\begin{gathered} \text { feet } \\ 7 \cdot 140 \\ 5.470 \\ 5.795 \end{gathered}$ | ..$\cdots$$\cdots$ |  |
| " | " | $\begin{array}{ll}3 & 55\end{array}$ | $\begin{aligned} & 3.34 \\ & 8.25 \end{aligned}$ |  |  |  | Very calm. <br> N.E. wind. Neap Tide. Calm. |
| " | \% | 195 |  | 4.91 |  |  |  |
| " | 12 | $\begin{array}{rr}0 & 8 \\ 3 & 45\end{array}$ | $\begin{aligned} & 7 \cdot 36 \\ & 7 \cdot 53 \end{aligned}$ | $\begin{aligned} & 0.89 \\ & 0.17 \end{aligned}$ | 7.805 | ... | $\begin{aligned} & \text { ". } \\ & \text { N.". wind. } \\ & \text { Calm. } \end{aligned}$ |
| " | " | 1033 | 3.75$\mathbf{8 . 6 8}$ | $3 \cdot 78$ | 5.640 | ... |  |
| " | " | $20 \quad 58$ |  |  |  | $\cdots$ |  |
| " | 13 | 20 | 7.437.20 | 1.25 | 8.055 | *- | n |
| " | " | 455 |  |  | 7.315 5.270 |  |  |
| " | " | 2125 | 3.34 8.78 | $\begin{aligned} & 3 \cdot 86 \\ & 5 \cdot 44 \end{aligned}$ | $\begin{aligned} & 5.270 \\ & 6.060 \end{aligned}$ | ... | " |
| " | 14 |  | 6.63 6.88 | 2.15 0.25 | $\begin{aligned} & 7.705 \\ & 6.755 \end{aligned}$ | ** | Flashes of lightning on the E. Cloudy. <br> [W. breeze. |
| " | " | 5 13 13 | 3.349.15 | 3.545.81 | $5 \cdot 110$ | ... | S.W. wind. |
| " | " | 2235 |  |  | 6.245 | ... | " |
| " | 15 | $\begin{array}{ll}4 & 10 \\ 7 & 40\end{array}$ | $6 \cdot 10$7.00 | 3.050.90 | 7.625 6.550 | - 0 | Calm. <br> High S.W. wind. <br> Very rough. |
| 3 | " |  |  |  | 6.550 4.950 | ... |  |
|  | " | $\begin{array}{ll}15 & 30 \\ 23 & 30\end{array}$ | $\begin{aligned} & 2 \cdot 90 \\ & 9.30 \end{aligned}$ | 4.10 6.30 | 4.950 6.050 | $\ldots$ |  |
| " | 16 | 456 | 4.737.30 | $\begin{aligned} & 4.47 \\ & 2.57 \end{aligned}$ | $\begin{aligned} & 6 \cdot 965 \\ & 6 \cdot 015 \end{aligned}$ | ... | Calm. © Perigee 15 ${ }^{\text {d }} \mathbf{2 3}$ |
| " | " | 9 16 16 |  |  |  | ... | s.W. wind. <br> B.W. breeze. Very rough. |
| " | " | 2345 | 9*35 | $\begin{aligned} & 4 \cdot 95 \\ & 7 \cdot 00 \end{aligned}$ | $\begin{aligned} & 4 \cdot 825 \\ & 5 \cdot 850 \end{aligned}$ | ... |  |
| " | 17 | $\begin{array}{ll}5 & 25 \\ \\ 10\end{array}$ | $\begin{aligned} & 3.70 \\ & 8.05 \\ & 2.15^{*} \\ & 9.67 \end{aligned}$ | $\begin{aligned} & 5 \cdot 65 \\ & 4 \cdot 35 \\ & 5 \cdot 90 \\ & 7 \cdot 52 \end{aligned}$ | $\begin{aligned} & 6 \cdot 525 \\ & 5 \cdot 875 \\ & 5 \cdot 100 \\ & 5 \cdot 910 \end{aligned}$ |  | Very calm. <br> N.E. wind. Calm. <br> " |
| " | ", | $\begin{array}{ll}10 & 40 \\ 17 & 10\end{array}$ |  |  |  | ... |  |
| " | " | 24 - |  |  |  |  |  |

* Reading of lowest water mark.

nected with the principal station Dangarwari of the Kattywar Meridional Series. The observations at Diu extended from the 3rd to the 17th March and exhibited a rise of 3.4777 feet as the extreme height of the tide above mean sea level. Mr. DaCosta next moved the apparatus to Bhávnagar, but his scaffolding had hardly been set up when it was knocked over by the waves. Despairing after repeated failures of ever being able to secure a firm foundation for the piles at this place, with the limited means at his disposal, Mr. DaCosta embarked in April for Sikotar Máta at the head of the gulf of Cambay. This station had been connected with the Abu and Guzerat Principal Series by the Sábarmati Minor Series which had been carried out for that special purpose : its site had been fixed upon by Nasmyth himself, after much trouble and consideration, and though no tidal observations had as yet been taken there, great importance had been for several years attached to it as a tidal station both by Rivers and Nasmyth.* It proved, however, to be most unfortunately situated, for observations had hardly been begun when the bore came up the Sábarmati and swept away the scaffolding and gauge, the observer himself having a narrow escape. After this mishap Mr. DaCosta rejoined Lieutenant Nasmyth at Mahábaleshvar where he passed the hot weather of 1855, moving to Poona (Puna) at the commencement of the rains. The following winter he proceeded again to Cambay to search for a suitable site for a tidal station, but all his endeavours to erect the gauge failed : he therefore stored his appurtenances at Vadgám and proceeded to Cutch on trigonometrical work.

In November, 1855, Lieutenant Nasmyth commenced the final angles of the Cutch

Season 1855-56.
Persominel.
Lieutenant D. J. Nasmyth, Bombay Engineers, 1st Assistant.
Mr. J. DaCosia, Sub-Assistant.
"T. Sanger, "

| \# J. McGill, |  |
| :--- | :--- |
| " McGill, |  | Coast Principal Series, and remained employed on them till the end of December. He then took up the work of the northern section of the Kattywar Meridional Series, as he apprehended difficulties later on in the season in observing signals at stations near the Ran. He crossed the Ran into Párker early in January, the distance between the terra firma of Vágad and that of Párker being about 40 miles. The party rested for one night at Bela before crossing, and the march was made without difficulty, the road being dry all the way.

The first station visited in Párker was Kálunjhar, situated in a group of granite hills, formerly notorious as the refuge of robbers: the instrument here rested on solid rock, as it did also at both Khársar and Viráwáh. By January 31st, 1856, in spite of unfavorable weather at the desert stations of Jhund, Bhilgaon and Akoria, $\dagger$ the final observation at the six stations north of the Ran had been completed.

On his return to Bela, Nasmyth found the platform Kad been tampered with, but as the upper station mark seemed undisturbed he set up his instrument and observed the two northern angles. After Iwália, however, had been visited and the quadrilateral Iwalia-Bela-

[^40]Kálunjhar-Viráwáh completed, it became evident that an error had crept into the work; so he revisited Bela, and took observations from the lower station mark, finding differences in both angles between the later and earlier results sufficiently large to prove the necessity of the repetitions. At Pata-i-Sháh a mistake appeared in the approximate work, one of the surrounding stations named Bhújnari, situated to the north-west, not being visible. Ultimately it was found necessary to substitute Dajka for it, a change that entailed the necessity of again visiting Iwália and Bela. In March Nasmyth and many natives of the party were attacked by dysentery, a disease always prevalent on the borders of the Ran, owing to a peculiar property in the water, and an interruption in the work ensued.

From Bela he went to Gángta, which is situated on a small preserve of grass in the midst of the Ran ten miles from the nearest drinking water; and which was formerly a stronghold of marauders by whom the district of Vágad was overrun. The station is at the western angle of the Dájka pentagon, and the angles between Bela and Dájka and Dájka and Kanduka were now observed. This station was, also, afterwards utilized in the principal work of the Cutch Coast Series as one of the stations of the Kakarwa pentagon, and the two angles on either side the Gángta-Kakarwa ray were observed. As the Kattywar Meridional and Cutch Coast Series both consisted of principal triangulation and were of equal value, the employment of Gángta as a principal station in each rendered the figure at their junction one of great complexity. If the figural reduction had been carried out rigorously all the triangles within the periphery Gángta-Bela-Iwália-Pata-i-Sháh-Khánmír-Kesmára-Kákraji Mália-Wándia-Sakpur-Ráhida-Ran-Gángta would have had to be regarded as belonging to one compound geometrical figure : the fact too that the interior angles of the quadrilateral Gángta-Kanduka-Chitror and Nara had not been observed would if anything rather have increased the complication. The reduction was, however, not carried out rigorously: the Dajka pentagon was first reduced independently of any exterior observations, and then in the following order the Kanduka-Khánmír quadrilateral, the Monába hexagon, and the Nara-Wandia quadrilateral were taken in hand. When therefore it came to the turn of the Kakarwa pentagon, three of its angular points, Gángta, Nara and Sakpur had already been fixed: in addition thus to the seven geometrical conditions that have to be satisfied in the case of every complete simple pentagon, two others entered into this figure; the sum of the two angles at Nara had a fixed value, and the side Sakpur-Nara had to bear a fixed ratio in length to the side Nara-Gángta.

Nasmyth was very anxious to carry the northern section of the Kattywar Meridional Series as far as the parallel of $23^{\circ}$, and to also connect it with its southern section before the close of the field season and thus to complete the circuit of the triangulation formed by the sections of the Karáchi and Guzerat Longitudinal Series that lay between the meridians of $71^{\circ}$ and $73^{\circ}$ with the northern section of the Series under review and the Abu Meridional Series, and test the accuracy of the triangulation. Towards the end of April the weather was very unfavorable: the dry loam of the Ran was raised by the least breeze, the atmosphere clouded by it and signals obscured. The observations both at Wándia and Monába extended over a
week. Work had eventually to be brought to a close at Kesmára at the beginning of May; and the junction between the northern and southern sections of the Series postponed till the following year. During the summer of 1856 the party recessed at Bhúj.

On August 31st, 1856, the party again took the field and was employed on the Cutch

Season 1856-57.
Personnel.
Lieutenant D. J. Nasmyth, Bombay Engineers, 1st $\Delta$ ssistant.
Mr. J. DaCosta, Sub-Assistant.
" T. Sanger, "
" J. McGill, "
" J. McGill, "

Coast Series till the middle of October: Nasmyth then resumed the final observations of the Kattywar Meridional Series; and as the triangle on the north side of the ray Monába-Wándia, which was one of the last completed in the previous season, had exhibited a large error, he observed two of its angles again, on the same parts of the limb as before. The new values, however, came out almost identical with the former but with smaller weights.

At all the stations in Kattywar the platforms were found destroyed, and the markstones carried away. At Wánkáner and Dúngarpur the lower mark-stone had to be dug down to and was found intact, but at Rangpur and Chalarwa great difficulty was experienced in recovering the original positions of the marks. Whilst these platforms were being re-built, Nasmyth returned to Cutch and took up the observations at stations north of the Ran. Throughout November the signals were very bad : different hours during the night were tried but the lamps were at all times unsteady. One triangle exhibited an error of $5^{\prime \prime}$, another of $4^{\prime \prime}$, and a third of $\mathbf{3}^{\prime \prime}$; but as repetitions of observations did not seem to improve the results, Nasmyth decided that he had no alternative but to push on. He afterwards attributed these errors to an earthquake that occurred in November 1856. On December 21st he completed the observations of the Kattywar Meridional Series at Wánkáner, and again took up those of the Cutch Coast.

All the angles of the Kattywar Meridional Series were observed with Troughton and Simms' 18-inch Theodolite No. 2*, and were taken on six pairs of zeros. The method adopted of changing zero was one that had been invented by Lieutenant Rivers and first employed by him on the Abu Meridional Series; by it each change of zero was made to fulfil the following conditions:-(1) In the degrees each zero was $10^{\circ}$ in excess of the preceding; (2) At each zero a different $10^{\prime}$ graduation in the degree was intersected; (3) Each zero was a different number of minutes from the division to be intersected, being in three cases to the right of that division and in three to the left. The method is fully described in the Introduction to the Guzerat Longitudinal Series.

On the completion of the simultaneous reduction of the South-West Quadrilateral, in which the northern half of the Kattywar Meridional Series was included, it was found that the errors that had actually been dispersed between the side of origin Bhilgaon (LXIV)-

[^41]Akoria (LIII) and the terminus Chalarwa (xvili)-Sápakra (xxi), a distance of 132 miles, were:-

$$
\begin{aligned}
& \text { In Latitude of Chalarwa (xvir) ... ... ... }+\mathrm{o}^{\prime \prime} \cdot 083 \\
& \text {, Longitude of } \quad \text {... ... ... }+0 \cdot 060 \\
& \text {, Azimuth of Chalarwa (xvmi)-Sápakra (xxi) - 3•097 } \\
& \text { In Side }\left\{\begin{array}{cccc}
\text { Logarithm of feet } & \ldots & \text {... } & \text {... } \\
\text { giving a ratio of about } 1 \cdot 67 & \text { inches per mile. }
\end{array}\right.
\end{aligned}
$$

Astronomical observations for azimuth have been taken at two stations of the Kattywar Meridional Series, viz., Dúngarpur and Konkáwáo.

## Kattywar Minor Longitudinal Series.

This Series cuts the Kattywar Meridional at right angles in latitude $22^{\circ}$ : the figure at the junction is the great compound figure round the stations of Mumaiya and Jitori which appertains to the meridional chain and forms the connecting link between the eastern and western branches of the longitudinal. The eastern branch starts from the principal side Itria-Sakpur and extends to Gogha on the gulf of Cambay, a distance of 53 miles: it consists of two quadrilaterals and one single triangle. The western branch starts from the principal side Trákura-Deo-ki-Galol and extends to Sarsad Máta on the sea coast, a distance of 84 miles: it consists of three quadrilaterals. The angles of the Longitudinal Series were taken, like those of the Meridional Series, with Troughton and Simms' 18 -inch Theodolite No. 2, but on only three pairs of zeros instead of six: in consequence of this change from the orthodox method of observing, the Longitudinal Series has had to be regarded as Secondary.

In February, 1853, Mr. Sanger, on return from sick-leave, joined Lieutenants Rivers and Nasmyth at Mumaiya, and was directed to take up the approximate work of the eastern branch of the Kattywar Longitudinal Series. By April 1st, he had selected five stations which brought him to Gogha on the Coast; he then returned to the centre of the peninsula and commenced the approximate work of the western branch, and before the end of the field season he had constructed three quadrilaterals and reached the terminal station of Sarsad Máta.

By May 10th, 1853, Lieutenant Nasmyth having completed at Itria and Sakpur the observations of the final angles on the southern section of the Kattywar Meridional Series, proceeded to Chamárdi to commence the final work of the Longitudinal Series. He was at first so much delayed by bad weather that he decided to take the angles on but three pairs of zeros instead of six, a change that he considered justifiable owing to the shortness of the branch series, but even then his progress was bad. At Pálitána the station had been selected
on a temple, and there was in consequence no isolation for the instrument and the movements of the observer affected the levels. Another spot had to be chosen, but, owing to the lateness of the season and the consequent unfavorableness of the weather, the distant signal of Itria could not be observed. With this exception all the observations on the eastern branch of the Series were completed.

On November 8th, 1853, Lieutenant Nasmyth commenced the final work on the western branch of the Kattywar Longitudinal Series : as this was to be also a short chain he decided to work as before with only three changes of zero. At starting he had much diffculty in procuring bearers for his instrument; there were none to be had in Rajkot; exorbitant wages were demanded by those at Ahmedabad, and he had eventually to send to the Deccan for them. He completed the western branch without meeting with any interruptions, and he then proceeded to Pálitána to observe the one absent ray of the eastern branch, when he found that all the stations near Pálitána had been tampered with and several destroyed. By December 25th, 1853, all the angles of the Kattywar Longitudinal Series from Sarsad Máta to Gogha had been observed.

## Kattywar Coast Minor Series.

This Series, which is of great geographical value, starts from Gogha on the Gulf of Cambay in the very east of the peninsula, follows exactly the Coast-line of Kattywar by Diu, Porbandar, Dwárka and Navánagar, and ends at the head of the Gulf of Cutch at its junction with the Ran. It may be compared to a rhombus, one diagonal of which runs north and south, the other east and west, and one side of which-the north-eastern-is missing. At both extremities of its meridional diagonal it is connected with points of the Kattywar Meridional Series, and similarly at both extremities of its longitudinal diagonal with points of the Kattywar Longitudinal Series. Each of its three sections, the south-eastern, the south-western and the north-western, have had their own individual errors dispersed over their respective lengths, and the error accumulated in one has not been carried on into the next.

The Coast Minor Series emanates, at its eastern angle, from the side Gogha-Trimbak of the Kattywar Longitudinal Series, and terminates at its northern corner on the side Mália-Pangasia of the Kattywar Meridional Series. At its southern corner at Diu the two fixed principal stations of the Kattywar Meridional Series, viz., Nántej and Dangarwári, have been utilised also as stations of the Coast Minor Series, and at the western corner the same procedure has been followed with regard to the three stations Patelka, Sarsad Máta and Sátbagar of the Kattywar Longitudinal Series. The Series for the greater part of its length is a simple chain of single triangles with sides from six to eight miles long; at the western corner however it loses this form for a short space and becomes a network, the change having been made with the object of fixing the island of Ajár and the headlands on the rugged coast of the Dwárka Peninsula.

The Coast Minor Series was begun in December, 1853, by Mr. DaCosta who took up its approximate work at Gogha. By March 27th, $185 \ddagger$, he had selected all the stations on the three sides of the rhombus, built the pillars and cleared the rays. He then began to observe the final angles, which he had been instructed to do with a 12 -inch theodolite on one pair of zeros. In April the winds were scorching and the heat overpowering; it was rarely that any thing animate except the surveyors was seen stirring during the day; two of the party died of sunstroke and there were fourteen cases of guinea worm. Mr. DaCosta closed work on June 18th, 1851, having finished the observations of the angles from Dwárka to Diu and from Diu to Gogha. The final angles on the north-western section of the Coast Series, a few of which had to be revised in November, 1859, from Dwárka to the Ran of Cutch, were observed by the same officer during November and December, 1854, and January, 1855, his average triangular error being $15^{\prime \prime}$.

The triangulation on the Coast of Kattywar to the north-west of the Gulf of Cambay has not been incorporated in the Kattywar Coast Minor Series: the stations of Gogha and Bhávnagar belong to the Kattywar Longitudinal Series, those of Bharbhír and Haibatpur to the Kattywar Minor Meridional Series No. IV, and the triangles thenceforward as far as the head of the gulf to the Sábarmati Minor Series.

## The Kattywar Minor Meridional Series.

There are four Minor Meridional Series traversing the peninsula of Kattywar, numerically designated from west to east No. I, No. II, No. III and No. IV. They follow respectively the meridians of $70^{\circ}, 70 \frac{1}{2}^{\circ}, 71 \frac{1}{2}^{\circ}$ and $72^{\circ}$, and as the Principal Meridional Series itself runs down the meridian of $71^{\circ}$, they divide the whole of Kattywar into strips half a degree of longitude in breadth. Nos. I and II each start at their southern extremity from a side of the south-western section of the Kattywar Coast Minor Series, and join on to its northwestern section each at two sides of the latter : the station Gop Gavar, of the Kattywar Minor Longitudinal Series, has heen utilized as a station of No. I Minor Series, and though no stations of the former could be incorporated in No. II Minor Series, yet checks on the work were obtained by signals at Mevása, Osham being intersected from the stations of this series. No. I Minor Series is 60 miles long and contains 12 single triangles and one quadrilateral. No. II Minor Series is 112 miles long and contains 19 single triangles and one quadrilateral.

The Minor Meridional Series No. III starts near Rajula from a side of the southeastern section of the Kattywar Coast Minor Series and closes on the principal side NárechánaCharari of the Guzerat Longitudinal Series: two of the stations, Itria and Sakpur of the Kattywar Meridional Series, situated too at the extremities of one ray, were incorporated. It is 125 miles long, and consists of one pentagon, three quadrilaterals and 16 single triangles.

The Minor Meridional Series No. IV starts from the side Bhávnagar-Chamárdi of
the Kattywar Longitudinal Series and closes on the principal side Ingrori-Kárigangar of the Guzerat Longitudinal Series. It is 80 miles long, and consists of one compound and 14 single triangles.

The average length of the side in these four minor series is from 10 to 14 miles : all the angles were observed with 'Troughton and Simms' 18-inch Theodolite No. 2 on two pairs of zeros, the average triangular error being no larger than that on triangulation observed with the full number of zeros.

The approximate work of the Minor Meridional Series No. I was begun in February, 1859, by Mr. DaCosta; the observations of the final angles were made by Lieutenant Nasmyth between April 1st and 28th, 1859. On the completion of this series a check was obtained for the Coast Minor Series executed by Mr. DaCosta five years previously with a 12 -inch theodolite: comparisons of the values of common sides shewed an error of 0.60 of an inch per mile generated in the $2 i 0$ mile circuit by Gop Gavar, Mumaiya, Diu and Bagasra,-an error of $3.0 \pm$ inches per mile in the 130 mile circuit by Gop Gavar, Bagasra and Sarsad Mátaof $2 \cdot 43$ inches in the 310 mile circuit Gop Gavar, Mumaiya, Diu and Sarsad Máta-and of 18 of an inch in the 140 mile circuit Gop Gavar, Gurgat and Navánagar.

Whilst Nasmyth was observing the angles of the Minor Meridional Series No. I, Mr. McGill was following him laying down secondary points, and Mr. DaCosta was engaged on the selection of the stations for the Minor Series No. II.

In September, 1859, Lieutenant C. T. Haig of the Bombay Engineers was appointed a Second Assistant in the Great 'Trigonometrical Survey, and a few weeks later joined the Bombay 'Triangulation Party at Rájkot. On arrival he found orders attaching lim temporarily to the Okhámandal Field Force with which Captain Nasmyth was also serving, and for the next two months both officers were employed as military engineers at the siege of Dwarka. On the fall of that place in December, 1859, they rej،ined the Bombay Survey Party and for the next month were employed in completing some minor triangulation on the south coast of Cutch.

In January, 1860, Captain Nasmyth commenced observing the angles of the Minor Series No. II, followed as before by Mr. McGill on secondary work: he completed it on February 29th and then handed over the party to lieutenant Haig, and on March 10th he left for Bombay prior to proceeding to England on furlough. Mr. DaCosta had in the meantime selected and built all the stations of the Minor Series III. On taking over charge Lieutenant Haig took up the final work of Minor Series No. III, which he completed on April 29th. The party then retired to Rajkot where they had established their recess quarters.

In November, 1860, Mr. DaCosta was detached by Lieutenant Haig to Bhávnagar with orders to connect the eastern extremity of the Kattywar Longitudinal Series with the southern extremity of the Sálarmati Minor Series by menns of a small chain of single triangles. The stations of the Kattywar Minor Meridional Series No. IV had been previously
selected as far north as Haibatpur by Mr. DaCosta, and the pillars both at Haibatpur and Bharbhír had been built. By January 13th, 1861, he had completed the angles of the connecting chain, and had thus carried the final work of the Minor Series No. IV up to the side Haibatpur-Patna.

In April, 1863, an accident happened to the great theodolite on the Mangalore Meri-
Season 1863-64.
Perbonnel.
Captain C. T. Haig, R.E., 1st Assistant.
Mr. John McGill, Civil 2nd Assistant.
" G. A. Anding, 2nd Class Sub-Assistant.
" J. E. Donohoe, 3rd
" A. D. Christie, 3rd " "
The party started from Poona for Kattywar early in November, 1863 and arrived at Gogha on November 14th: Captain Nasmyth who was expected from England in the course of the field season, was to have command of the new topographical party, leaving Captain Haig in independent charge of the trigonometrical work.

The Kattywar Peninsula was now intersected, except on the meridian of $72^{\circ}$, at half degrees of longitude by Minor Meridional Series; it was also traversed by a longitudinal chain running east and west, and the whole was included by a Coast Series. On arrival, therefore, Haig himself took up the Minor Meridional Series No. IV, which was regarded as particularly important as it ran along the boundary between our own territory and that of the Chiefs of Kattywar. Commencing from Mr. DaCosta's side, Haibatpur-Patna, Haig proceeded north, selecting the stations and building the pillars, everywhere meeting with great obstruction from the villagers. Having closed the approximate work on the principal side Kárigángar-Ingrori of the Guzerat Longitudinal Series, he began about the middle of February observing the final angles, working southwards. At the southern extremity of the Series he re-observed Mr. DaCosta's angles, fiuishing the work on May 2nd, 1864.

A few days after, accompanied by Messrs. Christie and Donohoe and five of the native establishment, he left Bhávnagar in a steamer bound for Surat intending to thence proceed by rail to Poona. Before reaching Surat the party experienced considerable danger from the steamer leaking; in fact so critical was their position that the master of the ship, a Parsee, wanted Captain Haig and Mr. Christie to escape stealthily with him in the boat and leave the others to their fate. Captain Haig refused, and took steps to prevent anybody from loosening the boat, the Parsee Captain giving himself up in tears to despair. To lighten the ship the passengers' kit was then thrown overboard and also some articles of Government property. The steamer ultimately stranded at the mouth of the Tápti and all hands were saved. Mr. Donohoe died of cholera on board the steamer on May 4th.

Secondary Triangulation.
At the upper extremity of the Kattywar Meridional Series north of the Ran one
or two cupolas of temples and a few hill peaks were intersected from principal stations, and the positions of some marks on the borders of the Ran laid down. On crossing the Ran from Viráwáh to Bela, a platform was built on each of the small islands Nara Bet and Karir, and though none of them were visited, yet signals at all were observed from four principal stations.

The eastern end of Cutch when being traversed by the Principal Meridional Series was covered with secondary stations and intersected points : marks in the towns of Fatiagad, Rahpur, Omia, Sántalpur and Shikárpur were accurately laid down: the positions of the small islets in the Ran were determined, and sufficient points were fixed along the actual edge of the Ran so that its border might be definitely delineated. All the principal triangles were broken up into numerous small ones, and it would be difficult throughout the whole area to find a spot that was not within a mile of some known point.

South of the Ran the secondary work on the Principal Meridional Series was very much more scanty, and below the Kattywar Longitudinal Series hardly any exists at all. The palace of Halvad, the fort of Sara and temples in Morvi, Amreli and Chotila were laid down: the church spire of Rajkot and two other points in that city were fixed. For the rest some hundred trees and a few temples and peaks were the only objects, between the parallels of $21^{\circ}$ and $23^{\circ}$, whose positions were determined by secondary work from principal stations of the Meridional Series, the island of Diu was fixed by a principal station itself.

From the Longitudinal Series, the positions of Gogha, Bhávnagar, Pálitana, Umrala, Dámnagar, Jetpur and Miáni were determined. By means of secondary work from the Coast Series the position of every cape, creek and bay was made known and the important seaports of Mángrol, Navíbandar and Porbandar, the celebrated town of Dwárka and numerous other villages were fixed. From the four Minor Meridional Series points were intersected in Navánagar, Junágad, Múli, Wadhwán (Vadhván) and Chúda, and immense numbers of trees and natural objects, observed.

During the season 1863-64, when Captain Haig was engaged on the Minor Meridional Series No. 4, Messrs. McGill and Anding remained wholly employed on secondary work in the Kattywar peninsula. McGill commenced by breaking up the large triangles of the Bhávnagar-Pálitána, and Pálitána-Itria Quadrilaterals into a network and then covering the space between the meridians of $71^{\circ} 30^{\prime}$ and $72^{\circ}$ with triangulation: having completed this he threw a network over the space between $71^{\circ}$ and $71^{\circ} 30^{\prime}$. In the meantime Anding had done the same to the untriangulated areas between $70^{\circ}$ and $70^{\circ} 30^{\prime}$ and between $70^{\circ} 30^{\prime}$ and $71^{\circ}$. By means of these networks the whole of the Kattywar peninsula was covered with secondary stations and intersected points, and all the large triangles of the Meridional and Longitudinal Series were broken up.

The heights of the Principal Stations of the Kattywar Meridional Series depend in the first instance on the values of the stations of Jhund, Bhilgaon and Akoria of the Karachi

Longitudinal Series, which were finally fixed in the reduction of the North-West Quadrila. teral; next, on the heights of the stations of Pata-i-Sháh, Khánmír, Monába, Wándia and Mália, of which the values were determined by spirit-levelling operations in 1874-6; thirdly, on the heights of Tarkia and Kakána, also determined by spirit-levelling during 1875-6; and lastly, on a determination of sea-level at Diu made in 1855. The intermediate heights, of which the values were obtained trigonometrically, shewed in the northern portion of the series a cumulative error of -2.4 feet and in the middle section an error of +0.5 of a foot and in the lowest portion of -1.6 feet. These errors were dispersed by simple proportion according to the number of removes from the origin of each section.

A considerable number of secondary stations were connected with in the spirit-levelling referred to above and their values thus finally fixed, and a further determination of sea-level at Miáni Bandar made in 1855, has also been utilized in obtaining the final heights of secondary stations.

## S. a. BURRARD.

September, 1889.

KATTYWAR MERIDIONAL SERIES.
PRINCIPAL TRIANGULATION. ALPHABETICAL LIST OF STATIONS.


KATTYWAR. MERIDIONAL SERIES.
PRINCIPAL TRIANGULATION. NUMERICAL LIST OF STATIONS.


## KATTYWAR MERIDIONAL SERIES.

## PRINCIPAL TRIANGULATION. DESCRIPTION OF STATIONS.

The Principal Stations of this Series, with 8 exceptions, are all situated on hills or rising ground. These, save stations III and VI, have solid, circular pillars of masonry 1 to 8 feet in height carrying marks at top and bottom : at stations III and VI, where the rock rises sufficiently above the hill, no pillars were built, and only a mark was engraved on the rock. Around the pillars and level with their surfaces, solid platforms of stones or earth-work were constructed for the observatory tent to rest on. The 8 exceptions are the stations IX, XV to XIX, XXI and XXXIV, at which, they being situated in the plains, it was found necessary to construct towers to overlook the curvature of the earth. These are solid structures of sun-dried bricks or stones set in mud cement, 12 to 36 feet in height, enclosing solid pillars of masonry, which carry marks at top, bottom and intermediately, the upper 5 feet of each pillar being circular and isolated.

The following descriptions have been compiled from those originally supplied by the Officers who executed the Series and from the records of Captain Baird's Levelling Operations in 1874 to 1876, supplemented as regards the position of the adjacent villages from the Topographical maps of the country traversed. Some information regarding the heights and construction of the stations have been gathered from reports, contingent bills and other records of the Series. The information, as to the local subdivisions in which the several stations are situated, has been derived, where practicable, from the latest Annual Reports received from the Civil Authorities to whose charge the stations have been committed.
LXI.-(Of the Karachi Longitudinal Series). Akoria Station, lat. $24^{\circ} 41^{\prime}$, long. $71^{\circ} 19^{\prime}$ —observed at in 1851 and 1856 -is upon a small mound on the northern border of the Ran of Cutch, and derives its name from a village that formerly stood near this site : pargana Bautra, district Jodhpore.

The station consists of a platform edged with stakes and filled in with sand, enclosing a solid pillar of masonry, 8 feet in height, which has a mark-stone at the level of the foundation, and others at $1,3,7$ and 8 feet respectively above it : the pillar is isolated by an annular wall of masonry. When again visited in 1856, no statement of any alteration in the construction of the station is forthcoming. The large village of Khijriati is distant about 6 miles.
LXIV.-(Of the Karáchi Longitudinal Series). Bhilgaon Hill Station, lat. $24^{\circ} 42^{\prime}$, long. $71^{\circ} 7^{\prime}$ observed at in 1851 and 1856-is situated on a sand hill appertaining to the village of Dedrai, in that part of the Thar, or Little-desert, which appertains to Bhuj: thána Halla, taluka Nagar, district Thar and Párkar.

The station consists of a platform enclosing a solid, isolated pillar of masonry, 4 feet in height, which has a mark-stone at bottom, and others at 2,3 and 4 feet respectively above it. When again visited in 1856 , no statement of any alteration in the construction of the station is forthcoming. Sammari village, bearing $16^{\circ} \mathrm{E}$. of the ray to Jhund Station, is distant about 2 miles.
LXVI.-(Of the Karáchi Longitudinal Series). Jhund Hill Station, lat. $24^{\circ} 48^{\prime}$, long. $71^{\circ} 1^{\prime}$ observed at in 1851 and 1856-is situated on a sand hill in that part of the Thar, which appertains to Bhuj : thána Halla, taluka Nagar, district Thar and Párkar.

The station consists of a platform edged with stakes and filled in with sand, enclosing a solid pillar of masonry, 3 feet in height, which bas a mark-stone at bottom, and others at 2 and 3 feet respectively above it: the pillar is isolated by an annular wall of masonry. When again visited in 1856, no statement of any alteration in the construction of the station is forthcoming. The village of Jhund is distant about 2 miles, and the villages of Borli, Chucha and Gundi are nearest to the station.
I. Vir\&wáh Hill Station, lat. $24^{\circ} 25^{\prime}$, long. $71^{\circ} 9^{\prime}$-observed at in 1856 -is situated on the summit of one of a group of high hills lying about 3 miles W. of the village of Churia; the hills are surrounded on three sides by the Ran which is not fordable to the eastward : taluka Nagar, district Thar and Parkar.

The station consists of a platform which is a few inches in height on one side and $1 \frac{1}{2}$ feet on the other, enclosing a small, isolated pillar of masonry built upon a granite rock. The nearest villages to the station are Wandia and Beruna,
II. Khársar Hill Station, lat. $24^{\circ} 34^{\prime}$, long. $70^{\circ} 50^{\prime}$-observed at in 1856 -is on the highest point of one of a group of hills composed chiefly of hard granite, the rock being very much broken; that on which the station is, has several deep fissures. The hill is in the lands of Khársar village from which there is an ascent to the station : taluka Nagar, district Thar and Párkar.

The station consists of a loose stone platform enclosing an isolated pillar of masonry about 2 feet in height. Kharsar village lies E., a little short of a mile; and Viráwáh to S . by W., about 4 miles.
III. Kálunjhar Hill Station, lat. $24^{\circ} 20^{\prime}$, long. $70^{\circ} 48^{\prime}$-observed at in 1856 - is on a peak called Godar Takia of the Kálunjhar group of hills composed of granite. The hill lies to the south of the village of Nagar - from which there is an ascent to the station: taluka Nagar, district Thar and Párkar.


#### Abstract

The station mark is engraved on a solid mass of rock which is so hard that it was found impossible to smooth its surface : hollows were cut for the feet of the instrument : a small quantity of rubble work surrounds the rock as a platform for the observatory tent to stand on.


IV. Iwália Hill Station, lat. $23^{\circ} 52^{\prime}$, long. $71^{\circ} 9^{\prime}$-observed at in 1856 -is situated on the highest part of the hill called after the village of Iwália to which it belongs. The Ran extends on three sides, though on the south it is many miles away: sub-division Sántalpur, Pálanpur State.

The station consists of the usual platform about 5 feet in height, enclosing an isolated pillar of masonry. The directions and estimated distances of the following villages are :-Iwália E., close ; and Jakotra S., mile 1.
V. Bela Hill Station, lat. $23^{\circ} 54^{\prime}$, long. $70^{\circ} 48^{\prime}$-observed at in 1856 -is situated on a hill locally called Nilwa, lying towards the west and north of the village of Bela, at a distance of about 3 miles: it is in the lands appertaining to Bela village, pargana Wágad, Cutch state.

The station consists of a platform about 5 feet in height, enclosing an isolated pillar of masonry.
VI. Dajka Hill Station, lat. $23^{\circ} 42^{\prime}$, long. $70^{\circ} 52^{\prime}$-observed at in 1856 -is on a hill appertaining to the lands of the village of Fathiagad : pargana Wágad, Cutch State.

The station mark is engraved upon a large stone which on three sides is hewn into the shape of a pillar, on the fourth side, the stone was hewn out as much as its hardness would allow, and the hollow as well as more than 2 feet of the depth on the other three sides was filled with sand. The directions aud distances of the following buildings are:-Fathiagad round tower E.N.E., miles 1.44 ; and Dulka temple S.W., miles 4:89.
VII. Gángta Hill Station, lat. $23^{\circ} 44^{\prime}$, long. $70^{\circ} 32^{\prime}$-observed at in 1856 -is situated on the highest part of a hill in the Ran. The road from the village of Rau, at the time the station was visited, was dry but the Ran generally around the station was muddy: it is in the lands of Rau village, pargana Wágad, Cutch State. The ruins of a tower and walls are to be seen here, the place having once been the stronghold of freebooters.

The station consists of a platform about 5 feet in height, enclosing an isolated pillar of masonry which is built in a manner similar to those at the adjacent stations. The approximate directions and distances of the following villages are :-Rau S.E., miles 6; and Dauri N., miles 9.
VIII. Pata-i-Sháh Hill Station, lat. $23^{\circ} 33^{\prime}$, long. $70^{\circ} 59^{\prime}$-observed at in 1854 and 1856 -is situated on an isolated hill rising some 150 feet above the surrounding country: the tomb of a Muhammadan devotee, called Pir Pata-i-Sháh is about 120 links S . of the station: in lands of Bangerah village, pargana Adesir, Cutch State.

The station consists of a platform of stones ard earth enclosing a solid, isolated pillar of masonry, about 5 feet in height, which has a mark-stone at top. When again visited in 1856, no statement of any alteration in the construction of the station is forthcoming. The directions and approximate distances of the following villages are:-Lakhgad N.N.W., miles $1 \frac{1}{2}$; Bangerah S., mile 1; and the town of Adesir E., miles 3.
IX. Kanduka Hill Station, lat. $23^{\circ} 34^{\prime}$, long. $70^{\circ} 44^{\prime}$-observed at in 1856 -is situated on a hill appertaining to the village lands of Rahpur: pargana Wágad, Cutch State.

The station consists of a platform of rubble, about 12 feet in height, enclosing a pillar of masonry of which the upper 5 feet is isolated. The directions and distances of the following places are :-Rahpur town W., miles $2 \frac{1}{2}$; and Omia fort E.N.E., miles $4 \frac{3}{4}$.
X. Khánmír Hill Station, lat. $23^{\circ} 24^{\prime}$, long. $70^{\circ} 55^{\prime}$-observed at in 1854 and 1856 -is situated on the highest part of the hill locally called Gur, which rises some 250 feet above the level of the plain, and is one of a range of low hills running N.W. and S.E. and terminating southwards near the Ran : it is in the lands of the village of Khánmír which lies about $1 \frac{1}{2}$ miles to N., pargana Wágad, Cutch State.

The station consists of a platform of loose stones enclosing a solid, isolated pillar of masonry, 5 feet in height, which has a mark-stone at top. When again visited in 1856, no statement of any alteration in the construction of the station is forthcoming. The hill fort of Khánmir is to N.W., about $1 \frac{1}{\frac{1}{3}}$ miles.
XI. Chitror or Chitrod Hill Station, lat. $23^{\circ} 24^{\prime}$, long. $70^{\circ} 44^{\prime}$-observed at in 1854 and 1856 -is situated on the highest point of the hill called Dhia which is within a couple of miles of the town of Chitrod: pargana Wágad, Cutch State.

The station consists of a platform enclosing an isolated pillar of masonry, but as it was not sufficiently large for the stand of the instrument, it had to be increased, in effecting which the height of the pillar was increased a little. This addition of about 6 to 7 inches was made after the 30th March 1854. When again visited in 1856, no statement of any alteration in the construction of the station is forthcoming.
XII. Monába Hill Station, lat. $23^{\circ} 17^{\prime}$, long. $70^{\circ} 51^{\prime}$-observed at in 1856 -is situated on the highest point of the Dhar hill, a conspicuous and elevated pasture ground on the verge of the Ran called Bhir Mandad, about 4 miles E.S.E. of the village of Monába, and N.W. of Bhimdeoka. There are a few huts close to the station which are occupied during the cold season by people who graze cattle along the margin of the Ran: pargana Wágad, Cutch State.

The station consists of a mud platform, about 5 feet in height, enclosing the usaal, isolated pillar of masonry. When visited in $1875-76$ by Mr. T. H. Rendell in the course of the Levelling Operations, the upper mark-stone was found to have been destroyed, but a portion of the upper surface of the pillar could be traced, and one of the three flat stoues (ganerally placed for the feet of the theodolite stand to rest upon) was found intact.
XIII. Kesmára Hill Station, lat. $23^{\circ} 17^{\prime}$, long. $71^{\circ} 4^{\prime}$-observed at in 1856 -is situated on the highest point of a hill in the island of Bet in the Ran between Palanswa in Cutch, and Gantila or 'lekar in Kattywar; the island is used as a Bhír or pasture land : pargana Wágad, Cutch State.

The station consists of a platform, about 5 feet in height, enclosing the usual, isolated pillar of masonry.
XIV. Wándia Station, lat. $23^{\circ} 15^{\prime}$, long. $70^{\circ} 39^{\prime}$-observed at in 1856 -is on the middle tower or bastion at the re-entering angle on the western face of the town wall of Wándia: pargana Wagad, Cutch State.

The station consists of a mud platform, about 5 feet in height, built on the centre of the solid bastion, enclosing an isolated pillar of masonry, which has a mark-stone at its upper surface. The village of Janghi is to S.W. by W., about $3 \frac{1}{2}$ miles.
XV. Kákraji Tower Station, lat. $23^{\circ} 5^{\prime}$, long. $70^{\circ} 58^{\prime}$-observed at in 1854 and 1856 -stands on a mound immediately $\mathbf{E}$. of a tank which is close $\mathbf{S}$. of the village of Kákraji. The station tower is built having its northern face abutting against a temple dedicated to Siva: taluka Mália, district Hállár.

The station consists of a solid tower of sun-dried bricks and mud cement, 36 feet in height, enclosing a solid pillar of burnt bricks and mortar, the upper 5 feet as usual being isolated. Four outer marks were made, and the intersection of the lines joining them indicated the position of the upper mark. When revisited in 1856, the upper mark was found displaced 2.44 inches to S.S.E. of the point indicated by the intersection of lines joining the outer marks, the observations were then taken not from the mark but from the point thus indicated. The directions and distances of the circumjacent villages are:-Vejalpur E., miles 21 ; Khambária N.E. by N., miles $3 \nmid$; Sultánpur W., miles $3 \ddagger$; and Aniali S. by W., miles 3 t.
XVI. Mália Tower Station, lat. $23^{\circ} 5^{\prime}$, long. $70^{\circ} 47^{\prime}$-observed at in 1854 and 1856 -stands on the embankment of a tank about a mile W.S.W. of the large village of Mália, and $1 \frac{1}{8}$ miles N.W. by W. of Captain Mackenzie's tomb near the western bank of the Machhu river : taluka Mália, district Hállár.

The station consists of a solid tower, 18 feet in height, enclosing a pillar of stone and mortar, the upper 5 feet of which is isolated. Four outer marks were made, and the intersection of the lines joining them indicated the positiou of the upper mark. When visited in 1856, no statement of any alteration in the construction of the station is forthcoming, but the outer marks having been destroyed, the position of the upper mark could not be verified. When again visited in 1874-75 in the course of the Levelling Operations, the upper mark-stone was found tolerably perfect, but the circle and dot had disappeared. The directions and distances of the circumjacent villages are :-Nani Baral S.W. by W., miles 3 ${ }_{4}$; Moti Baral S.S.W., miles 4; and Virwadar S.E. by E., miles 3.
XVII. Rangpur Tower Station, lat. $22^{\circ} 55^{\prime}$, long. $70^{\circ} 56^{\prime}$-observed at in 1853, 1854 and 1856 stands on the mound of a tank, about half a mile nearly S. of the village of Rangpur, and $1 \frac{1}{2}$ miles N.E. by N. of Bela on the left bank of a branch of the Godadhroi river: taluka Morvi, district Hallar.

The station consists of a solid tower 16 feet in height. There are four outer marks on stones deeply embedded in the ground, and the intersection of lines connecting them diagonally indicated the position of the station mark. When again visited in 1856, the upper mark was found displaced by $1 \cdot 57$ inches to $\mathrm{N}: \mathrm{E}$. The directions and distances of the circumjacent villages are :Haripur and Kerála N.W., miles 3 ; Sanála S.E. by S., miles $2 \frac{1}{2}$; and Jiwápur N.N.E., miles 4.
XVIII. Chalarwa or Charadwa Tower Station, lat. $22^{\circ} 57^{\prime}$, long. $71^{\circ} 6^{\prime}$-observed at in 1852, 1854 and 1856-stands on the bank of a small dry tank near junction of roads from Kariand, Suswáo and Chalarwa, and about $2 \frac{3}{4}$ miles N.E. of the town of Chalarwa: taluka Dhrángadra, district Jhalawad.

The station consists of a tower of stones set in mud cement, 11 feet square and 16 feet in height, enclosing a pillar of stone and mortar. Four pillars are built outside the tower, and the intersection of the lines engraved on them indicated the position of the upper mark on which the theodolite was centered; the mark at the ground level is $0 \cdot 65$ of an inch to $E$. of the upper one. When again visited in 1856, the upper mark-stone was found displaced by 0.95 of an inch to N.E., but no statement of any alteration in the construction of the station is forthcoming. The directions and distances of the circumjacent villages are :-Suswa N.E. by N., miles $3 \frac{1}{4}$; Kariana S.E. by S., miles $2 \frac{1}{8}$.
XIX. Pangasia Tower Station, lat. $22^{\circ} 57^{\prime}$, long. $70^{\circ} 46^{\prime}$-observed at in 1854 and 1856 -stands on an embankment at the northern side of a tank named Bora, immediately south of road from Náráyan-ka village to that of Pangasia, and about $\frac{8}{4}$ of a mile E.S.E. of the latter : taluka Morvi, district Hállár.

The station consists of a solid tower of stone and mud cement, 20 feet in height, enclosing a pillar of stone and mortar, the upper 5 feet of which is isolated. When again visited in 1856, no statement of any alteration in the construction of the station is forthcoming. The directions and distances of the circumjacent villages are:-Derala (on the western bank of the Machliu river) N.E., miles $2 \frac{1}{4}$; Náráyan-ka E., miles 2; Khewália S., miles 2ł; and Sarwad N.W., miles 3.
XX. Dúngarpur Hill Station, lat. $22^{\circ} 48^{\prime}$, long. $71^{\circ} 2^{\prime}$-observed at in 1852 and 1856 -is situated on one of the knolls on the table-land, about $\frac{3}{4}$ of a mile W.S.W. of the village from which the station is named, and $4 \frac{3}{4}$ miles in the same direction from the village of Mathak: taluka Dhrangadra, district Jhalawad.

The station consists of a platform of loose stones, enclosing a pillar of stone and mortar, which contains a mark 5 feet above the ground and another at top. When again visited in 1856, the upper mark had been destroyed and a new one was placed by reference to the mark 5 feet above the ground. The directions and distances of the circumjacent villages are :-Gidach S.W., miles 2; Ol S.E. by E., miles $2 \frac{1}{2}$; and Rátábhe N., miles 3.
XXI. Sápakra Tower Station, lat. $22^{\circ} 52^{\prime}$, long. $71^{\circ} 17^{\prime}$ —observed at in 1853 -stands on the rising ground south of the village of Sápakra : taluka Dhrángadra, district Jhalawad.
. The station consists of a tower of loose stones with a broad base, 26 feet in height, enclosing a pillar of stone and lime cement. The directions and distances of the circumjacent villages are:-Bhalgamda N.W., miles 3$\}$; Digaria W. by S., miles 3; Ratewalia E.S.E., miles 2 ${ }_{4}$; and Chitrori (on the right bauk of the Bámbhan river) S. by W., miles $2 \frac{1}{4}$.
XXII. Virpur Station, lat. $22^{\circ} 45^{\prime}$, long. $70^{\circ} 51^{\prime}$-observed at in 1853,1854 and 1856 -is situated on the rising ground about a mile E. of the metalled road from Tankára to Morvi, and $1 \frac{1}{2}$ miles N.E. of Virpur village; the highest point in the neighbourhood is about $1 \frac{3}{4}$ miles to E.S.E. : taluka Morvi, district Hállár.

The station consists of a platform of loose stones, about 5 feet in height, enclosing a pillar of stone and mortar. When again visited in 1854 and 1856, no statement of any alteration in the construction of the station is forthcoming. The directions and distances of the circumjacent villages are :-Sanala (on the metalled road) N. by W., miles $2 \frac{1}{i}$; Rajpur W.N.W., miles 2 ${ }^{4}$; and Hamírpur or Nawagám E. by S., miles 3.
XXIII. Chatrikhera Hill Station, lat. $22^{\circ} 40^{\prime}$, long. $71^{\circ} 11^{\prime}$-observed at in 1853-is situated on the northern extremity of a small rocky hill, about $1 \frac{1}{8}$ miles S.S.E. of the village of Chatrikhera, and $2 \frac{3}{4}$ miles E . of Lunsar: taluka Wánkáner, district Jhalawad.

The station consists of a platform of loose stones, 8 feet in height, enclosing a pillar of stone and mortar; the lower mark is engraved on the rock in situ. The directions and distances of the circumjacent villages are :-Uudwi N.E. by N., miles $2 \ddagger$; Vijalia S.E., miles $1 \frac{1}{\frac{1}{2}}$; and Mandassar S.S.W., miles $1 \frac{1}{2}$.
XXIV. Wánkáner Hill Station, lat. $22^{\circ} 36^{\prime}$, long. $70^{\circ} 58^{\prime}$-observed at in 1853 and 1856 -is situated on a hill, about $\frac{8}{4}$ of a mile S.W. of the town of Wánkaner on the Machhu river; a temple which is overhung by a tree is 300 yards E. of the station: taluka Wánkáner, district Jhalawad.


#### Abstract

The station consists of a platform of loose stones, about 5 feet in height, enclosing a pillar of stone and mortar which has a mark at top and another at the surface of the ground. When again visited in 1856, the upper mark-stone had been destroyed and a new one was placed by reference to the ground level mark. The directions and distances of the circumjacent villages are:Deoli or Rátideoli N.N.W., miles 2; Rájáwadla S.E. by S., miles 2; and Panch Dwárka W.S.W., miles 3 $\frac{1}{2}$.


XXV. Tarkia Hill Station, lat. $22^{\circ} 29^{\prime}$, long. $71^{\circ} 12^{\prime}$-observed at in 1853 -is on a small peak of the ridge, about $1 \frac{1}{3}$ miles S.E. of the village of Tarkia, and $4 \frac{1}{2}$ miles N.N.W. of the town and Dák Bungalow of Chotila on the road from Rajkot to Ahmedabad: taluka Wánkaner, district Jhalawad.

The station consists of the usual platform, about 5 feet in height, enclosing a circular pillar of masonry. The directions and distances of the circumjacent villages are:-Rámparu nearly E., miles $1 \frac{1}{\mathbf{z}}$; Pajwáli S.S.E., miles 2 ; Jániwadla S.W. by S., miles 3 ; and Pándal N.W., miles $3 \frac{1}{2}$.
XXVI. Kakána Hill Station, lat. $22^{\circ} 25^{\prime}$, long. $70^{\circ} 59^{\prime}$-observed at in 1853 -is situated on the rocky table-land, about $\frac{8}{4}$ of a mile S.S.W. of the village of Kakana, and $4 \frac{1}{2}$ miles N. of the large village or town of Kuwarwa on the metalled road from Rajkot to Ahmedabad: taluka Rajkot, district Hállar.

The station consists of a platform of rubble of the usual dimensions, enclosing a circular pillar of masonry. When again visited in 1875-76 by Captain Baird in the course of the Levelling Operations, he found the station to consist of the asual, circular pillar surrounded by a platform of rubble stone, and surmounted by a 3 -foot rectangular pillar of the Kattywar Minor Triangulation. The directions and distances of the circumjacent villages are :-Sulia N.W., mile $\frac{\pi}{4}$; Jhiana S. by W., miles 1装; Sáthra (on the Machhu river) E.S.E., miles $2 \frac{1}{4}$; and Sanosara W., miles 3t.
XXVII. Maidhar Hill Station, lat. $22^{\circ} 17^{\prime}$, long. $71^{\circ} 14^{\prime}$-observed at in 1853 -is situated on a small, conical hill on the eastern edge of the high table-land which divides the drainage of the whole peninsula: the eastern face of the plateau is well defined for a considerable distance to N. and S. of the station: taluka Limri, district Jhalawad.

The station consists of the usual platform about 5 feet in height. The directions and distances of the circumjacent villages are :-Sanosra E.N.E., miles $2 \frac{1}{y}$; Kherána N., miles 2; Chobári S. by E., miles $1 \frac{3}{4}$; and Bhojpára W. by S., miles 2 and
XXVIII. Bháyásar Hill Station, lat. $22^{\circ} 10^{\prime}$, long. $70^{\circ} 56^{\prime}$-observed at in 1853 -is situated on a small, conical, rocky hill which rises immediately above the old site of the village of Bháyásar, and $3 \frac{1}{2}$ miles N. by E. of Rajpura; the station is about 4 yards S . of a shrine: taluka Sirdhar, district Hállar.

The station consists of a platform about 5 feet in height. The directions and distances of the circumjacent villages are :-Kátrota E., mile 1; Piplána W.S.W., miles 2ă ; Bháyásar S.S.W., mile $\frac{1}{\frac{1}{2}}$; and Pádásan N.E., miles 21.
XXIX. Chitália Hill Station, lat. $22^{\circ} 3^{\prime}$, long. $71^{\circ} 12^{\prime}$-observed at in 1853 -is situated on a small, isolated hill, about $2 \frac{1}{2}$ miles N.N.E. of Adkot on the metalled road from Rajkot to Gogo; a temple was in course of construction close to the S.E. corner of the platform : taluka Jasdán, district Kattywar.

The station consists of a stone platform, about 5 feet in height, enclosing a pillar of stone and mortar . The directions and distances of the circumjacent villages are:-Jasdán (on the right bank of the Bhádar river) E., miles 3; Chitalia W., mile $\frac{\boldsymbol{z}}{\mathbf{n}}$; Lakhawar N.N.W., miles 14; and Samadiala (on the metalled road) nearly W. by S., miles 3t.
XXX. Mumaiya or Mumaia Hill Station, lat. $21^{\circ} 54^{\prime}$, long. $70^{\circ} 54^{\prime}$-observed at in 1853 -is situated on the hilly ground, about $1 \frac{1}{3}$ miles S. of the village of Mumaiga, and $5 \frac{1}{2}$ miles S.E. by S. of the town of Gondal on the Gondli river: taluka Gondal, district Hállár.

The station consists of the usual platform about 4 feet in height, enclosing an isolated pillar. The directions and distances of the circumjacent villages are :-Bandhia N.E. by E., miles $4 \frac{1}{4}$; Kudla S. by E., miles $3 \frac{1}{f}$; and Khokhri S.S.W., miles $4 \frac{1}{2}$.
XXXI. Trakura Hill Station, lat. $21^{\circ} 58^{\prime}$, long. $70^{\circ} 39^{\prime}$-observed at in 1853 -is situated on a hill midway between the villages of Trákura and Harmaria lying $2 \frac{1}{3}$ miles respectively to E.S.E. and W.N.W. : taluka Gondal, district Hállár.

The station consists of a platform, about 4 feet in height, enclosing an isolated pillar. The directions and distances of the circumjacent villages are :-Amrali S. by W., miles 2t ; Mespur W., miles 4; and Garnára N.E. by E., miles 3t.
XXXII. Deo-kirGalol Hill Station, lat. $21^{\circ} 38^{\prime}$, long. $70^{\circ} 44^{\prime}$-observed at in 1853 -is on one of the knolls of a ridge running nearly E.S.E. and W.N.W., about $1 \frac{1}{2}$ miles W.N.W. of the village of Deo-ki-Galol on the metalled road from Jetpur to Mánakwara: taluka Jetpur, district Kattywar.

The station consists of the usual platform built to a height of 4 feet to isolate the pillar. The directions and diss tances of the circumjacent villages are :-Khambhalia S., miles 34 ; Mandwa S.W., miles $2 \frac{3}{4}$; Bamangam W., miles 24 ; and Piplia (on the metalled road) N. by W., miles $1 \frac{1}{\mathrm{f}}$.
XXXIII. Jitori Hill Station, lat. $21^{\circ} 44^{\prime}$, long. $71^{\circ} 9^{\prime}$-observed at in 1853-is situated on the eastern extremity, but not on the highest point, of a ridge running E. and W., about a mile N.N.W. of the village of Jitori, and $5 \frac{3}{4}$ miles W. of the large village of Chital : taluka Gondal, district Hallár.

The station consists of the usual platform 5 feet in height. The directions and distances of the circumjacent villages are:-Pipria N.E. by N., miles 2; Sárangpur N.W., miles 2 ; Máyápadar nearly W., miles $2 \frac{1}{4}$; and Lúni S., miles $2 \frac{1}{2}$.
XXXIV. Konkáwáo Tower Station, lat. $21^{\circ} 39^{\prime}$, long. $70^{\circ} 59^{\prime}$-observed at in 1853 -is situated on a table-land, about $3 \frac{1}{4}$ miles N.W. by W. of the village of Konkáwáo Moti, and $4 \frac{1}{3}$ miles N.E. of that of Tori : pargana Bilkha, district Sorath.

The station consists of a tower 30 feet in height, enclosing a pillar of which the upper 5 feet is isolated. Outer marks have been made by which the position of the upper mark of the station can be determined in case it is lost. The directions and distances of the circumjacent villages are :-Anida N. by W., miles 2 ; Arjansakh W. by S., miles $2 \frac{1}{\frac{1}{2}}$; and Najapar S., miles $2 \frac{3}{4}$.
XXXV. Itria Hill Station, lat. $21^{\circ} 57^{\prime}$, long. $71^{\circ} 27^{\prime}$ —observed at in 1853 -is situated on the highest

## KATTYWAR MERIDIONAL SERIES.

part of a prominent hill, about 2 miles S. by W. of Itria village on the right bank of the Ghela river, and 5 miles iN.E. of the large village of Kariana on the Kálubhár river: taluka Itria Ghadala, district Gohelwád.

The station consists of a platform, 1 foot in height, enclosing an isolated pillar. The directions and distances of the ciro. cumjacent villages are :-Khambáa W.N.W., miles $3 \frac{1}{8}$; lswaria S.W., miles $3 \frac{1}{2}$; and Shirwania S., miles 8.
XXXVI. Sakpur Hill Station, lat. $21^{\circ} 33^{\prime}$, long. $71^{\circ} 33^{\prime}$-observed at in 1853 -is situated on the centre of the highest of a number of scattered hills, about a mile S.W. of the village from which it takes its name, and 4 miles nearly W.N.W. of the large village of Gáriadhár: taluka Bhaunagar, district Gohelwád.

The station consists of a platform, 1 foot in height, which is built on the solid rock. The directions and distances of the circumjacent villages are :-Kalánpur W. by N., miles $2 \frac{1}{8}$; Rájkot N.E., miles 2 ; and Wauri Náni E. by S., miles 1 亲.
XXXVII. Manáwa Hill Station, lat. $21^{\circ} 22^{\prime}$, long. $71^{\circ} 8^{\prime}$-observed at in 1853 -is situated on the hilly ground S. of the village from which it has been named, and about 5 miles E.N.E. of the village of Dhari on the right bank of the Shetrunji river: taluka Gondal, district Hállár.

The station consists of a stone platform, 5 feet in height, enclosing an isolated pillar of stone and mortar. The directions' and distances of the circumjacent villages are:-Manáwa N., mile l; Jhar E. by S., miles $1 \frac{1}{8}$; and Chhatardia S. by E., miles 2.
XXXVIII. Sarkala Hill Station, lat. $21^{\circ} 12^{\prime}$, long. $70^{\circ} 53^{\prime}$-observed at in 1853 -is situated 50 yards from the highest part of the lofty and conspicuous hill known as Sarkala lying on the northern boundary of the wild country called the Gir, ascent to the summit being difficult. The surrounding country is a waste, the only village is the small one of Dodalia about 3 miles to the N.E.; a few huts, near the ruins of a wall and tower indicating the site of the fort of Sassi, are about 2 miles to E. : taluka Una, district Sorath.

The station consists of the usual platform, 5 feet in height.
XXXIX. Nandivela Hill Station, lat. $21^{\circ} 2^{\prime}$, long. $71^{\circ} 9^{\prime}$-observed at in 1853 -is situated on the western extremity and on the highest part of one of the largest, isolated hills in the Gir, about $2 \frac{3}{4}$ miles N.E. of Wadli village : taluka Una, district Sorath.

The station consists of a platform, 5 feet in height, which has been built in a manner similar to those at the neighbouring stations. The directions and distances of the circumjacent villages are:-Barwála S.S.W., mile 1 ; Kantáa E.S.E., miles $\mathbf{3}$; Nitli S.S.W., miles $2 \frac{a}{4}$; and Chíkhal Koba (on the left bank of the Ráwal river) W.S.W., miles $3 \frac{1}{4}$.
XL. Jákia Hill Station, lat. $20^{\circ} 58^{\prime}$, long. $70^{\circ} 56^{\prime}$-observed at in 1853 -is situated on a hill about 1 mile N.E. of Jákia village, and about 200 yards N.W. of a rocky knoll on the same ridge on which there is some object of worship indicated by flags: taluka Una, district Sorath.

The station consists of a stone platform enclosing a circular pillar of masonry, about 5 feet in height, which carries a mark at top. The approximate directions and distances of the circumjacent villages are:-Gadra S., miles 3; Babria N.W., miles $1 \frac{1}{1}$; and Farera S., miles $1 \frac{1}{8}$.
XLI. Nántej Hill Station, lat. $20^{\circ} 51^{\prime}$, long. $71^{\circ} 8^{\prime}$-observed at in 1853 -is situated on the rising ground about 300 feet S. of the cart road from Nántej to Sámter: taluka Una, district Sorath.

The station consists of a platform, 8 feet in height, enclosing a solid, circular pillar of masonry which contains two mark-stones. The directions and distances of the circumjacent villages are:-Sámter E., miles $1 \frac{1}{8}$; Amodra S., miles 2; Kasári W., miles $2 \frac{1}{2}$; Nántej W. by N., mile $\frac{1}{2}$; aud the town of Una S.W. by W., miles $3 \frac{1}{4}$.
XLII. Dangarwári Hill Station, lat. $20^{\circ} 43^{\prime}$, long. $70^{\circ} 59^{\prime}$-observed at in 1853 -is situated on a rocky hill almost in the centre of the island of Diu, which belongs to the Portuguese, and about $3 \frac{1}{2}$ miles W. of the town. This part of the island is mostly sandy, and throughout the whole length across its centre, occasional patches of lime-stone rock appear. A few huts of the village of Dangarwári are to the west of the platform, and others in the cocoanut gardens at the foot of the hill are on the N. side.

The station consists of the usual platform enclosing a circular pillar of masonry which contains three marks, one flush with the ground, another at top and a third intermediately. The directions and distances of the following places are :-St. Remedio's Church and the Pársi's Cemetery S.E. by E., miles 2; and chief flag of Diu Guard House N., miles $1 \mathbf{4}$.

Aprit 1880.
J. B. N. HENNESSEY,

In charge of Computing Office.

## KATTYWAR MERIDIONAL SERIES.

## PRINCIPAL TRIANGULATION. OBSERVED ANGLES.



Note.-Stations LXI and LXIV appertain to the Karáchi Longitudinal Series of the North-West Quadrilateral.

| At LXIV (Bhilgaon)-( Continued). |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Angle between |  |  |  |  |  |  |  |  |  |  |  |  |
| I \& III |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =5^{\prime \prime \prime} \cdot 69 \\ w & =1 \cdot 64 \\ \frac{1}{w} & =0 \cdot 61 \\ C & =44^{\circ} 56^{\prime} 51^{\prime \prime} \cdot 69 \end{aligned}$ |
|  | $46 \cdot 07$ | 50:10 50:37 | 53.04 | 54.02 | $50^{\prime} 7^{2}$ | $55 * 95$ | 54*00 | 53.66 | 50'34 | 52.57 | $49^{\prime \prime} 42$ |  |
| III \& II |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=47^{\prime \prime} \cdot 18 \\ & w=1 \cdot 06 \\ & \frac{1}{w}=0 \cdot 94 \\ & C=26^{\circ} 10^{\prime} 47^{\prime \prime \cdot 18} \end{aligned}$ |
|  | 52.40 | 47\%09 51'53 | 4279 | 41.68 | 43.48 | 47'10 | $46 \cdot 27$ | 47/81 | $47 \cdot 87$ | 47*48 | 50.68 |  |
| II \& LXVI |  <br>  $h_{51}$ •77 |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=49^{\prime \prime \cdot 17} \\ & w=0 \cdot 97 \\ & \frac{1}{w}=1 \cdot \circ 3 \\ & C=74^{\circ} 19^{\prime} 49^{\prime \prime \cdot 17} \end{aligned}$ |
|  | 42.37 | $52.71 \quad 42 \cdot 65$ | 52.51 | 4770 | $47 \cdot 66$ | 50*40 | 50.30 | $50 \cdot 85$ | 51.75 | 51*47 | 49.62 |  |

## At LXVI (Jhund)

January 1856; observed by Lieutenant D.J. Nasmyth, R.E., with Troughton and Simms' 18-inch Theodolite No. 2.

| Angle between | $0^{\circ} 0^{\prime}$ | $180^{\circ}{ }^{\prime}$ | $10^{\circ} 11^{\prime}$ | $\begin{aligned} & \text { Circle } \\ & 190^{\circ} 11^{\prime} \end{aligned}$ | reading <br> $20^{\circ} 22^{\prime}$ | s, telesc <br> $200^{\circ} 22^{\prime}$ | ope bein <br> $30^{\circ} 28^{\prime}$ | get on $210^{\circ} 28^{\prime}$ | $\begin{aligned} & \text { LXIV } \\ & 40^{\circ} 39^{\prime} \end{aligned}$ | $220^{\circ} 39^{\prime}$ | $50^{\circ} 50^{\prime}$ | $230^{\circ} 50^{\prime}$ | $\boldsymbol{M}=$ Mean of Groups <br> ${ }^{20}=$ Relutive Weight <br> C = Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LXIV \& II | " | " | " | " | " | " | " | " | " | " | " | " | $\begin{aligned} & M=5^{\prime \prime} \cdot 35 \\ & w=1 \cdot 18 \\ & \frac{1}{w}=0 \cdot 85 \\ & C=77^{\circ} 57^{\prime} 51^{\prime \prime} \cdot 35 \end{aligned}$ |
|  | $h 53.86$ $h$ 54.50 | h 49.44 L 5000 | $h 51.77$ $h 52.87$ | $h 49.23$ $h 48.8$ | $l$ |  |  | $l 5 \mathrm{~S} 40$ |  |  |  | h 51.50 |  |
|  | h 54.50 | 145000 | h 52.87 | $h 48.84$ | $l 4790$ | $\begin{aligned} & l 44.50 \\ & h 44.40 \end{aligned}$ | $\begin{aligned} & l 52.23 \\ & l \\ & 53.33 \end{aligned}$ | $l 52.40$ | $h 54.96$ | $h 55^{\circ} 00$ | $\begin{aligned} & h 50.40 \\ & h 52.20 \end{aligned}$ | $h 52.50$ |  |
|  | 54.18 | $49^{\prime} 72$ | 52.32 | $49^{\circ} \mathrm{O}$ | 4780 | 44.28 | 53.44 | 5190 | 54.94 | 54.97 | 51.65 | 52.00 |  |

## At I (Viráwáh)

January and February 1856; observed by Lieutenant D. J. Nasmyth, R.E., with Troughton and Simms' 18-inch T'heodolite No. 2.


Nors.-Stations LXI, LXIV and LXVI appertain to the Karáchi Longitudinal Series of the North.West Quadrilateral.

## At I (Viráwáh)-(Continued).



## At II (Khársar)

January 1856; observed by Lieutenant D.J.Nasmyth, R. E., with Troughton and Simms' 18-inch Theodolite No. 2.


Nots.-Stations LXI, LXIV and LXVI appertain to the Karáchi Longitudinal Series of the North. Weal Quadrilateral.


Note.-Stations LXIV and LXVI appertain to the Karáchi Longitudinal Series of the North-West Quadrilateral.

## At III (Kálunjhar)-(Continued).

| Angle between | $290^{\circ} 31^{\prime} 110^{\circ} 31^{\prime}$ | $300^{\prime} 42^{\prime}$ | $\begin{array}{r} \text { Circle } \\ 120^{\circ} 42^{\prime} \end{array}$ | reading <br> $310^{\circ} 58^{\prime}$ | gs, telesc <br> $130^{\circ} 53^{\prime}$ | cope bein $320^{\circ} 58^{\prime}$ | ng set on $140^{\circ} 58^{\prime}$ | $\begin{aligned} & \text { n II } \\ & 331^{\circ} \boldsymbol{\theta}^{\prime} \end{aligned}$ | $151^{\circ} 9$ | $341^{\circ} 20^{\prime}$ | $161^{\circ} 20^{\prime}$ | $M=$ Mean of Groups <br> w = Relative Weight <br> $C=$ Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IV \& V | " " | " | - | " | " | " | " | " | $"$ | " |  | $\begin{aligned} & M=28^{\prime \prime} \cdot 22 \\ & w=1 \cdot 98 \\ & \frac{1}{w}=0 \cdot 5! \\ & C=35^{\circ} 3^{\prime} 28^{\prime \prime} \cdot 22 \end{aligned}$ |
|  | h 25.23 h $26 \cdot 60$ h 26.14 h 26.27 | $\begin{aligned} & k 26 \cdot 43 \\ & h 28 \cdot 00 \end{aligned}$ | k 28.04 h 29.86 | $\begin{aligned} & h 27.57 \\ & h 27 \cdot 13 \end{aligned}$ | $\begin{aligned} & \text { h } 31 \cdot 70 \\ & \text { h } 3186 \end{aligned}$ | $\begin{aligned} & h 26 \cdot 93 \\ & h 27.80 \end{aligned}$ | $\begin{aligned} & h 32.27 \\ & h 33.20 \end{aligned}$ | $\begin{aligned} & h 25 \cdot 00 \\ & h 26.30 \end{aligned}$ | h $31 \times 40$ <br> h31•10 | $\begin{aligned} & l 26.27 \\ & l 26.26 \end{aligned}$ | $\begin{aligned} & l 28 \cdot 36 \\ & l 27.53 \end{aligned}$ |  |
|  | $25.69 \quad 26.43$ | 27.22 | 28.95 | 27.35 | 31.78 | 27.36 | 32.74 | $25 \cdot 6$ | 31.25 | 26.26 | 27.95 |  |

## At IV (Iwália)

*February ; and †February and March 1856; observed by Lieutenant D. J. Nasmyth, R.E., with Troughton and Simms' 18-inch Theodolite No. 2.

| $\underset{\text { between }}{\text { Angle }}$ | $330^{\circ} 4^{\prime}$ | $150^{\circ} 4^{\prime}$ | $340^{\circ} 15^{\prime}$ | Circle $160^{\circ} 15^{\prime}$ | reading <br> $350^{\circ} 26^{\prime}$ | s, telesco <br> $170^{\circ} 26^{\prime}$ | pe being $0^{\circ} 33^{\prime}$ | g set on $180^{\circ} 32^{\prime}$ | $\begin{aligned} & \text { VIII } \\ & 10^{\circ} 48^{\prime} \end{aligned}$ | $190^{\circ} 43^{\prime}$ | $20^{\circ} 58^{\prime}$ | $200^{\circ} 53^{\prime}$ | $M=$ Mean of Groupe <br> $w^{*}=$ Relative Weight <br> $C=$ Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VIII\& VI | h $16 \cdot 13$ h 16.97 | $\begin{gathered} " \\ h_{15} \cdot 86 \\ h 15.66 \end{gathered}$ | $\begin{gathered} " \\ l 14.66 \mathrm{~h} \\ l 14.60 \mathrm{l} \end{gathered}$ | $\begin{array}{cc} n \\ h 16.90 & l \\ l 16.47 & l \end{array}$ | $\begin{aligned} & l \pm 12: 86 \\ & l \pm 3.57 \end{aligned}$ | $\begin{array}{cc} c \\ l 19.04 \\ l & 18.20 \\ l & 16.97 \\ l & 17.90 \end{array}$ | $\begin{array}{lc}  & " \\ h & 8 \cdot 20 \\ h & 7 \cdot 97 \end{array}$ | $\begin{array}{lc}  & \prime \prime \\ l & 6 \cdot 84 \\ l & 9 \cdot 20 \\ l & 9 \cdot 07 \end{array}$ | $\begin{array}{lc}  \\ h & 8.30 \\ h & 9.60 \end{array}$ | $\begin{array}{ll}  & . \\ h & 8.57 \\ l & 8.40 \end{array}$ | $l 13.60$ <br> $l 14: 63$ | $\begin{array}{lc}  & \prime \prime \\ l \\ l & 7773 \\ 7 \times 10 \end{array}$ | $\begin{aligned} M & =12^{\prime \prime} \cdot 5^{2} \\ w & =0 \cdot 75 \\ \frac{1}{w} & =1 \cdot 33 \\ C & =29^{\circ} 5^{\prime} 12^{\prime \prime} \cdot 5^{2} \end{aligned}$ |
|  | 16.55 | 15776 | 14.63 | 16.69 | 13.21 | 18.03 | $8 \cdot 09$ | $8 \cdot 37$ | 8.95 | 8.48 | 14.12 | 741 |  |
| $\text { VI } \stackrel{\dagger}{\&} V$ |  <br>  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=35^{\prime \prime} \cdot 27 \\ & w=1 \cdot 80 \\ & \frac{1}{w}=0 \cdot 55 \\ & C=40^{\circ} \quad 6^{\prime} 35^{\prime \prime} \cdot 27 \end{aligned}$ |
|  | 31.42 | $33^{* 82}$ | 32.93 | $33 \cdot 85$ | 38:39 | 33.08 | 37.52 | 38.41 | $39^{-28}$ | $34 * 49$ | $35 \cdot 30$ | 34:78 |  |
| V \& III | $70^{\circ} 4^{\prime}$ | $250{ }^{\circ} 4^{\prime}$ | $80^{\circ} 14^{\prime}$ | Circle $260^{\circ} 14^{\prime}$ | e readin $90^{\circ} 24^{\prime}$ | ge, teles $270^{\circ} 24^{\prime}$ | cope boi $100^{\circ} 31^{\prime}$ | ng set 0 $280^{\circ} 31^{\prime}$ | $\begin{aligned} & \text { n } V \\ & 110^{\circ} 42^{\prime} \end{aligned}$ | $90^{\circ} 41^{\prime}$ | $120^{\circ} 52^{\prime}$ | $300{ }^{5} 2^{\prime}$ | $\begin{aligned} M & =32^{\prime \prime} \cdot 63 \\ w & =1 \cdot 5^{8} \\ \frac{1}{w} & =0 \cdot 63 \\ C & =49^{\circ} 29^{\prime} 32^{\prime \prime} \cdot 64 \end{aligned}$ |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | $h 32$ $h$ 33 h 34.96 h 32.64 | $h_{2} 3553$ $h 35 \cdot 23$ |  |  |  |  |  | $\begin{aligned} & 34.74 \\ & h 32.70 \\ & h 32.67 \\ & h 34 \end{aligned}$ | $28 \cdot 37$ 29.87 | h $32 \cdot 84$ <br> h $\mathbf{3 2}^{2 \cdot 77}$ | $\begin{aligned} & h 31.33 \\ & k 29.77 \end{aligned}$ | $\begin{aligned} & h 30.90 \\ & h 30.86 \end{aligned}$ |  |
|  | 33'19 | 35\%11 | 28.85 | 34.67 | 31.88 | $38 \cdot 59$ | 32.69 | $33 \cdot 37$ | 29.12 | 3261 | 30`55 | 30'88 ${ }^{\circ}$ |  |
| III \& I |  <br>  <br>  <br> h 19.33 |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =24^{\prime \prime} \cdot 09 \\ w & =0 \cdot 70 \\ \frac{1}{w} & =1 \cdot 42 \\ C & =34^{\circ} 10^{\prime} 24^{\prime \prime \prime} \cdot 09 \end{aligned}$ |
|  | 16.71 | $19^{\circ 94}$ | 19.99 | 21•71 | 23.45 | 23.72 | $26 \cdot 33$ | 26.84 | 30'36 | $27 \cdot 65$ | $39^{\prime 2} 3$ | 23.20 |  |
At V (Bela)
*February; and $\dagger$ March 18556; observed by Lieutenant D. J. Nasmyth, R.E., with Troughton and Simms'
18-inch Theodolite No. 2.

| $\text { II \& } 1$ |  <br>  <br>  | $\begin{gathered} M \\ w \end{gathered}=\begin{gathered} 4^{\mu} \cdot 76 \\ 0 \end{gathered} 8_{4}$ |
| :---: | :---: | :---: |
|  |  |  |
| Leeere oircie reatinge | $\begin{array}{lllllllllllll}197^{\circ} 35^{\prime} & 17^{\circ} 34^{\prime} & 207^{\circ} 45^{\prime} & 27^{\circ} 45^{\prime} & 2177^{\circ} 56^{\prime} & 37^{\circ} 56^{\prime} & 228^{\circ} 1^{\prime} & 48^{\circ} 11^{\prime} & 238^{\circ} 13^{\prime} & 58^{\circ} 13^{\prime} & 248^{\circ} 23^{\prime} & 68^{\circ} 23^{\prime}\end{array}$ | $\begin{aligned} & w=1 \cdot 82 \\ & \frac{1}{w}=0 \cdot 55 \\ & C=31^{\circ} 35^{\prime} 45^{\prime \prime} \cdot 14 \\ & M=45^{\prime \prime \prime} \cdot 47 \\ & w=98 \end{aligned}$ |
| $\mathrm{III}^{\dagger} \& \mathrm{I}$ |  <br>  $h_{49}$ 10 <br>  |  |
|  |  |  |
| Lesear circio readinge | $\begin{array}{llllllllllll}2255^{\circ} 7^{\prime} & 45^{\circ} 7 & 2355^{\circ} 18^{\prime} & 55^{\circ} 188^{\prime} & 245^{\circ} 28^{\prime} & 65^{\circ} 28^{\prime} & 255^{\circ} 35^{\prime} & 75^{\circ} 35^{\prime} & 2655^{\circ} 45^{\prime} & 85^{\circ} 45^{\prime} & 2755^{\circ} 56^{\prime} & 95^{\circ} 56^{\prime}\end{array}$ |  |
| $I \& I V$ |  <br>  |  |
|  | $\begin{array}{lllllllllllll}11.95 & 16.80 & 11.38 & 18.45 & 16.32 & 14.71 & 16.28 & 12.42 & 13.27 & 11.16 & 18.73 & 16.26\end{array}$ |  |
| Leser circle readige |  | $\begin{aligned} & w=3 \cdot 25 \\ & \frac{1}{w}=0 \cdot 3^{1} \\ & C=63^{\circ} 5^{\prime} 15^{\prime \prime} \cdot 3^{2} \\ & M=15^{\prime \prime} \cdot 8_{2} \\ & w=1 \end{aligned}$ |
| I $\&^{\dagger} \mathrm{I} \mathrm{V}^{+}$ |  <br>  |  |
|  | $\begin{array}{lllllllllllll}14.97 & 18.31 & 17.55 & 13.59 & 15.00 & 13.93 & 20.89 & 11.31 & 17.21 & 12.99 & 16.42 & 17.68\end{array}$ |  |
| IV \& $\stackrel{+}{\text { ® }}$ |  <br>  ${ }_{h 21}{ }^{2} 23$ | $\begin{aligned} & M=19^{\prime \prime} \cdot 45 \\ & w=1 \cdot 44 \\ & \frac{1}{w}=0 \cdot 69 \\ & C=66^{\circ} 59^{\prime} 19^{\prime \prime \prime} \cdot 45 \end{aligned}$ |
|  | $\begin{array}{llllllllllllll}20.60 & 17.60 & 16.75 & 21.95 & 17.02 & 24.28 & 14.44 & 19.79 & 17.65 & 21.53 & 19.15 & 22.62\end{array}$ |  |
| VI ${ }^{+} \mathrm{VII}$ |  <br>  | $\begin{aligned} & M=10^{\prime \prime} \cdot 89 \\ & w=1 \cdot 42 \\ & \frac{1}{w}=0 \cdot 7 \mathbf{1} \\ & C=71^{\circ} 40^{\prime} 10^{\prime \prime} \cdot 89 \end{aligned}$ |
|  | $\begin{array}{llllllllllll}12.32 & 10.68 & 15.29 & 6.65 & 9.79 & 4.90 & 10.42 & 10.82 & 13.91 & 11.44 & 13.06 & 11.38\end{array}$ |  |

## At VI (Dajka)

February 1856; observed by Lieutenant D. J. Nasmyth, R.E., with Troughton and Simms' 18-inch Theodolite No. 2.


## At VII (Gángta)

March 1856; observed by Lieutenant D. J. Nasmyth, R.E., with Troughton and Simms' 18-inch Theodolite No. 2.

| $\underset{\text { between }}{\text { Angle }}$ | $0^{\circ} 0^{\prime}$ | Circle readings, telescope being set on V |  |  |  |  |  |  |  |  |  |  | $\boldsymbol{M}=$ Menn of Groups <br> $v_{0}=$ Relative Weight <br> C = Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $180^{\circ} 0^{\prime}$ | $10^{\circ} 11^{\prime}$ | $190^{\circ} 11^{\prime}$ | $20^{\circ} 22^{\prime}$. | $200^{\circ} 22^{\prime}$ | $30^{\circ} 28^{\prime}$ | $210^{\circ} 28^{\prime}$ | $40^{\circ} 39^{\prime}$ | $220^{\circ} 39^{\prime}$ | $50^{\circ} 49^{\prime}$ | $230^{\circ} 49^{\prime}$ |  |
| V \& VI |  <br> $\boldsymbol{h 1 I} 96 \boldsymbol{h} 13.17$ |  | " | " | " | $\begin{array}{ll} l \\ l \\ l & 11 \cdot 8 \cdot 57 \end{array}$ | " |  | $\begin{aligned} & l 24 \cdot 16 \\ & h 25 \cdot 43 \\ & h 24.73 \end{aligned}$ | " | $\begin{aligned} & l 19.16 \\ & l 17.37 \end{aligned}$ | $\begin{array}{cc}  & " 1 \\ l & 12.77 \\ l & 14.50 \\ l & 14.00 \end{array}$ | $\begin{aligned} M & =16^{\prime \prime} \cdot 98 \\ w & =0 \cdot 85 \\ \frac{1}{w} & =1 \cdot 18 \\ C & =43^{\circ} 19^{\prime} 16^{\prime \prime} \cdot 98 \end{aligned}$ |
|  |  |  | $\begin{aligned} & l 13.33 \\ & l 15.67 \\ & l 16.43 \end{aligned}$ | $h_{17.67}$ <br> h 15 .90 | $\begin{aligned} & l 18.47 \\ & l 19.76 \end{aligned}$ |  | $\begin{array}{ll} l 20.37 \\ l 20.74 \end{array}$ |  |  | h17.17 <br> $h 18.06$ |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 12.53 | 13.62 | 15.14 | 16.79 | 1911 | 12.22 | $20 \cdot 55$ | 1936 | 24.77 | $176{ }^{\text { }}$ | 18.27 | 13.76 |  |


| At VII (Gángta)-(Continued). |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\underset{\text { between }}{\text { bngle }}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |
| VI \& IX |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=25^{\prime \prime} \cdot 5^{1} \\ & w=1 \cdot 15 \\ & \frac{1}{w}=0 \cdot 87 \\ & C=36^{\circ} \cdot 1^{\prime} 25^{\prime \prime} \cdot 5^{1} \end{aligned}$ |
|  | $\begin{array}{lllllllllllll}31.19 & 26.27 & 25.08 & 21.60 & 22.81 & 23.62 & 25.85 & 24.12 & 22.68 & 29.10 & 23.27 & 30.50\end{array}$ |  |  |  |  |  |  |  |  |  |  |  |  |
| At VIII (Pata-i-sháh) <br> - March 1854; and $\dagger$ February 1856; observed by Lieutenant D. J. Nasmyth, R.E., with Troughton and Simms' 18-inch Theodolite No. 2. |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\underset{\text { Angle }}{\text { between }}$ | Circle readings, telescope being set on $X$ <br>  |  |  |  |  |  |  |  |  |  |  |  | $M=$ Mean of Groupe <br> ${ }^{20}=$ Relative Weight <br> C $=$ Concluded Angle |
| $X \& X I$ |  <br>  |  |  |  |  |  |  |  |  |  |  |  | ${ }_{w}^{M}=544_{1}^{\prime \prime}: 99$ |
|  | $\begin{array}{llllllllllll} \\ 52.24 & 49.62 & 52.94 & 51.71 & 54.90 & 59.13 & 59.60 & 59.22 & 56.23 & 57.17 & 51.28 & 55.80\end{array}$ |  |  |  |  |  |  |  |  |  |  |  |  |
| Lemere circle readines |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & w=2 \cdot 17 \\ & \frac{1}{w}=0 \cdot 46 \\ & C=34^{\circ} 21^{\prime} 53^{\mu} \cdot 8_{5} \\ & M=52^{\prime \prime} \cdot 85 \\ & w \cdot 16 \end{aligned}$ |
| $\mathrm{X} \stackrel{1}{+}^{+} \mathrm{II}$ |  <br>  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 49.68 | 50\%05 | 5125 | 4717 | 53.23 | 50.62 | 55.69 | 54.18 | 56.08 | 55\%24 | 58.16 | 52'79 |  |
| $\mathrm{XI} \stackrel{\dagger}{\&} \mathrm{IX}$ |  <br>  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=50^{\prime \prime} \cdot 69 \\ & w=2 \cdot 82 \\ & \frac{1}{w}=0 \cdot 35 \\ & C=35^{\circ} \cdot 3^{\prime} 50^{\prime \prime} \cdot 70 \end{aligned}$ |
|  | 52.02 | 52.02 | 54.13 | 50.09 | 50.91 | 47\% | 50.07 | 50.09 | 49.33 | 4783 | 50.40 | 53.60 |  |
| IX $\stackrel{+}{\text { \& }}$ VI |  <br>  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=31^{\prime \prime} \cdot 30 \\ & w=1 \cdot 22 \\ & \frac{1}{w}=0 \cdot 82 \\ & C=50^{\circ} 27^{\prime} 31^{\prime \prime} \cdot 30 \end{aligned}$ |
|  | $32^{2} 72$ | $33 \cdot 82$ | 26.40 | $35^{\circ} \mathrm{O}$ | 31.16 | 36.35 | $26 \cdot 93$ | 31.25 | 31.47 | 32.80 | $28 \cdot 39$ | 29:29 |  |
| VI $\stackrel{\dagger}{\text { \& }}$ IV |  <br>  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=7^{\prime \prime} \cdot 42 \\ & w=1 \cdot 35 \\ & \frac{1}{w}=0 \cdot 74 \\ & C=64^{\circ} 5^{\prime} 7^{\prime \prime} \cdot 42 \end{aligned}$ |
|  | $7 \cdot 84$ | $3 \cdot 48$ | 10'93 | $7 \cdot 87$ | ${ }^{1} 104$ | $1 \cdot 85$ | $10 \cdot 89$ | 704 | 6.54 | 6.27 | $9 \cdot 83$ | $5 \cdot 50$ |  |


| March 1856; observed by Lieutenant D. J. Nasmyth, R.E., with Troughton and Simms' 18-inch Theodolite No. 2. |  |  |
| :---: | :---: | :---: |
| $\underset{\text { Antween }}{\text { Angle }}$ | Circle readings, telescope being set on VII <br>  | $M=$ Mean of Groaps $w_{0}=$ Relative Weight <br> ${ }^{\infty} \mathrm{C}=$ Relative Concluded Angle |
| VII \& VI |  | $\begin{aligned} & M=8^{\prime \prime} \cdot 66 \\ & w=0 \cdot 74 \\ & \frac{1}{w}=1 \cdot 35 \\ & C=88^{\circ} 47^{\prime} 8^{\prime \prime} \cdot 66 \end{aligned}$ |
|  | 10.85 15.25 11775 10.17 9.66 12.55 2.92 5.39 4.72 5.90 3.43 <br> 11.28           |  |
| VI \& VIII |  <br>  $122 \cdot 77$ | $\begin{aligned} & M=21^{\prime \prime} \cdot 58 \\ & w=0 \cdot 66 \\ & \frac{1}{w}=1 \cdot 5^{2} \\ & C=47^{\circ} 2^{\prime} 21^{\prime \prime} \cdot 5^{8} \end{aligned}$ |
|  | $\begin{array}{llllllllllll}15.47 & 14.81 & 22.58 & 21.77 & 22.28 & 17.95 & 28.93 & 24.33 & 26.56 & 23.08 & 22.97 & 18.28\end{array}$ |  |
| VIII \& X |  <br>  | $\begin{aligned} & M=5^{\prime \prime \prime} \cdot 33 \\ & w=1 \cdot 08 \\ & \frac{1}{w}=0 \cdot 93 \\ & C=42^{\circ} 19^{\prime} 5^{\prime \prime \prime} \cdot 33 \end{aligned}$ |
|  | $60 \cdot 17$ $62 \cdot 50$ $56 \cdot 15$ $53 \cdot 80$ $56 \cdot 84$ $53 \cdot 93$ 57 <br> 173 $l$ 59     <br> 19 $55 \cdot 44$ $60 \cdot 95$ $58 \cdot 90$ $64 \cdot 35$   |  |
| X \& XI |  <br>  | $\begin{aligned} & M=65^{\prime \prime} \cdot 23 \\ & w=1 \cdot 42 \\ & \frac{1}{w}=0 \cdot 7 \mathrm{I} \\ & \boldsymbol{C}=4^{\circ} 3^{\circ} 6^{\prime} \quad 5^{\prime \prime \prime} \cdot 23 \end{aligned}$ |
|  | $\begin{array}{llllllllllll}67.13 & 65.50 & 64.57 & 68.39 & 62.95 & 67.79 & 58.63 & 62.08 & 68.29 & 64.96 & 67.01 & 65.45\end{array}$ |  |
| March and April 1856; † November 1856; observed by Lieutenant D. J. Nasmyth, R. E., with Troughton and Simms' 18-inch Theodolite No. 2. |  |  |
| $\underset{\text { Angle }}{\text { Aetreen }}$ | Circle readings, telescope being set on XIII <br> $110^{\circ} 3^{\prime} \quad 290^{\circ} 3^{\prime} \quad 120^{\circ} 14^{\prime} \quad 300^{\circ} 14^{\prime} \quad 130^{\circ} 25^{\prime} \quad 310^{\circ} 25^{\prime} \quad 140^{\circ} 30^{\prime} \quad 320^{\circ} 30^{\prime} \quad 150^{\circ} 42^{\prime} 830^{\circ} 42^{\prime} 160^{\circ} 5 z^{\prime} \quad 340^{\circ} 52^{\prime}$ | $M=\begin{gathered}\text { Mean of Groupe } \\ \text { Relative } \\ \text { Weight }\end{gathered}$ <br> ${ }^{20}=\begin{aligned} & \text { Relative } \\ & C\end{aligned}$ |
| XIII \& XII |  <br>  | $\begin{aligned} & M=6^{\prime \prime} \cdot 67 \\ & w=2 \cdot 83 \\ & \frac{1}{w}=0 \cdot 35 \\ & C=75^{\circ} \cdot 21^{\prime} 6^{\prime \prime} \cdot 67 \end{aligned}$ |
|  | $\begin{array}{lllllllllllll}7.29 & 8.30 & 6.23 & 6.45 & 7.27 & .3 .40 & 6.93 & 2.77 & 5.76 & 6.96 & 9.83 & 8.84\end{array}$ |  |



## At XI (Chitror)-(Continued).



## At XII (Monába)

**March; and \|November 1856; observed by Lieutenant D. J. Nasmyth, R.E., with Troughton and Simms' 18-inch Theodolite No. 2.


| At XII (Monába)-( Continued). |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Angle between | Circle readings, telescope being set on $\mathbf{X}$ <br>  |  |  |  |  |  |  |  |  |  |  | $M=$ Mean of Groupe <br> wo Kelative Weight <br> C - Concluded Angle |  |  |
| XIII \& XV |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=48^{\prime \prime \prime} \cdot 74 \\ & w=24 \\ & w=2 \cdot 85 \\ & \frac{1}{w}=0 \cdot 35 \\ & C=63^{\circ} \cdot 43^{\prime} 48^{\prime \prime} \cdot 5^{8} \\ & M=48^{\prime \prime} \cdot 43 \\ & { }_{w}=1 \cdot 41 \end{aligned}$ |  |  |
|  | $48.62 \quad 50.15$ | $46 \cdot 29$ | $50 \cdot 27$ | $44 \cdot 38$ | $50 \cdot 32$ | 45'93 | $48 \cdot 75$ | $48 \cdot 43$ | 52.80 | 45.57 | 53.37 |  |  |  |
| XIII \& XV |  <br>  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 48.80 $\quad 52.03$ | $47 \times 46$ | 52.16 | 42.14 | $49^{\circ} 09$ | $45 \cdot 88$ | 4730 | 47.00 | 50:35 | $47 \times 47$ | 51*43 |  |  |  |
| $X \dot{X} \& \dot{X V I}$ |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=55^{\prime \prime \prime} \cdot 33 \\ & 0=1 \cdot 69 \\ & w=1 \cdot 69 \\ & \frac{1}{w}=0 \cdot 59 \\ & C=45^{\circ}{ }_{2} 6^{\prime} 55^{\prime \prime} \cdot 42 \\ & \frac{M}{w}=55_{1}^{\prime \prime \prime} \cdot 47 \end{aligned}$ |  |  |
|  | 52.81 $\quad 52.42$ | 57.87 | $54 * 53$ | $60 \cdot 22$ | 5772 | $63 \cdot 74$ | 53.46 | 54:30 | 56.56 | 51.57 | 48•78 |  |  |  |
| XV \& XVI |  <br>  $h 54.27 l 59.56 \quad l 63.43$ |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 51.72 52.06 | 56.34 | $53 \cdot 76$ | 58.83 | 59.00 | 63.03 | 54*10 | 56.90 | 53.61 | 53.52 | 52.75 |  |  |  |
| XVI ** XIV |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & \underset{w}{w}=53^{\prime \prime} \cdot 18 \\ & 0 \cdot 75 \\ & w=1 \cdot 69 \\ & \frac{1}{w}=0 \cdot 59 \\ & C=61^{\circ} 54^{\prime} 53^{\prime \prime} \cdot 3^{1} \\ & \begin{array}{l} M=53^{\prime \prime} \cdot 42 \\ 0 \\ 0 \end{array} \end{aligned}$ |  |  |
|  | 60.10 $\quad 52 \cdot 77$ | $48 \cdot 62$ | 54\%1 | 48.40 | 54.58 | $46 \cdot 75$ | 58.57 | 52.33 | 5301 | 54.92 | 53.23 |  |  |  |
| XVI \& XIV |  <br>  $h_{54 \circ 0} \quad l 5_{51} 97$ |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 59.12 53.50 | 49.90 | 54\%8 | 53.65 | 50'35 | 47.51 | 58.89 | 50.11 | 54.60 | 53.60 | 54*81 |  |  |  |
| XIV \& XI |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M \\ & w \end{aligned}=\begin{aligned} & 8_{1}^{\prime \prime} \cdot 64 \\ & 1 \cdot 02 \end{aligned}$ |  |  |
|  | 3.14 | 10*90 | 6.04 | 10002 | $7 \times 96$ | 12.68 | 4.81 | 13.89 | 739 | 12.46 | 789 |  |  |  |

## At XII (Monába)-(Continued).

| Angle between | $0^{\circ} 1^{\prime}$ | $180^{\circ} 1^{\prime}$ | $10^{\circ} 11^{\prime}$ | $\begin{aligned} & \text { Circle } \\ & 190^{\circ} 11^{\prime} \end{aligned}$ | e readin <br> $20^{\circ} 22^{\prime}$ | gs, tele <br> $200^{\circ} 22^{\prime}$ | $\begin{aligned} & \text { scope be } \\ & 30^{\circ} 28^{\prime} \end{aligned}$ | eing set <br> $210^{\circ} 28^{\prime}$ | $\begin{aligned} & \text { on } \mathrm{X} \\ & 40^{\circ} 39^{\prime} \end{aligned}$ | $220^{\circ} 39^{\prime}$ | $50^{\circ} 50^{\prime}$ | $230^{\circ} 50^{\prime}$ | $M=$ Mean of Groups <br> ${ }^{20}$ - Relative Weight <br> C = Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\\|_{\text {XIV } \& ~ X I ~}$ | ." | " | " | " | " | " | " | 8 | " | " | " |  | $\begin{aligned} & w=2^{\prime \prime} \cdot 23 \\ & \frac{1}{w}=0 \cdot 45 \\ & C=53^{\circ} 53^{\prime} 8^{\prime \prime} \cdot 73 \\ & \frac{M}{M}=8^{\prime \prime} \cdot 8 \mathrm{I} \\ & w=1 \cdot 21 \end{aligned}$ |
|  |  |  |  | $l 6.34$ |  |  |  |  |  |  |  | $l 4.53$ |  |
|  | h 4.43 | $h 5 \cdot 87$ | $h 13.34$ | $l 773$ | l796 | $l 8.14$ | $l 12.90$ | $h 6 \cdot 13$ | h 13.97 | h7.57 | $l 10.50$ | $l 7.50$ $l 6.70$ |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 4¹8 | 6.79 | 13.70 | 7•16 | 8.2I | 8.71 | $11 \times 70$ | 741 | 14.49 | $7 \cdot 25$ | $9 \cdot 85$ | 6.34 |  |
| XI \& X |  <br>  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=45^{\prime \prime \prime} \cdot 24 \\ & w=1 \cdot 04 \\ & w=2 \cdot 40 \\ & \frac{1}{w}=0 \cdot 42 \\ & C=72^{\circ} 14^{\prime} 45^{\prime \prime} \cdot 40 \\ & M=45^{\prime \prime} \cdot 53 \\ & w=1 \cdot 36 \end{aligned}$ |
|  | 49*10 | $48 \cdot 98$ | $45^{10}$ | $45 \cdot 38$ | $45^{\prime 3}$ | 48:30 | $40 \cdot 24$ | $44 \cdot 38$ | $38 \cdot 40$ | $46 \cdot 52$ | $43 \cdot 15$ | 48.05 |  |
| $\\|_{\& I X}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 51•14 | 48.40 | $44 \cdot 26$ | 45'93 | 44*85 | $48 \cdot 66$ | 4127 | $42 \% 42$ | 41.87 | $45 \cdot 77$ | $44^{\circ} 78$ | $46 \cdot 95$ |  |

## At XIII (Kesmára)

November 1856; observed by Lieutenant D. J. Nasmyth, R.E., with Troughton and Simms' 18-inch Theodolite No. 2.


## At XIV (Wándia)

*March; and $\dagger$ November 1856; observed by Lieutenant D. J. Nasmyth, R.E., with Troughton and Simms' 18-inch Theodolite No. 2.

| $\underset{\text { Angle }}{\text { Ange }}$ between | $0^{\circ} 1^{\prime} \quad 180^{\circ} 1^{\prime}$ | $10^{\circ} 11^{\prime}$ | $\begin{gathered} \text { Circle } \\ 190^{\circ} 11^{\prime} \end{gathered}$ | readings $20^{\circ} 22^{\prime}$ | s, telesco <br> $200^{\circ} 22^{\prime}$ | pe bein <br> $30^{\circ} 28^{\prime}$ | get on $210^{\circ} 28^{\prime}$ | $\begin{aligned} & \mathrm{a} \text { XI } \\ & 40^{\circ} 39^{\prime} \end{aligned}$ | $220^{\circ} 39^{\prime}$ | $50^{\circ} 50^{\prime}$ | $230^{\circ} 50^{\prime}$ | $M=$ Mean of Groups <br> wo Kelative Weight <br> $\boldsymbol{C}=$ Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| XI \& XII |  <br>  <br> $l 13.30 l 15.26$ |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=13^{\prime \prime} \cdot 23 \\ & w=1 \cdot 05 \\ & w=3 \cdot 71 \\ & \frac{1}{w}=0 \cdot 27 \\ & C=56^{\circ} 29^{\prime} 14^{\prime \prime} \cdot 26 \\ & M=14^{\prime \prime} \cdot 67 \\ & w=2 \cdot 66 \end{aligned}$ |
|  | $8.65 \quad 12.71$ | 14.58 | 10'10 | 15.80 | $8 \cdot 36$ | $20 \cdot 11$ | 15.70 | 15.30 | 12922 | 12.71 | 1184 |  |
| $\stackrel{\dagger}{\text { XI }} \stackrel{+}{\text { XII }}$ |  <br>  $h_{13} 23$ |  |  |  |  |  |  |  |  |  |  |  |
|  | 13.87 , 16.97 | $15 \cdot 15$ | 14*00 | 1768 | 11•17 | 17\%3 | 14.59 | $14^{\circ 00}$ | 12.83 | 16.62 | $12 \times 07$ |  |
| XII \& XVI |  <br>  $l 23.40$ |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & \left.\begin{array}{l} M=21^{\prime \prime} \cdot 76 \\ w \end{array}\right) \cdot 01 \\ & w=2 \cdot 7^{2} \\ & \frac{1}{w}=0 \cdot 37 \\ & C=63^{\circ} 9^{\prime} 21^{\prime \prime} \cdot 45 \\ & M=21^{\prime \prime} \cdot 26 \\ & w=1 \cdot 7_{1} \end{aligned}$ |
|  | $26.31 \quad 23.21$ | $20 \cdot 75$ | 24.58 | 17.84 | $26 \cdot 13$ | $15 \times 43$ | 17\%50 | 2100 | 23.27 | 22.17 | 22.93 |  |
| $\stackrel{\dagger}{\text { XII }} \stackrel{\text { XVI }}{ }$ |  <br>  h 21.60 |  |  |  |  |  |  |  |  |  |  |  |
|  | $22.65 \quad 20.26$ | 21.55. | $20 \cdot 92$ | 16.51 | 23.72 | 18.35 | 19.68 | 19.21 | $25 \cdot 85$ | 23.46 | 22.98 |  |

## At XV (Kákraji)

$\ddagger$ April 1854; and §November 1856; observed by Lieutenant D. J. Nasmyth, R.E., with Troughton and Simms' 18-inch Theodolite No. 2.

| $\underset{\text { between }}{\text { Angle }}$ | $307^{\circ} 55^{\prime} 127^{6} 55^{\prime}$ | $318{ }^{\circ} 5^{\prime}$ | $\begin{aligned} & \text { Circle r } \\ & 138^{\circ} 5^{\prime} \end{aligned}$ | readings <br> $328^{\circ} 16^{\prime}$ | telescop $148^{\circ} 16^{\prime}$ | pe being $338^{\circ} 22^{\prime}$ | set on X <br> $158^{\circ} 22^{\prime}$ | $\begin{gathered} \text { XVIII } \\ 348^{\circ} 33^{\prime} \end{gathered}$ | $168^{\circ} 33^{\prime}$ | $358^{\circ} 44^{\prime}$ | $178^{\circ} 44^{\prime}$ | M $=$ Mean of Groups <br> ${ }^{2}$ - Relative Weight <br> $C=$ Concluded $A$ ngle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\underset{\text { XVIII }}{\ddagger} \text { \& XVII }$ | " " | $"$ | " | " | " | " | " | " | " | " | " | $\begin{aligned} & M=54^{\prime \prime} \cdot 17 \\ & w=1 \cdot{ }_{02} \end{aligned}$ |
|  | $\begin{array}{llll} h_{54}: 93 & l & 58 \cdot 04 \\ l & 54.30 & l & 57.96 \end{array}$ | $\begin{aligned} & l 56.13 \\ & l 55.37 \\ & l \\ & h 77.56 \\ & h \\ & 56.90 \end{aligned}$ | $\begin{aligned} & l: 88 \cdot 26 \\ & l \\ & l 59 \cdot 83 \end{aligned}$ | $\begin{aligned} & h 54.87 \\ & h 55 \cdot 87 \\ & h 55^{\circ} 43 \end{aligned}$ | $\begin{aligned} & l \\ & l \\ & l \\ & 58.93 \end{aligned}$ | $\begin{aligned} & l \\ & l \\ & l \\ & l 50.93 \end{aligned}$ | $\begin{aligned} & l_{52.93} \\ & l_{51.00} \end{aligned}$ | $\begin{aligned} & l 53.50 \\ & l 54: 07 \end{aligned}$ | $l 50 \cdot 36$ <br> $l 50 \cdot 10$ | $\begin{aligned} & l 49.50 \\ & l 48.80 \end{aligned}$ | $\begin{aligned} & l \\ & l \\ & l \\ & l \\ & 51 \cdot 64 \end{aligned}$ |  |
|  | $54.62 \quad 58.00$ | 56.99 | $59^{\circ} 04$ | 55.39 | 58.33 | 51.57 | 51*96 | 53'79 | $50 \cdot 23$ | 49'15 | 50'97 |  |

## At XV (Kákraji)-(Continued).



## At XVI (Mália)

*April 1854; and $\dagger$ November 1856; observed by Lieutenant D. J. Nasmyth, R.E., with Troughton and Simms' 18-inch Theodolite No. 2.

| $\begin{gathered} \text { Angle } \\ \text { between } \end{gathered}$ | ${ }^{231}{ }^{\circ} 8^{\prime} \quad 51^{\circ} 8^{\prime} \quad 2$ | $241^{\circ} 19^{\prime}$ | $\begin{gathered} \text { Circle } \\ 61^{\circ} 19^{\prime} \end{gathered}$ | readings, <br> $251^{\circ} 29^{\prime}$ | , telesco $71^{\circ} 30^{\prime}$ | pe being <br> $261^{\circ} 35^{\prime}$ | set on $81^{\circ} 35^{\prime}$ | $\begin{aligned} & \text { XIV } \\ & 271^{\circ} 46^{\prime} \end{aligned}$ | $91^{\circ} \cdot 46^{\prime}$ | $281{ }^{\circ} 57^{\prime}$ |  | $\boldsymbol{M}=$ Mean of Groupe <br> w = Relative Weight <br> $C=$ Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\stackrel{\dagger}{\text { XIV }} \stackrel{\text { XII }}{ }$ |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=42^{\prime \prime} \cdot 30 \\ & w=1 \cdot 55 \\ & \frac{1}{w}=0 \cdot 64 \\ & C=54^{\circ} 55^{\prime} 42^{\prime \prime} \cdot 30 \end{aligned}$ |
|  | $39.63 \quad 40 \cdot 92$ | $38 \cdot 42$ | $43 \cdot 62$ | $42 \cdot 58$ | 41'15 | 47•13 | $38 \cdot 50$ | 46\%1. | $43 \times 47$ | 43.24 | 42.92 |  |
| $\stackrel{\dagger}{\text { XII }} \stackrel{\text { XV }}{ }$ |  <br>  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=44^{\prime \prime} \cdot 46 \\ & w=0 \cdot 85 \\ & \frac{1}{w}=1 \cdot 18 \\ & C=73^{\circ} 56^{\prime} 44^{\prime \prime} \cdot 4^{6} \end{aligned}$ |
|  | $\begin{array}{ll}47.29 & 49.39\end{array}$ | $46 \cdot 00$ | 43.30 | $41 \cdot 63$ | 50'15 | $38 \cdot 12$ | $40 \cdot 86$ | $40 \cdot 82$ | 43.46 | 45.20 | 47\%33 |  |
| XV \& XVII |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=41^{\prime \prime} \cdot 25 \\ & w=0 \cdot 82 \\ & w=1 \cdot 66 \\ & \frac{1}{w}=0 \cdot 60 \\ & C=46^{\circ} 39^{\prime} 42^{\prime \prime} \cdot 49 \\ & M=43^{\prime \prime} \cdot 7^{1} \\ & w=84 \end{aligned}$ |
|  | $36.22 \quad 36.38$ | $38 \cdot 49^{\circ}$ | $39 \cdot 12$ | $42 \cdot 48$ | 36.54 | $46 \cdot 53$ | $45 \cdot 26$ | 45.95 | 44.07 | 42.31 | 41.62 |  |
| $\stackrel{\dagger}{\text { XV } \& V I I}$ |  <br>  <br>  |  |  |  |  |  |  |  |  |  |  |  |
|  | 41'10 $41 \times 88$ | $46 \cdot 55$ | 44:21 | 42.81 | 38.00 | 49.96 | 45*50 | 48:12 | 44*) | . $44^{\circ} 47$ | 37.35 |  |
| XVII \& XIX |  <br>  $l 50$ 80 $l 50.40$ |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=51^{1 \prime} \cdot 32_{2}^{2} \\ & w=90 \end{aligned}$ |
|  | $51.33 \quad 49.80$ | 49.65 | 48:75 | $49 \times 96$ | 51.30 | 49.58 | 53.94 | $50 \cdot 28$ | 53.04 | 53.45 | 54779 |  |
| $\stackrel{\dagger}{\text { XVII } \& ~ X I X ~}$ |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & w=4 \cdot \circ 7 \\ & \frac{1}{w}=0 \cdot 25 \\ & C=45^{\circ} \cdot 28^{\prime} 50^{\prime \prime \cdot 16} \\ & M=47^{\prime \prime \cdot} \cdot 29 \\ & w=17 \end{aligned}$ |
|  | $45.64 \quad 49.51$ | 44.55 | 43.80 | 49.55 | 46.60 | $45 \cdot 8 \mathrm{I}$ | 49.87 | $44^{\circ} 06$ | 49'78 | 44.40 | 53.86 |  |

## At XVII (Rangpur)

*January 1853; observed by Lieutenant H. Rivers; and $\dagger$ February 1854; $\ddagger$ April 1854; §December 1856; observed by Lieutenant D. J. Nasmyth, R.E., with Troughton and Simms' 18-inch Theodolite No. 2.



## At XVII (Rangpur)-(Continued).



## At XVIII (Chalarwa)

||December 1852; observed by Lieutenant H. Rivers with Troughton and Simms' 18-inch Theodolite No. 2. TFebruary 1854; (a) November 1856; and (b) December 1856; observed by Lieutenant D.J. Nasmyth, R.E., with Troughton and Sinims' 18-inch Theodolite No. 2:


| At XVIII (Chalarwa)-(Continued). |  |  |
| :---: | :---: | :---: |
| $\begin{gathered} \text { Angle } \\ \text { betweon } \end{gathered}$ | Circle readings, telescope being set on XVII <br> $299^{\circ} 95^{\prime} 119^{\circ} 35^{\prime \prime} \quad 309^{\circ} 46^{\prime} \quad 129^{\circ} 46^{\prime} \quad 319^{\circ} 57^{\prime} 139^{\circ} 57^{\prime} 330^{\circ} 3^{\prime} \quad 150^{\circ} 3^{\prime} 840^{\circ} 14^{\prime} \quad 160^{\circ} 14^{\prime} \quad 350^{\circ} 24^{\prime} 170^{\circ} 24^{\prime}$ | $M=$ Mean of Group <br>  |
| $x v i I \& x v$ |  |  |
|  | $\begin{array}{llllllllllll}12.19 & 14.62 & 15.75 & 13.20 & 9.86 & 14.62 & 7.48 & 8.73 & 8.95 & 8.95 & 7.91 & 5.00\end{array}$ |  |
| XVII ${ }^{(a)}$ XV |  <br>  | $\begin{aligned} & w=3 \cdot 94 \\ & \frac{1}{w}=0 \cdot 25 \\ & C=60^{\circ} 25^{\prime} 12^{\prime \prime} \cdot 27 \\ & M C=12^{\prime \prime} \cdot 86 \\ & w=91 \end{aligned}$ |
|  | $\begin{array}{lllllllllllll}12.37 & 12.30 & 12.02 & 15.08 & 9.15 & 15.72 & 13.13 & 11.34 & 10.66 & 15.07 & 12.71 & 14.74\end{array}$ |  |
| *April 1854; †November 1856; and $\ddagger$ December 1856; observed by Lieutenant D. J. Nasmyth, R.E., with Troughton and Simms' 18-inch Theodolite No. 2. |  |  |
| Angle betrieen | Circle readings, telescope being set on XVI <br> $0^{\circ} \sigma^{\prime} \quad 180^{\circ} 0^{\prime} \quad 10^{\circ} 11^{\prime} \quad 190^{\circ} 11^{\prime} \quad 20^{\circ} 22^{\prime} \quad 200^{\circ} 22^{\prime} \quad 30^{\circ} 28^{\prime} \quad 210^{\circ} 28^{\prime} \quad 40^{\circ} 39^{\prime} \quad 220^{\circ} 39^{\prime} \quad 50^{\circ} 49^{\prime} \quad 230^{\circ} 49^{\prime}$ | $\begin{aligned} & M=\text { Mean of Groupg } \\ & \text { R }=\text { Relative Weigh } \\ & C=\text { Concluded Angle } \end{aligned}$ |
| XVI \& XV |  <br>  | $\begin{aligned} & M M=\begin{array}{l} 10^{\prime \prime} \cdot 96 \\ w \\ 0 \\ w \end{array}=3 \cdot 34 \\ & \frac{1}{w}=0 \cdot 29 \\ & C=49^{\circ} 3^{\prime} 12^{\prime \prime} \cdot 47 \\ & \frac{M}{w}=\begin{array}{c} 12^{\prime \prime \prime} .86 \\ 1 \cdot 91 \end{array} \end{aligned}$ |
|  | $\begin{array}{llllllllllll} \\ 3.33 & 4.85 & 7.58 & 8.45 & 9.86 & 7.23 & 17.14 & 15.45 & 14.68 & 16.25 & 13.75 & 12.90\end{array}$ |  |
| $\mathrm{XVI}^{\dagger} \& \mathrm{xV}$ |  <br>  |  |
|  |  |  |
|  |  <br>  | $\begin{aligned} & M \\ & w \end{aligned}=\begin{gathered} 12^{\prime \prime} \cdot 51 \\ 0 \\ 0 \end{gathered}$ |
|  | $\begin{array}{llllllllllll}8.30 & 12.02 & 14.87 & 13.35 & 12.41 & 7.98 & 21.39 & 14.23 & 12.94 & 12.35 & 10.18 & 10.10\end{array}$ |  |



Notr,-R.M. denotes Beferring Mark.

|  | At XX (Dúngarpur)-(Continued). |  |
| :---: | :---: | :---: |
| Angle between | Circle readings, telescope being set on R. M. <br> $0^{\circ} 1^{\prime} \quad 180^{\circ} 1^{\prime} \quad 10^{\circ} 12^{\prime} \quad 190^{\circ} 12^{\prime} \quad 20^{\circ} 21^{\prime} \quad 200^{\circ} 21^{\prime} \quad 30^{\circ} 29^{\prime} \quad 210^{\circ} 29^{\prime} \quad 40^{\circ} 38^{\prime} \quad 220^{\circ} 38^{\prime} \quad 50^{\circ} 50^{\prime} \quad 230^{\circ} 50^{\prime}$ | $\boldsymbol{M}=$ Mean of Groupe <br> $\mathbf{w n}^{0}=$ Relative Weight <br> C $=$ Concluded Anglo |
| $\underset{\text { XVİII }}{\text { XXI }}$ |  <br>  | $\begin{aligned} & M=23^{\prime \prime} \cdot 68 \\ & w=2 \cdot 14 \\ & \frac{1}{w}=0 \cdot 47 \\ & C=53^{\circ} 54^{\prime} 23^{\prime \prime} \cdot 68 \end{aligned}$ |
|  |  |  |
| XXI \& XXIII |  | $\begin{aligned} & M=7^{\prime \prime} \cdot 59 \\ & w=1 \cdot 66 \\ & \frac{1}{w}=0 \cdot 60 \\ & C=59^{\circ} 37^{\prime} 7^{\prime \prime} \cdot 59 \end{aligned}$ |
|  | $\begin{array}{lllllllllllll}5.65 & 7.20 & 4.86 & 11.30 & 5.59 & 7.21 & 11.25 & 7.30 & 5: 13 & 11.43 & 9.44 & 4.71\end{array}$ |  |
| $\underset{\text { XXIIV }}{\substack{\S}}$ |  | $\begin{aligned} & M=7^{N \cdot} \cdot 53 \\ & w=1 \cdot 27 \\ & \frac{1}{w}=0 \cdot 79 \\ & C=62^{\circ} 4^{\prime} 7^{\circ} \cdot 53 \end{aligned}$ |
|  | $\begin{array}{lllllllllllll}9.20 & 4.77 & 13.55 & 6.40 & 11.52 & 6.12 & 4.35 & 6.33 & 9.56 & 4.80 & 4.84 . & 8.88\end{array}$ |  |
| $\underset{\text { XXIV }}{\substack{\S \\ \text { XXII }}}$ |  <br>  h 38.06 $l_{41} 76$ h 40 ' 93 | $\begin{aligned} & \begin{array}{l} M \\ w=43^{\prime \prime} \cdot y^{i} \\ 12 \\ w \end{array}=2 \cdot 27 \\ & \frac{1}{w}=0 \cdot 44 \\ & C=57^{\circ} 9^{\prime} 43^{\prime \prime} \cdot 4^{2} \\ & M=43^{\prime \prime} \cdot 14 \\ & w=1 \cdot 15 \end{aligned}$ |
|  | $\begin{array}{llllllllllllll}40.19 & 47.83 & 38.30 & 47.11 & 40.78 & 45.53 & 47.27 & 42.24 & 41.80 & 45.15 & 46.23 & 42.25\end{array}$ |  |
| $\underset{\text { XXII }}{\text { XXIV }}$ |  <br>  |  |
|  | $\begin{array}{llllllllllllll}43.04 & 46.95 & 37.75 & 48.51 & 40.60 & 47.17 & 41.57 & 42.78 & 41.62 & 44.57 & 43.27 & 39.86\end{array}$ |  |
| XXII \& XVII |  <br>  h6r.83 h 66.53 | $\begin{aligned} & M=61^{n \cdot 83} \\ & w=1 \cdot 16 \\ & w=2 \cdot 08 \\ & \frac{I}{w}=0 \cdot 48 \\ & C=69^{\circ} 37^{\prime} \quad 2^{\prime \prime} \cdot 23 \\ & M=62^{\prime \prime} \cdot 73 \\ & w=0 \cdot 92 \end{aligned}$ |
|  | $\begin{array}{llllllllllllll}66.41 & 57.75 & 59.12 & 55.46 & 63.62 & 61.85 & 63.88 & 62 \cdot 19 & 64.64 & 61 \cdot 10 & 61.83 & 64.13\end{array}$ |  |
| XXII \& XVII |  <br>  $l 62.70$ $h 64.90$ |  |
|  | $\begin{array}{lllllllllllllll}62.47 & 55.91 & 63.33 & 55.96 & 63.55 & 62.28 & 63.93 & 64.60 & 64.05 & 63.10 & 64.85 & 68.74\end{array}$ |  |


| At XX (Dángarpur)-(Continued). |  |  |
| :---: | :---: | :---: |
| $\begin{gathered} \text { Angle } \\ \text { betwoen } \end{gathered}$ | Circle readings, telescope being set on R. M. <br> $\begin{array}{lllllllllll}0^{\circ} 1^{\prime} & 180^{\circ} 1^{\prime} & 10^{\circ} 12^{\prime} & 190^{\circ} 12^{\prime} & 20^{\circ} 21^{\prime} & 200^{\circ} 21^{\prime} & 30^{\circ} 29^{\prime} & 210^{\circ} 29^{\prime} & 40^{\circ} 38^{\prime} & 200^{\circ} 38^{\prime} & 50^{\circ} 50^{\prime}\end{array} \quad 230^{\circ} 50^{\prime}$ | $\boldsymbol{w}=\begin{aligned} & \text { Menn of Groups } \\ & \text { Relative Weight }\end{aligned}$ <br> $\boldsymbol{C}=$ Concluded Angle |
| $\frac{X_{I I I}^{\S}}{\S}$ |  <br>  | $\begin{aligned} & M=35_{1 " \prime \prime} \cdot 03 \\ & w=2 \cdot 3^{6} \\ & w=28 \\ & \frac{1}{w}=0 \cdot 40 \\ & C=57^{\circ} 37^{\prime} 35^{\prime \prime \prime} \cdot 26 \end{aligned}$ |
|  | $\begin{array}{lllllllllllll} \\ 29 \cdot 62 & 40 \cdot 16 & 36 \cdot 45 & 32 \cdot 12 & 33 \cdot 31 & 32 \cdot 41 & 33 \cdot 28 & 37 \cdot 98 & 35 \cdot 79 & 36 \cdot 08 & 36 \cdot 42 & 36 \cdot 68\end{array}$ |  |
| XVII\&XVIII |  <br>  h30'93 |  |
|  | $\begin{array}{llllllllllll}30 \cdot 41 & 42: 28 & 39 \cdot 64 & 34 \cdot 73 & 37 \cdot 96 & 34 \cdot 79 & 32 \cdot 98 & 36 \cdot 57 & 36 \cdot 32 & 34 \cdot 22 & 33 \cdot 98 & 32 \cdot 64\end{array}$ |  |
| At XXI (Sápakra) <br> January 1853; observed by Lieutenant H. Rivers' with Troughton and Simms' 18-inch Theodolite No. 2. |  |  |
| $\begin{gathered} \text { Angle } \\ \text { betwoen } \end{gathered}$ | Circle readings, telescope being set on XXIII <br>  | $M=$ Mean of Groups <br> ${ }^{20}$ = $=\begin{gathered}\text { Relative Weight } \\ \text { Concluded } A \text { ngle }\end{gathered}$ |
| XXIII \& XX |  <br>  | $\begin{aligned} & M=15^{\prime \prime} \cdot 08 \\ & w=1 \cdot 26 \\ & \frac{1}{w}=0 \cdot 79 \\ & C=51^{\circ} 32^{\prime} \cdot 15^{\prime \prime} \cdot 07 \end{aligned}$ |
|  | $\begin{array}{lllllllllllll}14.12 & 12.20 & 16.44 & 10.35 & 18.64 & 15.29 & 20.73 & 16.38 & 14.07 & 17.23 & 14.03 & 11553\end{array}$ |  |
| XX \& XVIIII |  <br>  | $\begin{aligned} & M=32^{\prime \prime} \cdot 23 \\ & w=0 \cdot 9 \mathbf{1} \\ & \frac{1}{w}=1 \cdot 10 \\ & C=42^{\circ} 54^{\prime} 32^{\prime \prime} \cdot 23 \end{aligned}$ |
|  | $\begin{array}{lllllllllllll}30 \cdot 39 & 30 \cdot 03 & 27 \cdot 37 & 33 \cdot 89 & 33 \cdot 38 & 29 \cdot 54 & 25 \cdot 89 & 36 \cdot 52 & 34 \cdot 12 & 36 \cdot 01 & 33 \cdot 15 & 36 \cdot 50\end{array}$ |  |
| At XXII (Virpur) <br> * January 1853; observed by Lieutenant H. Rivers with Troughton and Simms' 18-inch Theodolite No. 2. $\dagger$ April 1854; and $\ddagger$ December 1856; observed by Lieutenant D. J. Nasmyth, R.E., with I'roughton and Simms' 18-inch Theodolite No. 2. |  |  |
|  |  |  |  |
| $\begin{gathered} \text { Angle } \\ \text { botweon } \end{gathered}$ | Circle readings, telescope being set on XIX <br>  | $M=$ Mean of Groups Rolative Weight <br> ${ }_{C}^{w}=$ Relative Weight |
| $\text { XIX \& }{ }^{\dagger} \mathrm{XVII}$ |  <br>  | $\frac{M}{w}=39_{0}^{*} \cdot \frac{33}{53}$ |
|  | $\begin{array}{llllllllllllll}41 \cdot 25 & 42\end{array} 18$ |  |



## At XXIII (Chatrikhera)

January 1853; observed by Lieutenant H. Rivers with T'roughton and Simms' 18-inch Theodolite No. 2.

| Angle <br> between | $221^{\circ} 55^{\prime}$ | $41^{\circ} 55^{\prime}$ | $232^{\circ} 6^{\prime}$ | Circle $52^{\circ} 6^{\prime}$ | readings, $242^{\circ} 14^{\prime}$ | , telesc $62^{\circ} 11^{\prime}$ | pe being $252^{\circ} 23^{\prime}$ | set on <br> $72^{\circ} 23^{\prime}$ | XXV <br> $262^{\circ} 32^{\prime}$ |  | $272^{\circ} 44^{\prime}$ | $92^{\circ} 44^{\prime}$ | $M=$ Mean of Groups <br> $w_{0}=$ Relative Weight <br> C $=$ Conoluded Anglo |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| XXV \& XXVI | " | " | " | " | " | " |  |  | " | " | " | " | $\begin{aligned} & M=16^{\prime \prime \prime} \cdot 54 \\ & w=0 \cdot 90 \\ & \frac{1}{w}=1 \cdot 11 \\ & C=43^{\circ} 7^{\prime} 16^{\prime \prime} \cdot 54 \end{aligned}$ |
|  | ${ }^{1} 16.53$ | $h 18.34$ | $h 10 \cdot 87$ | h 1740 | $l_{12.63}$ | $l 1450$ | $l 1424$ | $l 19.00$ | $1.23 \cdot 83$ | $l 12 \cdot 10$ | h21.27 | h 21.83 |  |
|  | h1780 | $h 1604$ | h 1143 | $h 16.67$ | $l 14.23$ | $l 12.30$ | $l 14: 76$ | $l 17.34$ | $\begin{aligned} & l 2010 \\ & l 19.40 \end{aligned}$ | $l 12.77$ | h2113 | h 21.44 |  |
|  | 1717 | 1719 | 11'15 | 17*03 | 13.43 | 13.40 | 14.50 | $18 \cdot 17$ | 21.11 | 12.44 | 21:20 | 21.63 |  |

## At XXIII (Chatrikhera)-(Continued).

| Angle between | $221^{\circ} 55^{\prime} 41^{\circ} 55^{\prime}$ | $232^{\circ} 6^{\prime}$ | Circle r <br> $52^{\circ} 6^{\prime}$ | readings, $242^{\circ} 14^{\prime}$ | telesco $62^{\circ} 14^{\prime}$ | pe being <br> $252^{\circ} 23^{\prime}$ | set on $72^{\circ} 23^{\prime}$ | $\begin{aligned} & \dot{X X V} \\ & 262^{\circ} 3 \mathbf{2}^{\prime} \end{aligned}$ | $82^{\circ} 32^{\prime}$ | $272^{\circ} 44^{\prime}$ | $92^{\circ} 44^{\prime}$ | $M=$ Mean of Groups <br> ${ }^{20}=$ Relative Weight <br> C = Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| XXVI \& XXIV | $\begin{array}{ll} h_{57} \cdot 47 & h_{53} \cdot 26 \\ h_{57} \cdot 80 & h \\ 53 \cdot 80 \end{array}$ | $\begin{gathered} n \\ l 60.90 h \\ l .58 \cdot 90 h \end{gathered}$ | $\begin{gathered} \prime \prime \\ h_{55 \cdot 64} \\ h_{56} \cdot 30 \end{gathered}$ | $\begin{gathered} " \\ l 59.97 \\ l \\ l \\ d .34 \\ d 59.30 \end{gathered}$ | $\begin{gathered} \prime \prime \\ l \\ l \\ l 67 \cdot 30 \\ 57.37 \end{gathered}$ | $\begin{aligned} & l 55^{\circ} 03 \\ & l 5 A^{\circ} 60 \end{aligned}$ | $\begin{aligned} & l \\ & l 2.23 \\ & l \\ & 53.43 \end{aligned}$ | $\begin{aligned} & l 50 \cdot 27 \\ & l \\ & l \end{aligned}$ | $\begin{aligned} & l 56 \cdot 43 \\ & l \\ & 54: 77 \end{aligned}$ | $\begin{gathered} " \\ h_{53}{ }_{51 \cdot 80} \end{gathered}$ | $\begin{gathered} " \\ h_{53 \cdot 34} \\ h_{51} \cdot 43 \end{gathered}$ | $\begin{aligned} & M=55^{\prime \prime} \cdot 27 \\ & w=1 \cdot 31 \\ & \frac{1}{w}=\cdot 0 \cdot 76 \\ & C=33^{\circ} 27^{\prime} 55^{\prime \prime} \cdot 27 \end{aligned}$ |
|  | $57.64 \quad 53.53$ | 59\%90 | 55*97 | 60:20 | $56 \cdot 83$ | 54.82 | 52.83 | $5{ }^{\circ} \mathrm{O} 3$ | $55^{\circ} 60$ | 52\%49 | 5238 |  |
| XXIV \& XX | $\begin{array}{ll} h 60 \cdot 07 & h 66 \cdot 64 \\ h & 69^{\prime 2} \\ h 64 \cdot 76 \end{array}$ | $\begin{aligned} & h 70.06 \\ & l 68.67 \end{aligned}$ | $\begin{aligned} & h 65 \cdot 53 \\ & h 67.10 \end{aligned}$ | l $58 \cdot 13$ $l 57.86$ ${ }^{d} 56.64$ | $\begin{aligned} & l 71 \circ 07 \\ & l \\ & l 0 \times 13 \end{aligned}$ | $59^{\circ} 10$ 60.57 | $\begin{aligned} & l 62.54 \\ & l \\ & l \\ & 61.50 \end{aligned}$ | l61.67 $l 65 \cdot 10$ l61.90 | $\begin{aligned} & l 63.97 \\ & l \\ & l \\ & 63.13 \end{aligned}$ | $\begin{aligned} & h 64 \cdot 16 \\ & h 62 \cdot 10 \end{aligned}$ | h $61 \cdot 66$ <br> $h 64.80$ <br> h6i.94 | $\begin{aligned} & M=63^{\prime \prime} \cdot 62 \\ & w=0 \cdot 78 \\ & \frac{1}{w}=1 \cdot 28 \\ & C=61^{\circ} 3 I^{\prime} 3^{\prime \prime \cdot} \cdot 61 \end{aligned}$ |
|  | $59.65 \quad 65 \cdot 70$ | $69 \cdot 37$ | $66 \cdot 31$ | $57 \times 54$ | 70.60 | 59.84 | 62.02 | 62.89 | 63.55 | $63 \cdot 13$ | 62.80 |  |
| XX \& XXI | $\begin{array}{lll}h_{40} \cdot 36 & h 35 \cdot 46 \\ h_{42} \cdot 23 & h & 3747\end{array}$ | $\begin{aligned} & h_{42 \cdot 10} \\ & h_{43} \cdot 13 \end{aligned}$ | $\begin{aligned} & h 34 \cdot 87 \\ & h 36 \cdot 80 \end{aligned}$ | $\begin{aligned} & l \\ & l \\ & l \\ & l 0 \cdot 90 \end{aligned}$ | $\begin{aligned} & 27.90 \\ & 29.83 \end{aligned}$ | $\begin{aligned} & l 43 \cdot 70 l \\ & l \\ & 40 \cdot 87 \\ & 41 \cdot 26 \end{aligned}$ | $\begin{aligned} & l \\ & 78.20 \\ & 36.93 \end{aligned}$ | $\begin{aligned} & l 37.90 \\ & l \\ & l \\ & l 8.70 \end{aligned}$ | $l 36.73$ $l 40 \cdot 20$ $h 40.26$ | $\begin{aligned} & h_{41} \cdot 00 \\ & h_{4 I} \cdot 84 \end{aligned}$ | h 43.57 <br> $h 43.07$ <br> $h_{42} 20$ | $\begin{aligned} & M=3^{\prime \prime \prime} \cdot 84 \\ & w=0 \cdot 75 \\ & \frac{1}{w}=1 \cdot 33 \\ & C=68^{\circ} 50^{\prime} 38^{\prime \prime} \cdot 8: \end{aligned}$ |
|  | $41 \cdot 30 \quad 36 \cdot 46$ | 42.6.2 | 35.83 | $39 \cdot 80$ | 28.87 | 41.94 | . 37.56 | $38 \cdot 30$ | $39^{\circ} 06$ | $41 \times 42$ | 42:95 |  |

## At XXIV (Wánkáner)

*January 1853; observed by Lieutenant H. Rivers vith Troughton and Simms' 18-inch Theodolite No. 2. $\dagger$ December 1856; observed by Lieutenant D. J. Nasmyth, R.E., with I'roughton and Simms' 18-inch T'heodolite No. 2.



## At XXVI (Kakána)

January 1853; observed by Lieutenant H. Rivers with Troughton and Simms' 18-inch Theodolite No. 2.

| Angle between | $0^{\circ} 1^{\prime}$ | $180^{\circ} 1^{\prime}$ | $10^{\circ} 13^{\prime}$ | Circle r $190^{\circ} 13^{\prime}$ | eadings, $20^{\circ} 20^{\prime}$ | telescop <br> $200^{\circ} 20^{\prime}$ | being $30^{\circ} 29^{\prime}$ | set on $\mathbf{X}$ $210^{\circ} 29^{\prime}$ | $\begin{aligned} & \text { XXIV } \\ & 40^{\circ} 39^{\prime} \end{aligned}$ | $220^{\circ} 39^{\prime}$ | $50^{\circ} 50^{\prime}$ | $230^{\circ} 50^{\circ}$ | $\boldsymbol{M}=$ Mean of Groupe <br> $w=$ Relative Weight <br> C = Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { XXIV \& } \\ \text { XXIII } \end{gathered}$ | $\begin{aligned} & h_{47} \cdot 03 \\ & h_{43} \cdot 10 \end{aligned}$ | $h 46 \cdot 66$ <br> $h 45 \cdot 27$ | $\begin{aligned} & h_{49}{ }^{\circ} 46 \\ & h_{47} 777 \end{aligned}$ | $\begin{aligned} & h 49.36 \\ & h 48.73 \\ & h 49.30 \end{aligned}$ | $\begin{gathered} \prime \prime \\ h 50 \cdot 70 \\ l 55 \cdot 44 \\ l 53 \cdot 04 \end{gathered}$ | $\begin{aligned} & l \\ & l \\ & l \\ & l 9 \cdot \circ \\ & 47 \cdot 20 \end{aligned}$ | $\begin{aligned} & l 57.26 \\ & l 54.84 \\ & l .55 .90 \end{aligned}$ | $\begin{aligned} & l 52.33 \\ & l \\ & l 3.63 \end{aligned}$ | $\begin{aligned} & l 59^{\circ} 23 \\ & l \\ & l 9^{\circ \circ} 3 \end{aligned}$ | $\begin{aligned} & l 53.17 \\ & l 5568 \\ & l 56.93 \end{aligned}$ | $l 50 \cdot 50$ $l_{50.67}$ | $\begin{gathered} \prime \prime \\ l \\ l \\ l 88.53 \\ 48.67 \end{gathered}$ | $\begin{aligned} M & =51^{\prime \prime} \cdot 07 \\ w & =0 \cdot 63 \\ \frac{1}{w} & =1 \cdot 60 \\ C & =40^{\circ} 37^{\prime} 51^{\prime \prime} \cdot 08 \end{aligned}$ |
|  | $45^{\circ} 07$ | $45^{\circ} 96$ | $48 \cdot 62$ | $49^{11} 3$ | 53.06 | 48•13 | 56.00 | 52.98 | 59.13 | 55.63 | $50 \cdot 58$ | 48.60 |  |
| $\underset{\mathbf{X X V}}{\text { XXIII }} \&$ |  <br>  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =39^{\prime \prime} \cdot 5^{8} \\ w & =0 \cdot 70 \\ \frac{\mathbf{1}}{w} & =1 \cdot 43 \\ C & =36^{\circ} 23^{\prime} 39^{\prime \prime} \cdot 57 \end{aligned}$ |
|  | $45 \cdot 34$ | $43^{\circ} 09$ | $40 \cdot 30$ | . $36.59^{\circ}$ | 36.40 | 37.55 | 31.63 | 36.62 | $37 \times 93$ | 43.66 | 42.55 | $43^{\prime} 42$ |  |
| $\begin{aligned} & \text { XXV \& } \\ & \text { XXVII } \end{aligned}$ |  <br>  ${ }^{1} 16.43$ <br> $h_{19} .50$ <br> l10'27 |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=15^{\prime \prime} \cdot 28 \\ & w=1 \cdot 39 \\ & \frac{1}{w}=0 \cdot 72 \\ & C=45^{\circ} 21^{\prime} 15^{\prime \prime} \cdot 28 \end{aligned}$ |
|  | $14 * 59$ | 17.23 | 12.35 | $19 \times 37$ | 14.33 | 18.40 | 17.26 | 16.67 | 11.59 | 12.73 | 11*09 | 1773 |  |
| $\begin{gathered} \text { XXVII \& } \\ \text { XXVIII } \end{gathered}$ |  <br>  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=44^{\prime \prime} \cdot 73 \\ & w=2 \cdot 36 \\ & \frac{I}{w}=0 \cdot 42 \\ & C=68^{\circ} 30^{\prime} 44^{\prime \prime} \cdot 73 \end{aligned}$ |
|  | 43.07 | . 44.26 | $48 \cdot 92$ | $41 \cdot 52$ | $45 \cdot 17$ | $45 \cdot 65$ | 4489 | $42 \cdot 55$ | $43 \cdot 60$ | $47 \times 43$ | $46 \cdot 48$ | $43 \cdot 18$ |  |

## At XXVII (Maidhar)

January and February 1853; observed by Lieutenant H. Rivers with Troughton and Simms' 18-inch Theodolite No. 2.

| Angle between | $196^{\circ} 28^{\prime}$ | $16^{\circ} 28^{\prime}$ | $206{ }^{\circ} 39^{\prime}$ | $\begin{gathered} \text { Circle re } \\ 26^{\circ} 38^{\prime} \end{gathered}$ | readings <br> $216^{\circ} 47^{\prime}$ | telesco <br> $36^{\circ} 46^{\prime}$ | pe being <br> $226^{\circ} 55^{\prime}$ | set on <br> $46^{\circ} 55^{\prime}$ | $\begin{gathered} \text { XXIX } \\ 237^{\circ} 4^{\prime} \end{gathered}$ | 570 ${ }^{\prime}$ | $247{ }^{\circ} 16^{\prime}$ | $67^{\circ} 16^{\prime}$ | $\boldsymbol{M}=$ Mean of Groupa <br> $w^{2}=$ Relative Weight <br> C = Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { XXIX \& } \\ \text { XXVIII } \end{gathered}$ | " | " | " | " | " | " | " | " | " | " | " | " | $\begin{aligned} M & =29^{\prime \prime} \cdot 39 \\ w & =2 \cdot 04 \\ \frac{1}{w} & =0 \cdot 49 \\ C & =57^{\circ} 53^{\prime} 29^{\prime \prime} \cdot 38 \end{aligned}$ |
|  | $h_{31}{ }^{\text {Pro }}$ | h34*10 | $l 28 \cdot 17$ | h32.83 | $l 28.26$ | $l 28.90$ | $l 31.40$ | $l 27.20$ | $l 27.77$ | $l 28.67$ | h 29.67 | 28.74 |  |
|  | h3117 | \% 33.50 . | $l 26.36$ | $l 3147$ | $\begin{aligned} & l 24.76 \\ & l 26.07 \end{aligned}$ | $l 27.23$ | $l 31.47$ | $l 2890$ | $l 25.63$ | $l 28.40$ | $\begin{aligned} & h 32.43 \\ & h 28.54 \end{aligned}$ | $\begin{array}{r} h 29.27 \\ h 28.97 \end{array}$ |  |
|  | 31'14 | 33•80 | $27 \cdot 26$ | 32'15 | 26.36 | 28.07 | 31*43 | 28.05 | 26•70 | 28.54 | 30'21 | 28.99 |  |



## At XXVIII (Bháyasar)-(Continued).

| At XXVIII (Bháyásar)-(Continued). |  |  |
| :---: | :---: | :---: |
| $\begin{gathered} \text { Angle } \\ \text { between } \end{gathered}$ | Circle readings, telescope being set on XXIX <br>  | $M=\begin{aligned} & \text { Mean of Groups } \\ & { }^{2}=\end{aligned}$ Relative Weight <br> ${ }^{w}=$ Relative Weight |
| $\underset{\text { XXXI }}{\underset{\text { XXX }}{4}}$ |  <br>  | $\begin{aligned} & M=46^{\prime \prime \prime} \cdot 57 \\ & w=0 \cdot 7 \mathrm{I} \\ & \frac{1}{w}=1 \cdot 40 \\ & C=44^{\circ} \cdot 8^{\prime} 4^{\prime \prime \prime} \cdot 57 \end{aligned}$ |
|  |  |  |
| At XXIX (Chitália) <br> $\ddagger$ April 1853; observed by Lieutenant D. J. Nasmyth, R.E., with Troughton and Simms' 18-inch Theodolite No. 2. §February 1853; observed by Lieutenant H. Rivers with Troughton and Simms' 18-inch Theodolite No. 2. |  |  |
| $\underset{\text { between }}{\text { Angle }}$ | Circle readings, telescope being set on XXXV <br>  | $M=$ Mean of Groups <br> ${ }^{20}=$ Relative Weight <br> C $=$ Concluded Angle |
| $\mathrm{Xx}^{\ddagger}{ }^{\ddagger} \mathrm{V}_{\text {\& }}$ XXXIII |  | $\begin{aligned} & M=44^{\prime \prime} \cdot 5 \mathbf{1} \\ & w=1 \cdot 27 \\ & \frac{1}{w}=0 \cdot 79 \\ & C=76^{\circ} \cdot 54^{\prime} 44^{\prime \prime} \cdot 5^{1} \end{aligned}$ |
|  |  |  |
| $\underset{\mathbf{X X X X}}{\underset{\text { XI }}{\ddagger}}$ |  <br>  h12.40 $l$ 11. 23 $l 19.33$ | $\begin{aligned} & M=15^{\prime \prime} \cdot 21 \\ & w=1 \cdot 30 \\ & \frac{1}{w}=0 \cdot 77 \\ & C=54^{\circ} 42^{\prime} 15^{\prime \prime \prime} \cdot 21 \end{aligned}$ |
|  | $\begin{array}{llllllllllll}12.13 & 11.36 & 15.47 & 11.43 & 19.25 & 12.51 & 19.09 & 19.11 & 16.62 & 14.53 & 13.94 & 17.10\end{array}$ |  |
| $\underset{\text { XXVIII }}{\stackrel{\ddagger}{E}}$ |  <br>  h 62.07 | $\begin{aligned} & M=64^{\prime \prime} \cdot 21 \\ & w=2 \cdot 02 \\ & \frac{1}{w}=0 \cdot 50 \\ & C=52^{\circ} 27^{\prime} 4^{\prime \prime} \cdot 21 \end{aligned}$ |
|  |  |  |
| $\underset{\text { XXVII }}{\underset{\text { XIIII }}{\text { In }}}$ | Circle readings, telescope being set on XXVIII <br>  | $\begin{aligned} & M=48^{\prime \prime} \cdot 84 \\ & w=1 \cdot 99 \\ & \frac{1}{w}=0 \cdot 50 \\ & C=72^{\circ} 4^{\circ} 48^{\prime \prime} \cdot 84 \end{aligned}$ |
|  |  <br>  |  |
|  | $\begin{array}{llllllllllll}53 \cdot 67 & 51 \cdot 95 & 48 \cdot 17 & 46 \cdot 35 & 48 \cdot 53 & 52 \cdot 13 & 47 \cdot 65 & 46 \cdot 92 & 46 \cdot 92 & 46 \cdot 62 & 48 \cdot 73 & 48 \cdot 42\end{array}$ |  |

## At XXX (Mumaiya)

April 1853; observed by Lieutenant D. J. Nasmyth, R.E., with Troughton and Simms' 18 -inch Theodolite No. 2.

| Angle between | $0^{\circ} 1^{\prime}$ | $180{ }^{\circ} 1^{\prime}$ | 10 ${ }^{\circ} 12^{\prime} 19$ | Circle re $190^{\circ} 12^{\prime}$ | adings, <br> $20^{\circ} 21^{\prime}$ | telescop $200^{\circ} 21^{\prime}$ | e being <br> $30^{\circ} 30^{\prime}$ | set on X $210^{\circ} 29^{\prime}$ | $\begin{aligned} & \text { XXIX } \\ & 40^{\circ} 38^{\prime} \end{aligned}$ | $220^{\circ} 38^{\prime}$ | $50^{\circ} 50^{\prime}$ | $230^{\circ} 50^{\prime}$ | $M=$ Mean of Groupe <br> ${ }^{2}=$ Relative Weight <br> C $=$ Concluded $\Delta$ ngle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { XXIX \& } \\ & \text { XXXIII } \end{aligned}$ |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=40^{\prime \prime} \cdot 65 \\ & w=1 \cdot 60 \\ & \frac{1}{w}=0 \cdot 62 \\ & C=60^{\circ} 10^{\prime} 40^{\prime \prime} \cdot 65 \end{aligned}$ |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 39*99 | 41'75 | 41^03 | $36 \cdot 69$ | 44.60 | $35 \cdot 36$ | $38 \cdot 23$ | 42'74 | 42'75. | 41:27 | 41777 | $41 \cdot 65$ |  |
| $\underset{\text { XXXIV }}{\text { XXXIII }}$ |  <br>  <br>  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =63^{\prime \prime} \cdot 66 \\ w & =0 \cdot 94 \\ \frac{1}{w} & =1 \cdot 06 \\ C & =3^{\circ} 37^{\prime} \quad 3^{\prime \prime} \cdot 65 \end{aligned}$ |
|  | $59^{\prime} 9^{2}$ | 59.02 | 59.19 | 67.07 | 62.02 | 64.28 | 67.64 | $67 \cdot 42$ | $65 \cdot 19$ | 68.81 | 6r.86 | 61.55 |  |
| $\underset{\mathbf{X X X I I}}{\text { XXXIV }}$ |  <br>  d $35^{\prime} 13 l 33^{\prime} 47$ |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=35^{\omega \cdot} \cdot 65 \\ & w=1 \cdot 88 \\ & \frac{1}{w}=0 \cdot 53 \\ & C=47^{\circ} 54^{\prime} 35^{\prime \prime} \cdot 64 \end{aligned}$ |
|  | 33.85 | 38.55 | 33*94 | 33.46 | $3{ }^{17}{ }^{2}$ | 33.85 | 35.56 | $38 \cdot 13$ | $35 \cdot 79$ | 36.44 | 40*30 | $36 \cdot 18$ |  |
| $\underset{\mathbf{X X X I}}{\text { XXXII \& }}$ |  <br>  $h 65 \cdot 87$ d 73.15 |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=62^{\prime \prime} \cdot 64 \\ & w=0 \cdot 5^{8} \\ & \frac{1}{w}=1 \cdot 73 \\ & C=77^{\circ} 25^{\prime \prime} \quad 2 \cdot 6 j \end{aligned}$ |
|  | 66.30 | 6r*40 | 71'96 | 65:10 | $66 \cdot 09$ | $65 \cdot 23$ | 62'15 | 59.71 | $58.32^{\circ}$ | 59.57 | 55.07 | 60.79 |  |
| $\begin{aligned} & \text { XXXI \& } \\ & \text { XXVIII } \end{aligned}$ |  <br>  h 49.47 $h 5^{8}$.20 |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =48^{\prime \prime} \cdot 5^{6} \\ w & =1 \cdot 19 \\ \frac{1}{w} & =0 \cdot 84 \\ C & =81^{\circ} 59^{\prime} 48^{\prime \prime} \cdot 56 \end{aligned}$ |
|  | 50'19 | 48.62 | 46.62 | 49.91 | $46 \cdot 73$ | 47.54 | 47.22 | 46:13 | 49.77 | $44 * 3$ | 56.64 | $49^{\circ 27}$ |  |
| $\underset{\text { XXIX }}{\text { XXVIII }}$ |  <br>  h $49.53 l 49.57$ $l 45$ 80 |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=47^{\prime \prime} \cdot 93 \\ & w=1 \cdot 79 \\ & \frac{1}{w}=0 \cdot 56 \\ & C=53^{\circ} 52^{\prime} 4 i^{\prime \prime} \cdot 93 \end{aligned}$ |
|  | $49^{\circ} 02$ | $49^{\circ} 23$ | 47'10 | 47'18 | 48.60 | 54.07 | 47.22 | 46.10 | $46 \cdot 98$ | $47 \times 45$ | 43'16 | $49^{\circ} 1$ |  |



## At XXXIII (Jitori)-(Continued).

| Angle between | 358 ${ }^{\circ} 39^{\prime} \quad 178^{\circ} 39^{\prime} \quad 8^{\circ} 51^{\prime} \quad 18$ | Circle re $188^{\circ} 51^{\prime}$ | eadings, $18^{\circ} 58^{\prime}$ | telescop <br> $198^{\circ} 58^{\prime}$ | e being $29^{\circ} 8^{\prime}$ | set on $209^{\circ} 8^{\prime}$ | XXX <br> $39^{\circ} 16^{\prime}$ | $219^{\circ} 16^{\prime}$ | $49^{\circ} 28^{\prime}$ | $229^{\circ} 28^{\prime}$ | $\boldsymbol{M}=$ Mean of Groups <br> ${ }^{2} 0=$ Kelative Weight <br> $C=$ Concluded $A$ ngle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\underset{\text { XXXV }}{\text { XXIX }}$ |  |  | $\begin{aligned} & l \\ & l \\ & l \\ & l 5 \cdot 80 \\ & 45 \cdot 10 \end{aligned}$ | $\begin{gathered} n \\ l \\ l \\ 47 \cdot 90 \\ 46 \cdot 97 \end{gathered}$ |  | $\begin{gathered} n \\ h 51 \cdot 17 l \\ h 53 \cdot 84 l \\ h 54.50 \end{gathered}$ | $\begin{gathered} n \\ l_{5 \cdot 10} \\ l 50 \cdot 30 h \end{gathered}$ | $\begin{gathered} n \\ h 53.27 \\ h \\ 49.90 \end{gathered}$ | $\begin{aligned} & 44.23 \\ & h 46 \cdot 57 \\ & 46 \end{aligned}$ | $\begin{gathered} \prime \prime \\ l \\ l \\ 70 \cdot 97 \\ 51 \cdot 17 \end{gathered}$ | $\begin{aligned} & M=47^{\prime \prime} \cdot 40 \\ & w=0^{\prime} \cdot 83 \\ & \frac{1}{w}=1 \cdot 21 \\ & C=43^{\circ} 51^{\prime} 47^{\prime \prime} \cdot 39 \end{aligned}$ |
|  | $41 \cdot 25 \quad 43 \cdot 36 \quad 44 \cdot 80$ | $45^{111}$ | 45.45 | $47 \cdot 43$ | 4949. | 5317 | 50•70 | 51.58 | 45.40 | 51.07 |  |
| $\underset{\mathbf{X X X V I}}{\text { XXXV \& }}$ |  <br>  | $\begin{array}{lll} h 13.03 & h 14.30 & h \\ h 11.80 & h 12.53 & h \\ h 12.34 \end{array}$ |  |  |  | $\begin{array}{ll} h \times 1 \cdot 83 l \\ h \times 1 & l \end{array}$ | $\begin{aligned} & 9 \cdot 63 \\ & 9 \\ & 9 \cdot 30 \\ & 9.12 \cdot 13 \\ & \hline \end{aligned}$ |  | $\begin{array}{r} h 10.07 \\ h \quad 8.67 \end{array}$ | $\begin{array}{ll} l & 7 \cdot 03 \\ l & 7.00 \end{array}$ | $\begin{aligned} M & =11^{\prime \prime} \cdot 9 \mathbf{1} \\ w & =1 \cdot 8 \mathrm{t} \\ \frac{\mathbf{1}}{w} & =0 \cdot 55 \\ C & =53^{\circ} 7^{\prime} 11^{\prime \prime} \cdot 9^{2} \end{aligned}$ |
|  | $13.56 \quad 12.34 \quad 12.22$ | 12.39 | 1341 | 14.04 | 16.18 | 11.58 | 9.47 | 11*40 | $9 \cdot 37$ | 701 |  |
| $\underset{\text { XXXVII }}{\underset{\text { XXXVI }}{ }}$ | $\begin{array}{lll} h_{45} \cdot 63 & h_{4} \\ h_{45} \cdot 20 \cdot 20 & h_{3} & 39 \cdot 73 \\ 48 \cdot 50 & h_{42} \cdot 20 \end{array}$ |  |  |  | $\begin{aligned} & h 33.20 \\ & h 34 \cdot 30 \end{aligned}$ |  |  | $\begin{aligned} & h 37 \cdot 10 \\ & h 36 \cdot 43 \end{aligned}$ | $\begin{aligned} & h 40 \cdot 54 \\ & h_{41} \cdot 64 \end{aligned}$ | $\begin{array}{rl} l & 36.44 \\ l & 41.30 \\ h 34.26 \end{array}$ | $\begin{aligned} M & =40^{\prime \prime} \cdot 19 \\ \boldsymbol{w} & =0 \cdot 74 \\ \frac{\mathbf{1}}{w} & =1 \cdot 35 \\ \boldsymbol{C} & =67^{\circ} \quad 9^{\prime} \cdot 40^{\prime \prime} \cdot 18 \end{aligned}$ |
|  | $\begin{array}{llll}45.53 & 47 & 35 & 40.97\end{array}$ | $43 \cdot 15$ | 3711 | 3883 | $33 \cdot 75$ | 41.03 | $39^{\circ} 42$ | $36 \cdot 76$ | $41^{\circ} 09$ | 3733 |  |
| $\begin{gathered} \text { XXXVII \& } \\ \mathbf{X X X V I I I} \end{gathered}$ |  <br>  d 52.94 d55.06 h55.60 $h_{56} .70 \quad d 54.34 \quad h 57.93$ d64.23 <br>  $d 56.63$ |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =57^{\prime \prime} \cdot 07 \\ w & =1 \cdot 19 \\ \frac{1}{w} & =0 \cdot 84 \\ C & =22^{\circ} 34^{\prime} 57^{\prime \prime} \cdot 0 j \end{aligned}$ |
|  | $53.35 \quad 55 \cdot 52 \quad 54.96$ | 53.63 | $57 \cdot 38$ | 54.74 | 57.58 | 57.25 | . 62.45 | 5541 | 61/14 | 61 46 |  |
| $\underset{\text { XXXIV }}{\text { XXXVIII }}$ |  <br>  d 18.76 h 20.30 h 20.64 <br>  d 1978 h22.07 d $23^{\circ} 00$ <br> d 20.61 <br> d 15.37 d 19.47 <br> d 18.90 |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=20^{\prime \prime} \cdot 73 \\ & \boldsymbol{w}=2 \cdot 44 \\ & \frac{1}{w}=0 \cdot 41 \\ & \boldsymbol{C}=3^{\circ} \cdot 5^{\prime} \cdot 0^{\prime \prime} \cdot 69 \end{aligned}$ |
|  | $18.26 \quad 17.68 \quad 19.53$ | 21.09 | 23.38 | 20:18 | 21.55 | 21.30 | 18.78 | 24.79 | 19.91 | 22.30 |  |
| $\underset{\mathbf{X X X}}{\text { XXXIV }}$ |  <br>  $h 55.30$ ${ }^{6} 5017$ $h_{50^{\circ} 23}$ |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =5^{8^{\prime \prime} \cdot} \cdot 7^{2} \\ w & =0 \cdot 44 \\ \frac{1}{w} & =2 \cdot 28 \\ C & =60^{\circ} \quad 3^{\prime} 5^{8^{\prime \prime} \cdot 7^{1}} \end{aligned}$ |
|  | $67 \cdot 62 \quad 56 \cdot 53 \quad 63 \cdot 55$ | $64 \cdot 88$ | 52.42 | 63.54 | 59.83 | 56•79 | 54.05 | 58.51 | 52.45 | $54 * 45$ |  |

## At XXXIV (Konkáwáo)



## At XXXV (Itria)

April and May 1853; observed by Lieutenant D. J. Nasmyth, R.E., with Troughton and Simms' 18-inch Theodolite No. 2.

| Angle between | $0^{\circ} 2^{\prime}$ | $180^{\circ} 2^{\prime}$ | $10^{\circ} 13^{\prime}$ | Circle rea $190^{\circ} 12^{\prime}$ | readings, <br> $20^{\circ} 20^{\prime}$ | , telescope <br> $200^{\circ} 20^{\prime}$ | pe being $30^{\circ} 29^{\prime}$ | set on X <br> $210^{\circ} 29^{\prime}$ | $\begin{array}{r} \text { XXXVI } \\ 40^{\circ} 38^{\prime} \end{array}$ | $220^{\circ} 38^{\prime}$ | $50^{\circ} 49^{\prime}$ | $230^{\circ} 49^{\prime}$ | $\boldsymbol{M}=$ Mean of Groups <br> ${ }^{20}$ - Relative Weight <br> $C=$ Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\underset{\text { XXXIII }}{\text { XXXVI }}$ | " | " | " | " | " | " | " | " | " | " | " | $"$ | $\begin{aligned} & M=59^{\prime \prime} \cdot 42 \\ & w=1 \cdot 46 \\ & \frac{1}{w}=0 \cdot 68 \\ & C=66^{\circ} 29^{\prime} 59^{\prime \prime} \cdot 42 \end{aligned}$ |
|  | h 61.90 <br> $h$ | $h 53 \cdot 13$ $h$ 55 | $l$ $l$ 78.33 57 |  | $\begin{aligned} & l 60 \cdot 10 \\ & l \\ & l 9 \cdot 83 \end{aligned}$ | $\begin{aligned} & l 55.97 \\ & h 55.70 \end{aligned}$ | $\begin{aligned} & k 59 \cdot 87 \\ & h \\ & h 8 \cdot 76 \end{aligned}$ | $\begin{aligned} & h 60 \cdot 23 \\ & h 61 \cdot 96 \end{aligned}$ | $\begin{aligned} & h 59 \cdot 17 \\ & h 61 \cdot 90 \end{aligned}$ | $h 60 \cdot 20$ $h 60 \cdot 07$ | $\begin{aligned} & l 66.20 \\ & l \\ & l \end{aligned} 6_{4.43}$ | $\begin{aligned} & h 60 \cdot 07 \\ & l 60 \cdot 14 \end{aligned}$ |  |
|  | 60.69 | 54.11 | 57:80 | 58.14 | 59*96 | $55 \cdot 84$ | 59.31 | 6r.10 | $60 \cdot 53$ | $60 \cdot 14$ | 65.31 | $60 \cdot 11$ |  |

Nute.-R.M. denotes Referring Mark.

| At XXXV (Itria)-(Continued). |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\underset{\text { between }}{\text { Angle }}$ | $0^{\circ} z^{\prime}$ | $180^{\circ} 2^{\prime}$ | ${ }_{10}{ }^{\circ} 13^{\prime}$ | Circle re $190^{\circ} 12^{\prime}$ | eadings, $20^{\circ} 20^{\prime}$ | telescope $200^{\circ} 20^{\circ}$ | being <br> $30^{\circ} 29^{\prime}$ | $\begin{gathered} \text { set on } 2 \\ 210^{\circ} 29^{\prime} \end{gathered}$ | $\begin{gathered} \text { XXXVI } \\ 40^{\circ} 38^{\prime} \end{gathered}$ | $220{ }^{\circ} 38^{\prime}$ | $50^{\circ} 49^{\prime}$ | $2330^{\circ} 49^{\prime}$ |  |
| $\frac{\text { XXXIII \& }}{\text { XXIX }}$ |  <br>  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=29^{\prime \prime \prime} \cdot 6 \mathbf{1} \\ & w=2 \cdot 23 \\ & \frac{\mathbf{1}}{w}=0 \cdot 45 \\ & C=59^{\circ} 13^{\prime} 29^{\prime \prime} \cdot 6 \mathbf{1} \end{aligned}$ |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 2777 | 29.57 | 30.84 | $30 \cdot 54$ | $29^{\circ} 67$ | $3 \mathrm{~F} \cdot 11$ | 26.39 | 30.17 | 3'99 | $32 \cdot 57$ | 24*74 29.91 |  |  |

## At XXXVI (Sakpur)

May 1853; observed by Lieutenant D. J. Nasmyth, R.E., with Troughton and Simms' 18-inch Theodolite No. 2.


## At XXXVII (Manáwa)

February 1853; observed by Lieutenant H. Rivers with Troughton and Simms' 18-inch Theodolite No. 2.


## At XXXVII (Manáwa)-(Continued).

March 1853 ; observed by Lieutenant D. J. Nasmyth, R.E., with Troughton and Simms' 18-inch Theodolite No. 2.

| $\underset{\text { betriean }}{\text { Angle }}$ | $0^{\circ} 2^{\prime}$ | $180^{\circ}{ }^{\prime}$ | $10^{\circ} 12$ | $\begin{aligned} & \text { Circle r } \\ & \text { i } 90^{\circ} 12^{\prime} \end{aligned}$ | $\begin{aligned} & 3 a d i n g s, \\ & 20^{\circ} 20^{\prime} \end{aligned}$ | telescop $200^{\circ} 20^{\prime}$ | being <br> $80^{\circ} 29^{\prime}$ | set on X $210^{\circ} 29^{\prime}$ | $\begin{aligned} & \text { CXIV } \\ & 40^{\circ} 38^{\prime} \end{aligned}$ | $220^{\circ} 38^{\prime}$ |  | $230^{\circ} 50^{\prime}$ | $\boldsymbol{M}=$ Mean of Groupe <br> $w_{0}=$ Relative Weight <br> C = Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\underset{\text { XXXIII }}{\text { XXXIV }}$ | " | " | " | $"$ | " | " | " | " | " | " | " | " | $\begin{aligned} M & =22^{\prime \prime} \cdot 37 \\ w & =0 \cdot 77 \\ \frac{1}{w} & =1 \cdot 30 \\ C & =29^{\circ} 32^{\prime} 22^{\prime \prime} \cdot 37 \end{aligned}$ |
|  | h21.07 | h 19.60 | h 19.86 | h 19.53 | h 19.80 | $h 17.36$ | $l 27.06$ | $l 24.20$ | $l 27.06$ | $l 24.70$ | $l 27 \cdot 10$ | $l 20.03$ |  |
|  | $h 19.77$ | $h \times 8.93$ | h 19.04 | $h 19.37$ | h 20.00 | $\begin{aligned} & h 17 \cdot 67 \\ & h 16 \cdot 17 \end{aligned}$ | $\begin{array}{ll} l & 29.40 \\ l & 26.97 \end{array}$ | $\begin{aligned} & l 27 \circ 06 \\ & l 27 \circ 04 \end{aligned}$ | $l 27.14$ | $l 26 \div 0$ | $l 26 \cdot 96$ | $l 18.93$ |  |
|  | 20*42 | $19: 27$ | 19.45 | 19.45. | 19'90 | $17 \times 07$ | 27.81 | 26.10 | 27•10 | 2535 | 27.03 | 19.48 |  |
| $\underset{\text { XXXVI }}{\text { XXXIII }}$ |  <br>  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=14^{\prime \prime \cdot} \cdot 66 \\ & w=0 \cdot 98 \\ & \frac{1}{w}=1 \cdot 02 \\ & C=61^{\circ} 18^{\prime} 14^{\prime \prime} \cdot 66 \end{aligned}$ |
|  | 13.99 | 18.08 | $12 \cdot 77$ | $10 \cdot 85$ | 16.79 | 16.51 | $10 \cdot 52$ | 14.06 | 12.37 | 16.21 | 1145 | $22 \cdot 30$ |  |

## At XXXVIII (Sarkala)

*April 1853; observed by Lieutenant D. J. Nasmyth, R.E., with Troughton and Simms' 18-inch Theodolite No. 2. $\dagger$ February 1853; observed by Lieutenant H. Rivers with Troughton and Simms' 18-inch Theodolite No. 2.

| $\begin{gathered} \text { Angle } \\ \text { between } \end{gathered}$ | 315 ${ }^{\circ} 8^{\prime}$ | $185^{\circ} 8^{\prime}$ | $325^{\circ} 19^{\prime}$ | Circle re $145^{\circ} 19^{\prime}$ | adings, $335^{\circ} 27^{\prime}$ | telescope <br> $155^{\circ} 27^{\prime}$ | being $345^{\circ} 36^{\prime}$ | $165^{\circ} 86^{\prime}$ | XXIV <br> $355^{\circ} 45^{\prime}$ | $175^{\circ} 45^{\prime}$ | $5^{\circ} 57{ }^{\prime}$ | $185^{\circ} 57^{\prime}$ | $\boldsymbol{M}=$ Mean of Groups <br> $w^{*}=$ Relative Weight <br> C = Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\underset{\text { XXXIII }}{\underset{\text { XXXIV }}{ }}$ | " | " | " | " | " | " | " | " | " | " | " | " | $\begin{aligned} M & =21^{N} \cdot 11 \\ w & =1 \cdot 60 \\ \frac{1}{w} & =0 \cdot 63 \\ C & =14^{\circ} 22^{\prime} 21^{N \prime} \cdot 11 \end{aligned}$ |
|  |  <br>  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 1739 | $20 \cdot 38$ | 1788 | 20'90 | $20 \cdot 52$ | 21*03 | 22.69 | 25.50 | 19.48 | 24.43 | 18.47 | $24 \cdot 62$ |  |
| $\underset{\mathbf{X} X \mathbf{X} \mathbf{X} \mathbf{*} I I I}{ }$ |  <br>  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =40^{\prime \prime} \cdot 27 \\ w & =0 \cdot 49 \\ \frac{1}{w} & =2 \cdot 04 \\ C & =30^{\circ} 30^{\prime} 40^{\prime \prime} \cdot 27 \end{aligned}$ |
|  | 42.57 | $45^{\circ} 50$ | 44.55 | $43 \cdot 36$ | $42 \cdot 53$ | 48-10 | $38 \cdot 33$ | 38.03 | 37.27 | $35 \cdot 83$ | 36.21 | 30'93 |  |
| $\underset{\mathbf{X X X I X}}{\underset{\text { XXV }}{\dagger}}$ | Circle readings, telescope being set on XXXVII |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=56^{\prime \prime} \cdot 78 \\ & w=1 \cdot 14 \\ & \frac{1}{w}=0 \cdot 88 \\ & C=67^{\circ} 21^{\prime} 5^{\prime \prime} \cdot 79 \end{aligned}$ |
|  | $45^{\circ} 28^{\prime}$ | $225^{\circ} 27^{\prime}$ | $55^{\circ} 38^{\prime}$ | $235{ }^{\circ} 38^{\prime}$ | $65^{\circ} 46^{\prime}$ | $2455^{\circ} 46^{\prime}$ | $75^{\circ} 56{ }^{\prime}$ | $255^{\circ} 55^{\prime}$ | $86^{\circ} 4^{\prime}$ | $266^{\circ} 4^{\prime}$ | $96^{\circ} 16^{\prime}$ | $276^{\circ} 16^{\prime}$ |  |
|  | " | " | " | " | " | " | " | " | " | " | " | " |  |
|  | h 62.43 h60.97 h61.20 | h 59.37 $h 60.37$ | $\begin{aligned} & h 54 \cdot 86 \\ & h_{57} .83 \\ & h_{56} \cdot 70 \end{aligned}$ | $\begin{aligned} & h 56 \cdot 17 \\ & h 56 \cdot 23 \end{aligned}$ | $\begin{aligned} & h 53^{\circ} 47 \\ & h 55^{\circ} \circ 7 \end{aligned}$ | h 60.24 $h 59$ Io | $\begin{aligned} & l 49 \cdot 86 \\ & l .51 \cdot 74 \end{aligned}$ | $\begin{aligned} & h 57 \cdot 84 \\ & l \\ & l \end{aligned}$ | $\begin{aligned} & l 52.90 \\ & l 51 \cdot 10 \end{aligned}$ | $l 59.53$ <br> $l 55.74$ <br> $l 58$.30 | $l$ 79.74 580 | $l 56.10$ 76.50 |  |
|  | 61.53 | $59 \cdot 87$ | $56 \cdot 46$ | 56.20 | 54.27 | 59.67 | $50 \cdot 80$ | 57.54 | 52.00 | 57.86 | 58.88 | 56.30 |  |


| At XXXVIII (Sarkala)-(Continued). |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Angle between |  |  |  |  |  |  |  |  |  |  |  |
| XXXIX \& XL |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=9^{\prime \prime} \cdot 86 \\ & w=1 \cdot 15 \\ & \frac{1}{w}=0 \cdot 87 \\ & C=4^{\circ} 4^{\prime} \quad 9^{\prime \prime} \cdot 85 \end{aligned}$ |
|  | 6.70 10.53 | 6.61 7.08 | 1195 | $8 \cdot 65$ | 14.50 | 6.87 | 16.03 | 10.83 | 750 | 11.87 |  |
| At XXXIX (Nandivela) <br> March 1853; observed by Lieutenant H. Rivers with Troughton and Simms' 18-inch Theodolite No. 2. |  |  |  |  |  |  |  |  |  |  |  |
| Angle between | Circle readings, telescope being set on XLI <br> $0^{\circ} 1^{\prime} \quad 180^{\circ} 1^{\prime} \quad 10^{\circ} 12^{\prime} \quad 190^{\circ} 12^{\prime} \quad 20^{\circ} 20^{\prime} \quad 200^{\circ} 20^{\prime} \quad 30^{\circ} 30^{\prime} \quad 210^{\circ} 29^{\prime} \quad 40^{\circ} 38^{\prime} \quad 220^{\circ} 38^{\prime} \quad 50^{\circ} 51^{\prime} \quad 230^{\circ} 51^{\prime}$ |  |  |  |  |  |  |  |  |  | $\boldsymbol{M}=$ Mean of Groups <br> vo = Relative Weight <br> C = Concluded Angle |
| XLI \& XL |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=47^{\prime \prime}: 16 \\ & w=1 \cdot 02 \\ & \frac{1}{w}=0 \cdot 98 \\ & C=65^{\circ} 23^{\prime} 47^{\prime \prime} \cdot 15 \end{aligned}$ |
|  | $47 \times 47 \quad 46 \cdot 07$ | $51.85 \quad 49.38$ | 52.92 | 41.09 | $45^{\prime} 75$ | 44.80 | $47 \times 40$ | $46 \cdot 15$ | 4948 | $43 \cdot 60$ |  |
| $\stackrel{\text { XL }}{\mathbf{X X V I I I}}$ |  <br>  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=39^{\prime \prime} \cdot 54 \\ & w=0 \cdot 63 \\ & \frac{\mathbf{1}}{w}=1 \cdot 59 \\ & \boldsymbol{C}=52^{\circ} 3^{\prime} 39^{\prime \prime} \cdot 54 \end{aligned}$ |
|  | 40.22, 44.3I | $32.75 \quad 36.08$ | $36 \cdot 65$ | $47 \times 40$ | 40'13 | $44^{\prime 7} 7$ | $37 \times 40$ | $40 \cdot 75$ | 34.88 | $39^{17}$ |  |
| $\underset{\text { XXXVII }}{\text { XXXVIII \& }}$ |  <br>  h $56 \cdot 70$ |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=59^{N \cdot} \cdot 64 \\ & w=0 \cdot 73 \\ & \frac{1}{w}=1 \cdot 38 \\ & C=53^{\circ} \quad 2^{\prime} 59^{\prime \prime} \cdot 64 \end{aligned}$ |
|  | $55.29 \quad 54.60$ | 57.40 57\% | $60 \cdot 83$ | $57 \cdot 58$ | $69 \cdot 59$ | 62.80 | $60 \cdot 05$ | $58 \cdot 40$ | $58 \cdot 62$ | $62 \cdot 76$ |  |
| At XL (Jákia) <br> March 1853; observed by Lieutenant H. Rivers with Troughton and Simms' 18-inch Theodolite No. 2. |  |  |  |  |  |  |  |  |  |  |  |
| Angle between | Circle readings, telescope being set on XXXVIII <br> $\begin{array}{llllllllllllllll}0^{\circ} 1^{\prime} & 180^{\circ} 1^{\prime} & 10^{\circ} 12^{\prime} & 190^{\circ} 12^{\prime} & 20^{\circ} 20^{\prime} & 200^{\circ} 20^{\prime} & 30^{\circ} 30^{\prime} & 210^{\circ} 30^{\prime} & 40^{\circ} 38^{\prime} & 220^{\circ} 38^{\prime} & 50^{\circ} 50^{\prime} & 230^{\circ} 50^{\prime}\end{array}$ |  |  |  |  |  |  |  |  |  | $M=$ Mean of Groupe <br> vo - Relative Weight <br> C $=$ Concluded Anglo |
| $\underset{\mathbf{X X X I X}}{\text { XXXVIII \& }}$ |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =12^{\prime \prime} \cdot 40 \\ w & =0 \cdot 78 \\ \frac{1}{w} & =1 \cdot 29 \\ C & =81^{\circ} 15^{\prime} 12^{\prime \prime} \cdot 40 \end{aligned}$ |
|  | $15.21 \quad 10.52$ | $8.52 \quad 8.74$ | $8 \cdot 95$ | 5115 | 17.28 | 15.43 | 12.50 | 15.75 | $15 \cdot 67$ | 15.09 |  |



## At XLI (Nántej)

March 1853; observed by Lieutenant H. Rivers with Troughton and Simms' 18-inch Theodolite No. 2.


March 1880.

## J. B. N. HENNESSEY,

In charge of Computing Office.

## KATTYWAR MERIDIONAL SERIES.

## PRINCIPAL TRIANGULATION. SUMS OF SQUARES OF APPARENT ERRORS.

Sums of Squares of Apparent Errors of Single Observations, and of Apparent Errors of Single Zeros.

| Station of Observation | Observed Angle | Number of Observations | Sum of Squares of Errors of single Observations | Number of Zeros | Sum of Squares of Errors of single Zeros | Remaris |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| LXI | I \& LXIV | 27 | $8 \cdot 38$ | 12 | 64.53 |  |
| LXIV | LXI \& I | 26 | $7 \cdot 80$ | 12 | 124.17 |  |
| " | I \& III | 27 | $7 \times 41$ | 12 | 79*15 |  |
| " | III \& II | 28 | $7 \cdot 22$ | 12 | 123.45 |  |
| " | II \& LXVI | 25 | $8 \cdot 29$ | 12 | 134.64 |  |
| LXVI | LXIV \& II | 27 | $7 \cdot 82$ | 12 | $110 \cdot 70$ |  |
| I | IV \& V | 25 | $6 \cdot 92$ | 12 | $160 \cdot 47$ |  |
| " | V \& III | 28 | $9 \cdot 20$ | 12 | 100'47 |  |
| " | III \& II | 27 | $7 \cdot 45$ | 12 | $157 \cdot 10$ | Troughton and Simms' 18 -inch |
| " | II \& LXIV | 26 | $6 \cdot 15$ | 12 | 56.49 |  |
| " | LXIV \& LXI | 26 | 7.01 | 12 | 99.91 |  |
| II | LXVI \& LXIV | 24 | 3.80 | 12 | $163 \cdot 36$ |  |
| " | LXIV \& I | 25 | $6 \cdot 03$ | 12 | $57 \cdot 30$ |  |
| " | I \& III | 25 | 4.91 | 12 | 96.44 |  |
| III | II \& LXIV | 26 | $10 \cdot 14$ | 12 | $86 \cdot 17$ |  |
| " | LXIV \& I | 26 | $7 \cdot 65$ | 12 | 103.27 |  |
| " | I \& IV | 25 | $7 \cdot 76$ | 12 | $63 \cdot 27$ |  |
| " | IV \& V | 24 | 5.51 | 12 | $65 \cdot 42$ |  |

Nots.-Stations LXI, LXIV and LXVI appertain to the Karáchi Longitudinal Series of the North•West Quadrilateral.

PRINCIPAL TRIANGULATION. SUMS OF SQUARES OF APPARENT ERRORS. 47—:

| Station of Obeervation | Obserred Angle | Number of Observations | Sum of Squares of Frrors of single Observations | Number of Zeros | Sum of Squares of Errors of single Zeros | Rimaris |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IV | VIII \& VI | 27 | 8.04 | 12 | 173.99 |  |
| " | VI \& V | 25 | $10 \cdot 68$ | 12 | $70 \cdot 80$ |  |
| " | V\&III | 35 | 17.77 | 12 | 81.25 |  |
| " | III\&I | 32 | 11.00 | 12 | $186 \cdot 47$ |  |
| V | III \& I | 27 | $7 \cdot 91$ | 12 | $156 \cdot 43$ |  |
| " | III \& I | 27 | $7 \cdot 36$ | 12 | 133.05 |  |
| " | I \& IV | 25 | 7.95 | 12 | $80 \cdot 47$ |  |
| " | I \& IV | 27 | 8.87 | 12 | 78.92 |  |
| " | IV \& VI | 25 | 5.27 | 12 | 90•44 |  |
| " | VI \& VII | 25 | $8 \cdot 85$ | 12 | 91-10 |  |
| VI | V \& IV | 28 | 13.38 | 12 | 77*27 |  |
| " | IV \& VIII | 28 | 12.72 | 12 | 185.40 |  |
| " | VIII \& IX | 29 | 12.98 | 12 | 211.05 |  |
| " | IX \& VII | 27 | $7 \cdot 40$ | 12 | $72 \cdot 81$ |  |
| " | VII \& V | 26 | $8 \cdot 44$ | 12 | 79.62 |  |
| VII | V \& VI | 27 | 13.97 | 12 | 153.23 |  |
| " | VI \& IX | 28 | 14.39 | 12 | 112.04 |  |
| VIII | X\& XI | 25 | $7 \cdot 79$ | 12 | 128.36 |  |
| " | X\& XI | 26 | 8.18 | 12 | 112.00 |  |
| " | XI \& IX | 27 | 17.32 | 12 | $43 \cdot 45$ |  |
| " | IX \& VI | 26 | 11.82 | 12 | 105.55 | $\}$ Troughton and Simms' ${ }^{\text {Theodolite No. } 2 .}$. |
| " | VI \& IV | 24 | $7 \cdot 02$ | 12 | 9611 |  |
| IX | VII \& VI | 26 | $6 \cdot 25$ | 12 | $177 \cdot 18$ |  |
| n | VI \& VIII | 25 | 3.83 | 12 | 199.32 |  |
| " | VIII \& X | 24 | 9.65 | 12 | $120 \cdot 50$ |  |
| " | X\& XI | 27 | $6 \cdot 38$ | 12 | 91'99 |  |
| X | XIII \& XII | 25 | $6 \cdot 41$ | 12 | $45 \cdot 22$ |  |
| " | XII \& XI | 25 | $7 \cdot 12$ | 12 | $66 \cdot 73$ |  |
| " | XI \& IX | 26 | 8.59 | 12 | 125.66 |  |
| " | IX \& VIII | 26 | 10.99 | 12 | 73.77 |  |
| XI | IX \& VIII | 24 | $3 \cdot 21$ | 12 | 136.80 |  |
| " | VIII \& X | 26 | 10.92 | 12 | 117.36 |  |
| " | VIII \& X | 25 | 9*32 | 12 | 173.70 |  |
| n | X\& XII | 26 | $5 \cdot 25$ | 12 | 110.40 |  |
| " | XII \& XIV | 27 | 9.50 | 12 | $130 \cdot 69$ |  |
| XII | X \& XIII | 26 | 15.85 | 12 | $69 \cdot 16$ |  |
| " | X \& XIII | 26 | $5 \cdot 40$ | 12 | $80 \cdot 31$ |  |
| " | XIII \& XV | 28 | 22.38 | 12 | 87.82 |  |
| " | XIII \& XV | 26 | 11.58 | 12 | 91.38 |  |
| " | XV \& XVI | 29 | 32.38 | 12 | 185.37 |  |
| " | XV \& XVI | 27 | 19.83 | 12 | 128.85 | J |


| Station of Obserration | Obserred Angle | Number of Observations | Sum of Squares of Errors of single: Observation | $\begin{gathered} \text { Number of } \\ \text { Zeros } \end{gathered}$ | $\begin{gathered} \text { Sum of Squares of } \\ \text { Errors of single } \\ \text { Zeros } \end{gathered}$ | Rmaris |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| XII | XVI\& XIV | 30 | $36 \cdot 39$ | 12 | 170.82 |  |
| " | XVI \& XIV | 27 | $20 \cdot 13$ | 12 | 135.95 |  |
| " | XIV \& XI | 29 | 25.94 | 12 | 124.41 |  |
| " | XIV \& XI | 29 | 21.70 | 12 | 105.20 |  |
| " | XI \& X | 26 | $9 \cdot 77$ | 12 | 124.74 |  |
| " | XI \& X | 26 | $8 \cdot 26$ | 12 | $95 \cdot 60$ |  |
| XIII | XV \& XII | 26 | 12.56 | 12 | $100 \cdot 83$ |  |
| " | XII \& X | 26 | 9.78 | 12 | 126.75 |  |
| XIV | XI \& XII | 26 | 12.75 | 12 | 123.20 |  |
| " | XI \& XII | 25 | 7.70 | 12 | 47.90 |  |
| " | XII \& XVI | 25 | 10.84 | 12 | 128.86 |  |
| " | XII \& XVI | 25 | $6 \cdot 10$ | 12 | $75 \cdot 78$ |  |
| XV | XVIII \& XVII | 27 | $6 \cdot 85$ | 12 | 128.08 |  |
| " | xVIII \& XVII | 24 | $5 \cdot 33$ | 12 | 78.89 |  |
| " | XVII \& XIX | 27 | 10.87 | 12 | $145 \cdot 36$ |  |
| " | XVII \& XIX | 24 | $7 \cdot 54$ | 12 | $105 \cdot 31$ |  |
| " | XIX \& XVI | 29 | $7 \cdot 11$ | 12 | $94^{\circ} \mathrm{OI}$ |  |
| " | XIX \& XVI | 24 | 3.63 | 12 | 154.08 |  |
| " | XVI \& XII | 24 | $5 \cdot 07$ | 12 | $95 \cdot 35$ |  |
| " | XII \& XIII | 25 | $5 \cdot 48$ | 12 | 115.79 |  |
| xvi | XIV \& XII | 27 | $18 \cdot 77$ | 12 | 81.38 | Troughton and Simma' ${ }^{\text {Theodolinch }}$ |
| " | XII\& XV | 28 | 17.25 | 12 | 152.62 |  |
| " | XV \& XVII | 27 | $7 \cdot 17$ | 12 | $160 \cdot 13$ |  |
| " | XV \& XVII | 31 | 22.02 | 12 | 154.76 |  |
| " | XVII \& XIX | 26 | 6.59 | 12 | $44 \cdot 06$ |  |
| " | XVII \& XIX | 30 | $19^{\circ} \mathrm{O}$ | 12 | 109.92 |  |
| XVII | XXII \& XIX | 35 | 15.89 | 12 | 286.93 | - |
| " | XXII \& XIX | 28 | 14.86 | 12 | $93^{\circ} \mathrm{O}$ |  |
| " | XIX \& XVI | 30. | $7 \cdot 69$ | 12 | 199.85 |  |
| " | XIX \& XVI | ${ }^{27}$ | 25.51 | 12 | 116.19 |  |
| " | XVI \& XV | 30 | 15.38 | 12 | 297.84 |  |
| " | XVI \& XV | 25 | 13.06 | 12 | $93 \cdot 38$ |  |
| " | XVI \& XV | 27 | 16.06 | 12 | 24545 |  |
| " | XV \& XVIII | 25 | 8. 28 | 12 | 216.39 |  |
| " | XV \& XVIII | 30 | $32 \cdot 83$ | 12 | 165.07 |  |
| " | XVIII \& XX | 29 | $27 \cdot 16$ | 12 | $80 \cdot 35$ | . |
| " | XVIII \& XX | 28 | 18.18 | 12 | 54.11 |  |
| " | XX \& XXII | 28 | $31 \cdot 15$ | 12 | 150.73 |  |
| III | XX \& XXII | 27 | 13.53 | 12 | 102.25 |  |
| XVIII | XXI \& XX | 30 | 32.56 | 12 | 86.29 |  |
| " | XX\& XVII | 29 | $34 \cdot 63$ | 12 | $46 \cdot 65$ |  |


| Station of Observation | Observed Angle | Number of Observations | Sum of Squares of Errors of single Obeervations | Number of Zeros | Sum of Squares of Errors of single Zeros | Reichrits |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| XVIII | XX \& XVII | 24 | $2 \cdot 75$ | 12 | 75.51 |  |
| " | XVII \& XV | 24 | 8.26 | 12 | $125^{\prime} 96$ | , |
| " | XVII \& XV | 25 | $7{ }^{\circ} \mathrm{4}$ | 12 | $43 \cdot 78$ |  |
| XIX | XVI \& XV | 27 | - 13.19 | 12 | 240'10 |  |
| \% | $\mathbf{X V I}$ \& XV | 28 | $13^{\circ} 00$ | 12 | $66 \cdot 66$ |  |
| " | XVI \& XV | 27 | $15 \cdot 30$ | 12 | 138.03 |  |
| " | XV \& XVII | 26 | $16 \cdot 80$ | 12 | $85 \cdot 82$ |  |
| " | XV \& XVII | 27 | 13.93 | 12 | 91.08 |  |
| " | XV \& XVII | 25 | $7 \cdot 43$ | 12 | $145^{\circ} 93$ |  |
| " | XVII \& XXII | 27 | II'93 | 12 | 28.75 |  |
| " | XVII \& XXII | 27 | 13.58 | 12 | $159{ }^{\circ} 42$ |  |
| $\mathbf{X X}$ | R.M. \& XVIII | 25 | $15^{\circ} 45$ | 12 | 112.68 |  |
| " | XVIII \& XXI | 24 | $9 \cdot 84$ | 12 | 59'34 |  |
| " | XXI \& XXIII | 26 | $21 \cdot 65$ | 12 | $75 \cdot 25$ |  |
| " | XXIII \& XXIV | 27 | 30.57 | 12 | 98-02 |  |
| " | XXIV \& XXII | 27 | $32 \cdot 44$ | 12 | 111'12 |  |
| $n$ | XXIV \& XXII | 25 | 9.26 | 12 | 112.83 |  |
| " | XXII \& XVII | 26 | 31.58 | 12 | 106.80 |  |
| " | XXII \& XVII | 26 | I 1 ${ }^{\prime} 90$ | 12 | 141.07 |  |
| " | XVII \& XVIII | 25 | 13.48 | 12 | 93.99 | Troughton and Simms' 18-inch |
| " | XVII \& XVIII | 25 | 8.64 | 12 | 116.44 | I'heodolite No. 2. |
| $\mathbf{X X I}$ | XXIII \& XX | 27 | $28 \cdot 62$ | 12 | 99*09 |  |
| " | XX \& XVIII | 27 | 37'14 | 12 | $13^{\circ} 71$ |  |
| XXII | XIX \& XVII | 31 | $17 \cdot 76$ | 12 | $239 \cdot 00$ |  |
| $n$ | XIX \& XVII | 26 | $13^{\circ} 08$ | 12 | 74*22 |  |
| 2 | XVII \& XX | 24 | 11*90 | 12 | 141'18 |  |
| " | XVII \& XX | 28 | 19.69 | 12 | $136 \cdot 97$ |  |
| " | XX \& XXIV | 25 | 11.07 | 12 | 131.60 | . |
| " | XX \& XXIV | 27 | 14.91 | 12 | 107.04 |  |
| XXIII | XXV \& XXVI | 25 | 20.75 | 12 | 141.78 |  |
| " | XXVI \& XXIV | 25 | $13 \cdot 79$ | 12 | $97 \cdot 63$ |  |
| n | XXIV \& XX | 27 | 23.51 | 12 | 164.37 |  |
| " | XX \& XXI | 27 | 25'74 | 12 | 170.52 |  |
| XXIV | XXII \& XX | 27 | 30*38 | 12 | 91•37 |  |
| " | XXII \& XX | 26 | $16 \cdot 63$ | 12 | 124.66 |  |
| 0 | XX \& XXIII | 29 | 28•79 | 12 | $42 \cdot 44$ |  |
| " | XXIII \& XXV | 24 | 10.03 | 12 | 76.25 |  |
| " | XXV \& XXVI | 25 | 8•53 | 12 | $123 \cdot 85$ |  |
| $\mathbf{X X V}$ | XXVII \& XXVI | 27 | 22'15 | 12 | $163 \cdot 33$ |  |
| " | XXVI \& XXIV | 27 | 21.29 | 12 | 69'37 |  |
| " | XXIV \& XXIII | 26 | 15.86 | 12 | 86•79 | $j$ |

Norr.-B.M. denotes Referring Mark.

| Station of Observation | Obserred Angle | Number of Observations | Sum of Squares of Errors of single Observations | $\underset{\text { Zeros }}{\substack{\text { Number of } \\ \text { Zer }}}$ | Sum of Squares of Errors of single Zeros | Remaris |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| XXVI | XXIV \& XXIII | 28 | 36.25 | 12 | 204.51 |  |
| " | XXIII \& XXV | 27 | 23.67 | 12 | 184.11 |  |
| " | XXV \& XXVII | 28 | 27.13 | 12 | 89'75 |  |
| " | XXVII \& XXVIII | 25 | 23.70 | 12 | 50.69 |  |
| XXVII | XXIX \& XXVIII | 27. | $22 \cdot 30$ | 12 | 60. 34 |  |
| " | XXVIII \& XXVI | 25 | 14.58 | 12 | 85'99 |  |
| " | XXVI \& XXV | 26 | 9.82 | 12 | 78.17 |  |
| XXVIII | XXVI\& XXVII | 25 | 12.16 | 12 | $53 \cdot 80$ |  |
| " | XXVII \& XXIX | 24 | $6 \cdot 48$ | 12 | 74.08 |  |
| " | XXIX \& XXX | 25 | 9.61 | 12 | 79.84 |  |
| " | XXX \& XXXI | 25 | $6 \cdot 04$ | 12 | 183.64 |  |
| XXIX | XXXV \& XXXIII | 26 | 11.48 | 12 | 101.78 |  |
| " | XXXIII \& XXX | 27 | $7 \cdot 42$ | 12 | $100 \cdot 17$ |  |
| " | XXX \& XXVIII | 25 | $6 \cdot 00$ | 12 | 64.04 |  |
| " | XXVIII \& XXVII | 25 | 8.71 | 12 | 64.49 |  |
| XXX | XXIX \& XXXIII | 27 | $20 \cdot 86$ | 12 | $78 \cdot 32$ |  |
| " | XXXIII \& XXXIV | 28 | 17.79 | 12 | $136 \cdot 73$ |  |
| " | XXXIV \& XXXII | 26 | 16.25 | 12 | 66.75 |  |
| " | XXXII \& XXXI | 26 | 18.90 | 12 | 224.08 |  |
| " | XXXI \& XXVIII | 26 | 11.72 | 12 | 108.10 |  |
| " | XXVIII \& XXIX | 27 | 12.65 | 12 | 71•18 | Troughton and Simms' 18 -inch Theodolite No. 2. |
| XXXI | XXVIII \& XXX | 24 | $6 \cdot 50$ | 12 | 115.59 |  |
| " | XXX \& XXXII | 25 | 11.65 | 12 | $131 \cdot 0$ |  |
| XXXII | XXXI \& XXX | 24 | $2 \cdot 30$ | 12 | $288 \cdot 42$ |  |
| " | XXX \& XXXIV | 25 | $8 \cdot 37$ | 12 | $45 \cdot 72$ | - |
| XXXIII | XXX \& XXIX | 27 | $30 \cdot 55$ | 12 | $166 \cdot 73$ |  |
| " | XXIX \& XXXV | 30 | 37-08 | 12 | 153.43 |  |
| " | XXXV \& XXXVI | 28 | $44 \cdot 23$ | 12 | 65.03 |  |
| " | XXXVI \& XXXVII | 29 | $80 \cdot 93$ | 12 | 164.02 |  |
| " | XXXVII \& XXXVIII | 37 | $45 \cdot 77$ | 12 | $105 \cdot 87$ |  |
| " | XXXVIII \& XXXIV | 37 | $46 \cdot 66$ | 12 | $48 \cdot 69$ |  |
| " | XXXIV \& XXX | 27 | 46.56 | 12 | 292.55 |  |
| XXXIV | XXXII \& XXX | 25 | 12.82 | 12 | $78 \cdot 63$ |  |
| " | XXX \& XXXIII | 26 | 18.57 | 12 | 104.15 |  |
| " | XXXIII \& XXXVII | 26 | 16.01 | 12 | $245 \cdot 69$ |  |
| " | XXXVII \& XXXVIII | 25 | 10'94 | 12 | $126 \cdot 37$ |  |
| " | XXX \& R.M. | 26 | 9•73 | 12 | $168 \cdot 74$ |  |
| XXXV | XXXVI \& XXXIII | 24 | 14.23 | 12 | $86 \cdot 93$ |  |
| " | XXXIII \& XXIX | 24 | $9 \cdot 40$ | 12 | 56.92 |  |
| XXXVI | XXXVII \& XXXIII | 25 | 5.44 | 12 | $127 \cdot 26$ |  |
| " | XXXIII \& XXXV | 24 | 7.08 | 12 | 83.65 | J |

Notr.-R.M. denotes Referring Mark.


From the preceding data of the sums of the squares of the apparent errots, in the measurement of each angle, we may ascertain the e.m.s. (error of mean square) of observation of a single measure of an angle, and the e.m.s. of graduation and obsorvation of the mean of the measures on a single zero, for each group of angles measured with the same instrument, by the same observer, and under similar circum. stances.

The instrument employed was Troughton and Simms' 18 -inch Theodolite No. 2, having 3 microscopes to read the aximuthal circle; ' observations were taken on 6 pairs of zeros (face left and face right) giving circle readings at $10^{\circ}$ apart.

The c.m.s. of observation of a single measure of an angle $=\sqrt{\frac{\text { Sum of squares of apparent errors of observations. }}{\text { No. of observations-No. of angles } \times \text { No. of changes of zero. }}}$
$\left.\begin{array}{l}\text { The e.m.s. of graduation and observation of the mean of the } \\ \text { measures on a single zero }\end{array}\right\}=\sqrt{\frac{\text { Sum of squares of apparent errors of zero. }}{\text { No. of angles } \times(\text { No. of changes of zero }-1)} \text {. }}$

| Group | Instrument and Observer |  |  | Number of |  |  |  | c.m.s. of observation of a single measure | o.m.s. of graduation and observation of a singlo zero |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\underset{\text { zero (average) }}{\text { Measures on each }}$ |  |  |  |  |  |
| I | $\left\{\begin{array}{l}\text { Troughton and Simms' 18-inch } \\ \text { 'Theodolite No. 2; Lieutenant } \\ \text { D. J. Nasmyth. }\end{array}\right\}$ | Hills, | $\begin{array}{rr} \circ & 1 \\ 10 & 0 \end{array}$ | $2 \cdot 17$ | 96 | 2501 | 1152 | $\left\{\frac{967 \cdot 43}{2501-1152}\right\}^{\frac{1}{3}}= \pm{ }^{\prime \prime} .847$ | $\left\{\frac{10927 \cdot 59}{1152-96}\right\}^{\frac{1}{2}}= \pm 8^{\prime \prime} \cdot 17$ |
| II | Ditto. | Plains, | 100 | $2 \cdot 25$ | 46 | 1241 | 552 | $\left\{\frac{630.76}{1241-552}\right\}^{\frac{1}{3}}= \pm 0.957$ | $\left\{\frac{6038 \cdot 53}{552-46}\right\}^{\frac{1}{2}}= \pm 3 \cdot 455$ |
| III | $\left\{\begin{array}{l} \text { Troughton and Simme' 18-inoh } \\ \text { Theodolite No. 2; Lieutenant } \\ \text { H. Rivers. } \end{array}\right\}$ | Hills, | 100 | $2 \cdot 19$ | 40 | 1052 | 480 | $\left\{\frac{839 \cdot 50}{1052-480}\right\}^{\frac{1}{3}}= \pm 1 \cdot 211$ | $\left\{\frac{4284 \cdot 79}{480-40}\right\}^{\frac{1}{2}}= \pm 8 \cdot 121$ |
| IV | Ditto. | Plains, | 100 | $2 \cdot 28$ | 10. | 273 | 120 | $\left\{\frac{247 \cdot 20}{273-120}\right\}^{\frac{1}{3}}= \pm 1 \cdot 271$ | $\left\{\frac{1143 \cdot 04}{120-10}\right\}^{\frac{1}{3}}= \pm 3.224$ |
| V | $\left\{\begin{array}{l}\text { Troughton and Simms' 18-inch } \\ \text { Theodolite No. 2; Lieutenants } \\ \text { D. J. Nasmyth and H. Rivers. }\end{array}\right\}$ | Hills, | 100 | $2 \cdot 56$ | 7 | 215 | 84 | $\left\{\frac{331 \cdot 78}{215-84}\right\}^{\frac{1}{2}}= \pm 1.591$ | $\left\{\frac{996 \cdot 32}{84-7}\right\}^{\frac{1}{2}}= \pm 3 \cdot 597$ |

March 1880.
J. B. N. HENNESSEY,

In charge of Computing Office.

KATTYWAR MERIDIONAL SERIES.

## PRINCIPAL TRIANGULATION. REDUCTION OF FIGURES.

Figure No. 18.


+ The fixed data here given are obtained from figure No. 24 of the Karachi Longitudinal Series of the North-West Quadrilateral.
* In the tables of the equations between the factors the co-efficients of the terms below the diagonal are omitted for convenience, the co-efficient of the pth term in the $q$ th line being always the same as the co-efficient of the $q$ th term in the pth line.

Figure No. 19.


Figure No. 20.


Figure No. 21.


Figure No. 22.


Figure No. 23.


Figure No. 23-(Continued).


Figure No. 24.


Figure No. 25.


Figure No. 25-(Continued).


May, 1890.
W. H. COLE,

In charge of Computing Office.

KATTYWAR MERIDIONAL SERIES.

PRINCIPAL TRIANGULATION. TRIANGLES.


Notrs.-1. The values of the sides are given in the same lines with the opposite angles.
2. Stations LXI (Akoria), LXIV (Bhilgaon) and LXVI (Jhund) appertain to the Karáchi Longitudinal Series of the North-West Quadriateral.



| No. of Triangle |  | Number and Name of Station |  | Oorrections to Observed Angle |  |  |  | Corrected Plane Angle | Distance |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Oircuit | Noncircuit |  |  | Figure | Circuit | Noncircuit | Total |  | Log. feet | Feet | Miles |
|  | 226 |  | " | * | " | " | " | - 1 |  |  |  |
|  |  | XVII (Rangpur) | - 24 | - $\cdot 07$ |  | + . 06 | - $\cdot 01$ | $633945 \cdot 27$ | 4.8033750,0 | 63587 97 | $12 \cdot 043$ |
|  |  | XXII (Virpur) | - 24 | -.87 |  | + . 08 | - 779 | 464313.01 | 4.7131122,2 | 51654*98 | 9'783 |
|  |  | XX (Dúngarpur) | - 25 | - 12 | . | - 114 | - 26 | $69 \quad 37 \quad 1 \cdot 72$ | 4.8228901,8 | $66510 \cdot 50$ | $12 \cdot 597$ |
|  |  | XXII (Virpur) <br> XX (Dúngarpur) <br> XXIV (Wánkáner) | $\cdot 73$ |  |  |  | -1.06 | $180 \quad 0 \quad 0.00$ |  |  |  |
|  | 227 |  | $\cdot 32$ | $+\cdot 36$ |  | + -09 | + $\cdot 45$ | $7 \mathrm{C} 3742 \cdot 27$ | 4.8802972,7 | $75909 \cdot 69$ | 14.377 |
|  |  |  | $\cdot 32$ | +.66 |  | + - 02 | + $\cdot 68$ | $\begin{array}{llll}57 & 9 & 43.78\end{array}$ | 4*8299944,7 | $67607 \cdot 43$ | 12.804 |
|  |  |  | - 32 | + 18 |  | - 111 | $\underline{+} \cdot 07$ | $\begin{array}{llll}52 & 12 & 33.95\end{array}$ | 4.8033750,0 | $63587 \cdot 97$ | $12 \cdot 043$ |
|  |  |  | -96 |  |  |  | +1.20 | $180 \quad 0000$ |  |  |  |
|  | 228 | XXIV (Wánkáner) | $\cdot 38$ | $-\cdot 28$ |  | + 12 | - 16 | $562451 \cdot 37$ | 4.8570041,3 | 71945*58 | 13.626 |
|  |  | XX (Dúngarpur) | -38 | - 13 |  | - 02 | - 15 | $\begin{array}{lll}52 & 4 & 7.00\end{array}$ | 4.8825394,1 | 76302.61 | 14.451 |
|  |  | XXIII (Chatrikhera) | -38 | -1.50 |  | - 10 | - 1.60 | 61311.63 | 4-8802972,7 | $75909{ }^{\circ} 69$ | 14.377 |
|  |  |  | 1.14 |  |  |  | -1'91 | 180 0.0.00 |  |  |  |
|  | 229 | XXIII (Chatrikhera) | $\cdot 42$ | - -17 |  | + 111 | - . 06 | $68 \quad 50 \quad 38 \cdot 37$ | 4.9329313,6 | 85690. 25 | 16.229 |
|  |  | XX (Dángarpur) | $\cdot 42$ | + 35 |  | + - 01 | + 36 | 5937 7*53 | 4•8990847,5 | $79265 \cdot 60$ | 15.012 |
|  |  | XXI (Sápakra) | $\cdot 42$ | - $\cdot 43$ |  | - 12 | - . 55 | 513214.10 | 4.8570041,3 | 71945*58 | 13.626 |
|  |  |  | 1.26. |  |  |  | -.25 | $180 \quad 00.00$ |  |  |  |
|  | 230 | XXIII (Chatrikhera) | - 40 | + $\cdot 47$ |  |  | + $\cdot 47$ | $\begin{array}{llll}76 & 35 & 11\end{array}$ | 4.9525915,5 | 89658. 52 | 16.981 |
|  |  | XXIV (Wánkáner) | - 39 | + 48 |  |  | + $\cdot 48$ | $47 \begin{array}{ll}42 & 16 \cdot 12\end{array}$ | 4.8324962,4 | 67998.02 | 12.878 |
|  |  | XXV (Tarkia) | - 40 | - 11 |  |  | - 11 I | $55 \quad 52 \quad 32 \cdot 00$ | 4*8825394, 1 | 76302.61 | 14.451 |
|  |  |  | 1.19 |  |  |  | + $\cdot 84$ | $180 \quad 0000$ |  |  |  |
|  | 231 | XXIV (Wánkáner) |  |  |  |  | - •59 | $\begin{array}{llll}58 & 21 & 57 & 85\end{array}$ | 4.8939666,3 | 78336:95 | 14.837 |
|  |  | XXV (Tarkia) | - 39 | -.27 |  | - | - 27 | $4436 \quad 33 \cdot 70$ | 4.8103283,6 | $64614 \cdot 26$ | $12 \cdot 238$ |
|  |  | XXVI (Kakána) | $\cdot 39$ | - I.81 | . |  | -1.81 | 77 1 28.45 | 4-9525915,5 | 89658.52 | 16.981 |
|  |  |  | 1.17 |  |  |  | $-2.67$ | $180 \quad 0.00$ |  |  |  |
|  | 232 | XXIII (Chatrikhera) | - 37 | -. 02 |  |  | - $\cdot 02$ | $\begin{array}{llll}33 & 27 & 54\end{array}$ | 4.8103283,5 | 64614.26 | 12.238 |
|  |  | XXIV (Wánkáner) | $\cdot 38$ | - 11 |  |  | - 11 | 105 5414.37 | 5.0518868,1 | $112690 \cdot 36$ | 21.343 |
|  |  | XXVI (Kakána) | $\cdot 37$ | + 04 |  |  | +.04 | $4037 \quad 50 \cdot 75$ | 4.8825394, 1 | 76302-61 | 14.451 |
|  |  |  | 1•12 |  |  |  | - 009 | $180 \quad 0 \quad 0.00$ |  |  |  |
|  | 233 | XXV (Tarkia) | $\cdot 44$ | - 36 |  |  | - 36 | $83 \begin{array}{llll}83 & 48 \cdot 72\end{array}$ | 5.0002128,8 | 100049 ${ }^{\circ} 03$ | 18.949 |
|  |  | XXVI (Kakána) | $\cdot 44$ | -.20 |  |  | - $\cdot 20$ | 452114.64 | 4.855 1 I 12,8 | $71632 \cdot 70$ | 13.567 |
|  |  | XXVII (Maidhar) | $\cdot 44$ | -.17 |  |  | - 17 | 5145664 | 4*8939666,3 | 78336.95 | 14.837 |
|  |  |  | 1•32 |  |  |  | - 773 | $180 \quad 0000$ |  |  |  |
|  | 234 | XXVI (Kakána) | $\cdot 72$ | - $\cdot 18$ |  |  | - $\cdot 18$ | $\begin{array}{lllll}68 & 30 & 43 \cdot 83\end{array}$ | 5.0458550,4 | 111136.07 | 21.048 |
|  |  | XXVII (Maidhar) | $\cdot 71$ | -.29 |  |  | - $\cdot 29$ | $543535 \cdot 17$ | 4.9883293,4 | 97348.52 | $18 \cdot 437$ |
|  |  | XXVIII (Bháyásar) | $\cdot 72$ | - 19 |  |  | - 19 | $\begin{array}{llll}56 & 53 & 41\end{array}$ | 5*0002 128,8 | 100049** | 18.949 |
|  |  |  | $2 \cdot 15$ |  |  |  | - . 66 | 180 0 0.00 |  |  |  |
|  | 235 | XXVII (Maidhar) | - 66 | - 994 |  |  | - •94 | $575327 \cdot 78$ | 49953560,0 | 98936*38 | 18.738 |
|  |  | XXVIII (Bháyásar) | - 66 | -1.09 |  |  | - 1.09 | $\begin{array}{llll}50 & 1 & 45^{\circ} 00\end{array}$ | 4.9518920,9 | 89514.23 | 16.953 |
|  |  | XXIX (Chitália) | $\cdot 67$ | - 95 |  |  | -.95 | $72 \quad 4 \quad 47 \cdot 22$ | 5*0458550,4 | 111136.07 | 21-048 |
|  |  |  | I•99 |  |  |  | $-2.98$ | $180 \quad 0.00$ |  |  |  |
|  | 236 | XXIX (Chitália) | $\cdot 72$ | - 10 |  |  | - 10 | $\begin{array}{lll}52 & 27 & 3.39\end{array}$ | 4.9872444,0 | 97105•62 | 18.391 |
|  |  | XXVIII (Bháyásar) | $\cdot 73$ | -1.32 |  |  | -1.32 | $\begin{array}{ll}73 & 40 \\ 10 & 10\end{array}$ | 5.0701789,0 | $117538 \cdot 16$ | $22 \cdot 261$ |
|  |  | XXX (Mumsiya) | $\cdot 73$ | -.96 |  |  | $\begin{array}{r}1.96 \\ \hline\end{array}$ | $\begin{array}{llll}53 & 52 & 46 \cdot 24\end{array}$ | 4.9953560,0 | 98936*38 | 18.738 |
|  | 237 | XXVIII (Bháyásar) XXX (Mumaiya) XXXI (Trákura) | 2.18 |  |  |  | $-2 \cdot 38$ | $180 \quad 0000$ |  |  |  |
|  |  |  | -63 | +1.27 |  |  | +1.27 | 44847 21 | 4.9229933,7 | $83751 \cdot 65$ | 15.862 |
|  |  |  | -64 | - 8.8 |  |  | - 84 | 81 5947.08 | 5.0758244,5 | $119076 \cdot 05$ | $22 \cdot 552$ |
|  |  |  | -64 | -2.00 |  |  | -2.00 | 53 51 25'71 | 4.9872444,0 | 97105.62 | 18*391 |
|  |  |  | I'91 |  |  |  | -1.57 | $180 \quad 0 \quad 0.00$ |  |  |  |


| No.of Triangle |  | Number and Name of Station |  | Corrections to Observed Angle |  |  |  | Corrected Plane Angle | Distance |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Circuit | Noncircuit |  |  | Figure | Circuit | Noncircuit | Total |  | Log. feet | Feet | Miles |
|  | 238 | XXXI (Trákura) <br> XXX (Mumaiya) <br> XXXII (Deo-ki-Galol) | $\begin{array}{r} 71 \\ .71 \\ 71 \\ \hline \end{array}$ | $\begin{array}{r} +2 \cdot 13 \\ +1 \cdot 76 \\ -1.94 \\ \hline \end{array}$ | " | " | $\begin{array}{r}+2.13 \\ +1.76 \\ -1.94 \\ \hline\end{array}$ | $\begin{array}{rcc} \circ & \prime & \prime \prime \\ 60 & 56 & 2 \cdot 02 \\ 77 & 25 & 3 \cdot 70 \\ 41 & 38 & 54 \cdot 28 \\ \hline \end{array}$ | $\begin{aligned} & 5^{\circ} 0420017,2 \\ & 5 \circ 0899033,5 \\ & 4^{\circ} 9229933,7 \end{aligned}$ | $\begin{array}{r} 110154.37 \\ 122999.50 \\ 8375 \mathrm{~F} \end{array}$ | $\begin{aligned} & 20.863 \\ & 23.295 \\ & 15.862 \end{aligned}$ |
|  |  |  | $2 \cdot 13$ |  |  |  | +1.95 | 180 |  | $\begin{array}{r} 92703.22 \\ 83893.29 \\ 110154.37 \end{array}$ | $\begin{aligned} & 17.557 \\ & 15.889 \\ & 20.86 \end{aligned}$ |
|  | 239 | XXXII (Deo-ki-Galol) XXX (Mumaiya) XXXIV (Konkáwáo) | $\begin{array}{r}.60 \\ .59 \\ .60 \\ \hline\end{array}$ |  <br> $+\quad .32$ <br> $-\quad .24$ <br> $-\quad 44$ |  |  | $\begin{array}{r}+\quad 32 \\ +\quad .34 \\ -\quad 44 \\ \hline\end{array}$ |    <br> 55 5 11.84 <br> 47 54 34.81 <br> 77 0 13.35 | $\begin{aligned} & 4.9670948,4 \\ & 4.9237272,2 \\ & 5^{\circ} 0420017,2 \end{aligned}$ |  |  |
|  |  | XXX (Mumaiya) <br> XXXIV (Konkáwáo) <br> XXXIII (Jitori) | $1 \times 79$ |  |  |  | $-36$ | 180 0 0.00 | $\begin{aligned} & 4 \cdot 8245480,1 \\ & 5 \cdot 0242720,7 \\ & 4 \cdot 9670948,4 \end{aligned}$ | $\begin{array}{r} 66764 \cdot 86 \\ 105747 \cdot 97 \\ 92703.22 \end{array}$ | $\begin{aligned} & 12.645 \\ & 20.028 \\ & 17.557 \end{aligned}$ |
|  | 240 |  | $\begin{array}{r}+48 \\ \cdot 49 \\ \cdot 48 \\ \hline\end{array}$ | $\left\|\begin{array}{c} +\quad 81 \\ +\quad 14 \\ -2.91 \end{array}\right\|$ |  |  | $\begin{array}{r} +\quad 81 \\ +\quad 14 \\ -2.91 \\ \hline \end{array}$ | 38 37 3.98 <br> 81 19 $0 \cdot 70$ <br> 60 3 $55 \cdot 32$ |  |  |  |
|  |  |  | 1.45 |  |  |  | -1.96 | $\begin{array}{lll}180 & 0 & 0.00\end{array}$ |  |  | 21•280 $20 \cdot 028$ $22 \cdot 261$ |
|  | 241 | XXX (Mumaiya) XXIX (Chitália) XXXIII (Jitori) | .85 <br> .85 <br> .85 | $\left.\begin{array}{r} +\quad 39 \\ +\quad 30 \\ +2.20 \end{array} \right\rvert\,$ |  |  | $+\quad .39$ <br> $+\quad 30$ <br> +2.20 | 60 10 $40 \cdot 19$ <br> 54 42 $14 \cdot 66$ <br> 65 7 $5 \cdot 15$ | $\begin{aligned} & 5^{\circ} 0507929,1 \\ & 5^{\circ} 0242720,8 \\ & 5^{\circ} 0701789,0 \end{aligned}$ | $\begin{aligned} & 112406 \cdot 89 \\ & 105747 \cdot 97 \\ & 117538 \cdot 16 \end{aligned}$ |  |
|  |  |  | $2 \cdot 55$ |  |  |  | +2.89 | 180 |  |  | $\begin{aligned} & 24 \div 135 \\ & 17170 \\ & 21.289 \end{aligned}$ |
|  | 242 | XXIX (Chitália) XXXIII (Jitori) XXXV (Itria) | $\begin{array}{r}779 \\ \cdot 78 \\ \cdot 78 \\ \hline\end{array}$ | $\begin{array}{\|r} +\quad .24 \\ +\quad .22 \\ +\quad 38 \\ \hline \end{array}$ |  |  | $\begin{array}{r}+.24 \\ +\quad .22 \\ +\quad 38 \\ \hline\end{array}$ |  | $\begin{aligned} & 5 \cdot 1052779,2 \\ & 4.9574015,7 \\ & 5^{\prime} 0507929,1 \end{aligned}$ | $\begin{array}{r} 12743 \mathrm{I} \cdot 82 \\ 90657 \cdot 05 \\ 112406 \cdot 89 \end{array}$ |  |
|  |  |  | $2 \cdot 35$ |  |  |  | + 88 | 180 |  | $\begin{aligned} & 151709 \cdot 67 \\ & 147556 \cdot 68 \\ & 127431 \cdot 82 \end{aligned}$ | $\begin{aligned} & 28 \cdot 733 \\ & 27 \cdot 946 \\ & 24 \cdot 135 \end{aligned}$ |
|  | 243 | $\begin{aligned} & \text { XXXV (Itria) } \\ & \text { XXXXII (Jitori) } \\ & \text { XXXVI (Sakpur) } \end{aligned}$ | 1. 36 <br> 1. 36 <br> 1. 36 | $\begin{array}{\|c} -\quad .05 \\ -.02 \\ +\quad .55 \end{array}$ |  |  | $-\quad .05$ <br> +.02 <br> $+\quad 55$ | $\begin{array}{rrrr} 66 & 29 & 58 \cdot 01 \\ 63 & 7 & 10 & 54 \\ 50 & 22 & 51 \cdot 45 \\ \hline \end{array}$ | $\begin{aligned} & 5^{\prime} 1810132,6 \\ & 5 \cdot 1689588,4 \\ & 5^{\prime} \cdot 1052779,2 \end{aligned}$ |  |  |
|  |  |  | 4.08 |  |  |  | + 48 | $\begin{array}{llll}180 & 0 & 0.00\end{array}$ |  | $\begin{aligned} & 135410^{\circ} 45 \\ & 159392^{\circ} 01 \\ & 151709^{\circ} 67 \end{aligned}$ | $\begin{aligned} & 25 \cdot 6+8 \\ & 30 \cdot 188 \\ & 28 \cdot 733 \end{aligned}$ |
|  | 244 | XXXVI (Sakpur) <br> XXXIII (Jitori) <br> XXXVII (Manáwa) | $\begin{aligned} & \mathbf{I} 49 \\ & \mathbf{I} .50 \\ & \mathbf{I} \cdot 49 \\ & \hline \end{aligned}$ | $\begin{array}{r} +\quad 14 \\ +\quad 54 \\ +1 \cdot 06 \end{array}$ |  |  | $\begin{array}{r}+\quad 14 \\ +\quad 54 \\ +1.06 \\ \hline\end{array}$ | 51 32 $6 \cdot 55$ <br> 67 9 39.22 <br> 61 18 14.23 | $\begin{aligned} & 5 \cdot 13168 \mathrm{ro}, 6 \\ & 5 \cdot 2024665,8 \\ & 5 \cdot 1810132,6 \end{aligned}$ |  |  |
|  |  |  | 4.48 |  |  |  | +1.74 | 180 | $\begin{aligned} & 5 \cdot 0721135,8 \\ & 5 \cdot 1316810,6 \\ & 4 \cdot 8245480,1 \end{aligned}$ | $\begin{array}{r} 118062.93 \\ 135419 \cdot 45 \\ 66764.86 \end{array}$ | $\begin{aligned} & 22 \cdot 360 \\ & 25 \cdot 648 \\ & 12.645 \end{aligned}$ |
|  | 245 | XXXIII (Jitori) <br> XXXIV (Konkáwáo) <br> XXXVII (Manáwa) | $\begin{array}{r}.62 \\ .63 \\ .62 \\ \hline\end{array}$ | $+\quad .23$ $+\quad .54$ $-\quad 50$ |  |  | $\begin{array}{r}+\quad .23 \\ +\quad .54 \\ -\quad 50 \\ \hline\end{array}$ |  |  |  |  |
|  |  | XXXIV (Konkáwáo) XXXVII (Manáwa) XXXVIII (Sarkala) | 1.87 | - 1 |  |  | + 27 | $\begin{array}{llll}180 & 0 & 0.00\end{array}$ |  | $\begin{aligned} & 102426 \cdot 83 \\ & 165925 \cdot 92 \\ & 118062.93 \end{aligned}$ | $\begin{array}{r} 19.399 \\ 31.425 \\ 22.360 \end{array}$ |
|  | 246 |  | $\begin{array}{r}\cdot 94 \\ \cdot 95 \\ \cdot 95 \\ \hline\end{array}$ | -.34 <br> $-\quad .03$ <br> -.28 |  |  | $\begin{array}{r}\text { - } 934 \\ =.03 \\ \hline .28 \\ \hline\end{array}$ | 37 44 $57 \cdot 74$ <br> 97 22  | $\begin{aligned} & 5.0104137,6 \\ & 5^{\circ} 2199142,3 \\ & 5^{\circ} 0721135,8 \end{aligned}$ |  |  |
|  |  |  | $2 \cdot 84$ |  |  |  | -.65 | 180 | $\begin{aligned} & 5 \cdot 0104137,8 \\ & 5 \cdot 3289514,6 \\ & 5 \cdot 1316810,6 \end{aligned}$ | $\begin{aligned} & 102426 \cdot 83 \\ & 213280 \cdot 66 \\ & 135419.45 \end{aligned}$ | $\begin{aligned} & 19 \cdot 399 \\ & 40 \cdot 394 \\ & 25 \cdot 648 \end{aligned}$ |
|  | 247 | $\begin{array}{\|l} \text { XXXIII (Jitori) } \\ \text { XXXVII (Manáwa) } \\ \text { XXXVIII (Sarkala) } \end{array}$ | $\begin{array}{r}.87 \\ .88 \\ .88 \\ \hline\end{array}$ | $\begin{array}{\|} +\quad 18 \\ +\quad 53 \\ +\quad 20 \\ \hline \end{array}$ |  |  | $\begin{array}{r}+\quad .18 \\ \hline+\quad 53 \\ +\quad 20 \\ \hline\end{array}$ | $\begin{array}{rrr} 22 & 34 & 56 \cdot 36 \\ 126 & 54 & 24 \cdot 05 \\ 30 & 30 & 39 \cdot 59 \\ \hline \end{array}$ |  |  |  |
|  |  |  | 2.63 |  |  |  | - 15 | 180 | $\begin{aligned} & 5.0434803,8 \\ & 5^{\circ} 0729735,6 \\ & 5^{\circ} 0104137,7 \end{aligned}$ | $\begin{aligned} & 110530 \cdot 04 \\ & 118296 \cdot 96 \\ & 102426 \cdot 83 \end{aligned}$ | $\begin{aligned} & 20.934 \\ & 22.405 \\ & 19.399 \end{aligned}$ |
|  | 248 | XXXVII (Manáwa) <br> XXXVIII (Sarkala) <br> XXXIX (Nandivela) | .82 .83 .82 | $-\quad .05$ <br> $-\quad .07$ <br> -.12 |  |  | $\begin{array}{r}\text { - } 05 \\ =.07 \\ -\quad 12 \\ \hline\end{array}$ | 59 35 5.41 <br> 67 21 55.89 <br> 53 2 58.70 |  |  |  |
|  |  | XXXVIII (Sarkala) <br> XXXIX (Nandivela) <br> XI (Jákia) | $2 \cdot 47$ |  |  |  | - 24 | 180 | $\begin{aligned} & 4 \cdot 9104558,8 \\ & 4 \cdot 9454526,3 \\ & 5^{\circ} 0434803,8 \end{aligned}$ | $\begin{array}{r} 81368 \cdot 42 \\ 88196 \cdot 76 \\ 110530.04 \end{array}$ | $\begin{aligned} & 15.411 \\ & 16.704 \\ & 20.934 \end{aligned}$ |
|  | 249 |  | $\begin{array}{r}\cdot 56 \\ .56 \\ .56 \\ \hline\end{array}$ | $\left\|\begin{array}{ll} - & .02 \\ - & .05 \\ - & .04 \end{array}\right\|$ |  |  | $\begin{array}{r}\text { - } 02 \\ =.05 \\ \hline .04 \\ \hline\end{array}$ | $\begin{array}{rlrr} 46 & 41 & 9 \cdot 27 \\ 52 & 3 & 38 \cdot 93 \\ 81 & 15 & 11 \\ \hline \end{array}$ |  |  |  |
|  |  |  | 1.68 | -11 <br> 180 |  |  |  |  |  |  |  |


| No. of Triangle |  | Number and Name of Station |  | Corrections to Observed Angle |  |  |  | Corrected Plane Angle | Distance |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Circuit | Noncircuit |  |  | Figure | Circuit | Noncircuit | Total |  | Log. feet | Feet | Miles |
|  |  |  | " | " | " | " | " | - 11 |  |  |  |
|  |  | XXXIX (Nandivela) | - 41 | + $\cdot 57$ |  |  | + 57 | $65 \quad 23$ 47.31 | 4.9153888,3 | 82297.91 | 15.587 |
|  | 250 | XL (Jákia) | $\cdot 40$ | + 29 |  |  | + 29 | $5035 \quad 3 \cdot 23$ | $4 \cdot 8446560,1$ | 69928.79 | 13.244 |
|  |  | XLI (Nántej) | - 41 | + 67 |  |  | + 67 | $64 \quad 1 \quad 9.46$ | 4.9104558,8 | 81368.42 | 1541I |
|  |  |  | 1•22 |  |  |  | +1.53 | $180 \quad 0.00$ |  |  |  |
|  |  | XL (Jákia) | $\cdot 44$ | - • 43 |  |  | - $\cdot 43$ | $48 \quad 48 \quad 19.79$ | 4-8596426,9 | $7238{ }^{\text {r }}$ - ${ }^{\text {OI }}$ | 13.709 |
|  | 251 | XLI (Nántej) | $\cdot 45$ | - . 50 |  |  | -. 50 | $722230 \cdot 43$ | 4.9622686,9 | 91678.75 | 17.363 |
|  |  | XLII (Dangarwári) | $\cdot 45$ | - $\cdot 49$ |  |  | - 49 | $58 \quad 49 \quad 9 \cdot 78$ | $4.9153888,3$ | $82297^{\circ} 91$ | $15 \cdot 587$ |
|  |  |  | I•34 |  |  |  | - I'42 | $180 \quad 0.00$ |  |  |  |

May, 1890.
W. H. COLE,

In charge of Computing Office.

## KATTYWAR MERIDIONAL SE氏」ED.

PRINCIPAL TRIANGULATION. LATITUDES, LONGITUDES AND AZIMUTHS.

| Station A |  |  |  | Side A B |  |  | Station $\mathbf{B}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Cireuit No. | Number and Name of Station | Latitude North | Longitude East of Greenwich | Azimuth at A | Log. Feet | Aximuth at B | Number and Name of Station |
| 57 |  | $\bigcirc 1$ | - 18 | - ' " |  | - , " |  |
|  | LXI (Akoria) | 244043 31 | 711858.74 | $943223 \cdot 18$ | 4:8160424,8 | 2742727.60 | LXIV (Bhilgaon) |
|  |  | " | " | 295729.28 | 50433819,7 | 2095321.23 | I (Viráwáh) |
|  | LXIV (Bhilgaon) | 24 41 34'19 | $71711 \cdot 0$ | 1394015119 | 4.6982549,6 | 3193748.43 | LXVI (Jhund) |
|  | " " | " | " | 3541247.90 | 5.0061437,4 | 1741333.88 | I (Viráwáh) |
|  | " $\quad$ | " | " | 652026.32 | 5.0212179,3 | 245131541 | II (Khársar) |
|  | " " | " | " | $39 \quad 940 \cdot 38$ | 5.2225406,5 | 219147.38 | III (Kálunjhar) |
|  | LXVI (Jhund) | $244751 \times 07$ | $71 \begin{array}{lll}120.38\end{array}$ | $373540 \cdot 76$ | 5.0144223,4 | 217305542 | II (Khársar) |
|  | I (Viráwáh) | 2424 54.47 | $71 \quad 9 \quad 1 \cdot 65$ | 1182356.60 | 50795327,7 | $29816 \quad 2.08$ | " $\quad$ " |
|  | " " | " | " | ${ }_{76}^{76} 919 \times 16$ | 5.0759511, | 256 -43.01 | III (Kálunjhar) |
|  | " " | " | " | 359524733 | 5*2981896,5 | $1795249^{1} 17$ | IV (Iwália) |
| 58 | " | " | " | 322138.89 | 5.3424111,0 | 2121259.50 | V (Bela) |
|  | II (Khársar) | $243419 \times 16$ | $704957 \cdot 12$ | $\begin{array}{llll}632 & 2.84\end{array}$ | 4.9355261,7 | 1863118.93 | III (Kálunjhar) |
|  | III (Kálunjhar) | $242010 \cdot 65$ | 7048 11•05 | $3253352 \cdot 85$ | 5.3138727,4 | 145422540 | IV (Iwália) |
|  |  | " | " | $\bigcirc 3721.76$ | 5•1968362,7 | 1803714.23 | V (Bela) |
|  | IV (Iwália) | $2352 \quad 5 \cdot 86$ | $71 \quad 96.14$ | 961251.61 | 50750549,1 | $276 \quad 41594$ | " " |
| 59 | " " | " | " | $\begin{array}{llll}56 & 616.80\end{array}$ | 5.0586757,0 | $2355924.56$ | VI (Dájka) |
|  | " " | " | " | 26104.51 | 5•1004775,5 | 20664.24 | VIII (Pata-i-Sháh) |
|  | $V$ (Bela) | 2354 11.88 | $704752 \cdot 62$ | $343 \quad 3 \begin{aligned} & 36\end{aligned}$ | 4.9037409,7 | $163 \quad 516.80$ | VI (Dájka) |
|  |  | " | " | $54434^{\prime} 14$ | 5.0246707,5 | $2343730 \cdot 51$ | VII (Gángta) |
| 60 | VI (Dájka) | 23 41 32-43 | 7052 3.81 | 98 $\quad 442 \cdot 36$ | 5-0447460,9 | $2775647 \cdot 28$ | " " |
|  | " | " | " | $32113 \quad 733$ | 4.8001218,3 | 1411557.60 | VIII (Pata-i-Sháh) |
|  | " $"$ | " | " . | 434315115 | 4-8228639,7 | $2233957 \times 13$ | IX (Kanduka) |
|  | VII (Gángta) | 2344 5.53 | 703222.49 | 314481275 | 4.9547568,4 | 1345248.39 | " |
|  | VIII (Pata-i-Sháh) | 2333 24.78 | 70598.72 | $904826 \cdot 28$ | $4.9319873,4$ | 2704218.97 | * " |
|  |  | " | " | 211242.90 | $4 \cdot 7928969,0$ | 20111685 | X (Khánmír) |

Nots.-Stations LXI (Akoria), LXIV (Bhilgaon) and LXVI (Jhund) appertain to the Karáchi Longitudinal Series of the North-West Quadrilateral.

| Station A |  |  |  | Side A B |  |  | Station B |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Circuit No. | Number and Name of Station | Latitude North | Longitude Kast of Greenwich | Azimuth at A | Log. Feet | Azimuth at B | Number and Name of Station |
| 61 | VIII (Pata-i-Sháh) <br> IX (Kanduka) | $\bigcirc 1$ | 1 | - ' |  | - 1 |  |
|  |  | 233324.78 | 7059 8.72 | $553436 \cdot 20$ | 5-02488.18,8 | 2352822.66 | XI (Chitror) |
|  |  | 2333 35*97 | $704349^{\prime} 72$ | $313 \quad 21716$ | 4*9364583,4 | 133647.24 | X (Khánmír) |
|  |  | $2323 \text { " }$ | " | 13822.77 | 4.7860151,3 | 1813815.30 | XI (Chitror) |
|  | X (Khánmír) |  | $7055 \quad 7 \cdot 60$ | $881238 \cdot 18$ | 4-8124063,9 | $\begin{array}{llll}268 & 8 & 1.57\end{array}$ | " $\quad$ |
|  | " " |  | " | $263450 \cdot 61$ | 4.6914406,1 | $2063317 \times 18$ | XII (Monába) |
|  |  | " | " | 311 1344.89 | 4-8159955,2 | 1311714.10 | XIII (Kesmára) |
|  | $\begin{aligned} & \text { XI (Chitror) } \\ & " \quad \text { XII (Monába) } \end{aligned}$ | $232330 \cdot 84$ | 7043 30'95 | 3141529.18 | 4.7780301,5 | 1341831.70 | XII (Monába) |
| 62 |  | $23 \text { 16" } 35 \times 86$ |  | $23536 \cdot 40$ | 4.7643143,2 | 2035126.50 | XIV (Wándia) |
|  |  |  | 70 51*11'75 | $2691944 \% 71$ | 4.8526397,9 | 8924 46.61 | XIII (Kesmára) |
|  |  |  | " | 802522.75 | 4-8289333,4 | $2602041 \cdot 10$ | XIV (Wándia) |
|  | " | " | $71 \quad 355 \cdot 70$ | 333 3 33.21 | 4*9090028,5 | 153688.09 | XV (Kákraji) |
|  | TIIT |  |  | 183028.07 | 4-8664308,5 | 1982849.66 | XVI (Mália) |
|  | XIII (Kesmára) |  |  | 251935.27 | 4*9076800,2 | 205179.48 | XV (Kákraji) |
|  | XIV (Wándia) | $23 \quad 439 \cdot 35$ | $\begin{gathered} \prime \prime \\ 705745 \cdot 28 \end{gathered}$ | $323304 \times 18$ | 4-8615404,2 | 143336.38 | XVI (Mália) |
|  | XV (Kákraji) |  |  | 922945.76 | $4.7791380,2$ | 2722533.48 | " " |
|  |  | " | 7047 1'77 | $657 \quad 3.42$ | 4.7712052,9 | 1865633.55 | XVII (Rangpur) |
|  |  |  |  | 31451889 | 4.7974112,7 | 1345414.92 | XVIII (Chalarwa) |
|  |  |  |  | 534129.51 | 4.9007042,0 | 23337 1.31 | XIX (Pangasia) |
|  | " XVI (Mália) | $\begin{array}{ccc} 23 & 5 & 4.94 \\ \Longrightarrow \end{array}$ |  | $319 \quad 516.57$ | 4.9081677,8 | 1398858.14 | XVII (Rangpur) |
|  | '" $\quad$ |  |  | 4346.13 | 46980427,9 | 1843349.50 | XIX (Pangasia) |
|  | XVII (Rangpur) | $225458 \cdot 53$ | 705628.83 | 2542528.24 | $4.7289670,1$ | 74293.45 | XVIII (Chalarwa) |
|  | $\begin{array}{cc} " & " \\ " & " \\ \text { XVIII (Chalarwa) } \end{array}$ |  |  | IO1 2425.83 | 4.7643089,5 | 281 2028.3 I | XIX (Pangasia) |
|  |  | $\left\{\begin{array}{c} " \\ " \\ " \\ 225720 \cdot 8 I \end{array}\right.$ |  | $3221650 \cdot 91$ | 4.7131122,2 | 14219213 | XX (Dúngarpur) |
|  |  |  |  | $255636 \cdot 42$ | 4.8228901,7 | 2055435.77 | XXII (Virpur) |
|  |  |  |  | 195759.53 | 4*7690545,5 | $1995636 \cdot 15$ | XX (Dángarpur) |
|  | XIX (Pangasia) | " | $"$ | $2964656 \cdot 12$ | 4.8434547,1 | 1165115.31 | XXI (Sápakra) |
|  |  | $2256{ }_{52 \cdot 11}$ | 704619.25 | $\begin{array}{llll}338 & 35 & 0.27\end{array}$ | 4-8839826,7 | 1583656.25 | XXII (Virpur) |
|  | XX (Dúngarpur) | $224813.54$ | $71 \quad 26.62$ |  | $4.9329313,5$ | $\begin{array}{r}73 \\ 5642 \\ 252 \\ \hline 1\end{array}$ | XXI (Sápakra) <br> XXII (Virpur) |
|  | " " | " |  |  | 4.8033749,9 | 2523749.02 | XXII (Virpur) |
|  |  |  |  | 313288.68 | 4.8570041,2 | 133 3144.17 | XXIII (Chatrikhera) |
|  |  | $2252 \text { " } 9.05$ | $711646 \cdot 83$ | 153216.06 | 4-8802972,6 | 1953052.30 | XXIV (Wánkáner) |
|  |  |  |  | 222427.82 | 4.8990847,4 | 2022222.96 | XXIII (Chatrikhera) |
|  |  | $\begin{array}{lll} 22 & 52 & 9 \cdot 05 \\ 22 & 45 & 5 \cdot \end{array}$ | 705117.93 | 323153161 | 4.8299944,6 | 1431818.03 | XXIV (Wánkáner) |
|  |  | $2240 \quad 2 \cdot 79$ | $71112418$ | 72 O 42.16 | 4.8825394,0 | 2515544.05 |  |
|  | " |  |  | 3552529.88 | 4.8324962,3 | 17525 52.08 | XXV (Tarkia) |
|  | XXIV (Wánkáner) | 2236 " $8 \cdot 76$ |  | $383246 \cdot 91$ | 5.0518868,0 | 2182759.89 | XXVI (Kakána) |
|  |  |  |  | 299280.56 | 4.9525915,4 | 1193319.68 | XXV (Tarkia) |
|  | X"X (Tarkia) | $2228 \text { 51•10 }$ | $\begin{gathered} 71 \mathrm{I} 222 \cdot 02 \\ " \end{gathered}$ | 3574958.80 | 4.8103283,5 | 177508.77 | XXVI (Kakána) |
|  |  |  |  | 74564559 | $4 \cdot 8939666,2$ | 254513761 | " ${ }^{\text {" }}$ |
|  | " |  |  | 3512256.43 | $4.8551112,7$ | 1712339.96 | XXVII (Maidhar) |



May, 1890.
W. H. COLE,

In charge of Computing Office.

## KATTYWAR MERIDIONAL SERIES.

## PRINCIPAL TRIANGULATION. HEIGHTS ABOVE MEAN SEA LEVEL.

The following table gives, first, the usual data of the observed vertical angles and the heights of the signal and instrument, \&c., in pairs of horizontal lines, the first line of which gives the data for the lst or the fixed station, and the second line the data for the 2nd or the deduced station. This is followed by the arc contained between the two stations, and then by the terrestrial refraction and the height of the 2nd station above or below the lst, as computed from the vertical angles in the usual manner. This difference of height applied to the given height above mean sea level of the fixed station, gives that of the deduced station. Usually there are two or three independent values of the height of the deduced station; the details are so arranged as to show these consecutively and their mean in the columns of "Trigonometrical Results." The mean results thus obtained are however liable to receive corrections for the errors generated in the trigonometrical operations, which are shown up by the spirit levelling operations, wherever a junction between the two has been effected. The spirit levelled determinations are always accepted as final, and the trigonometrical heights of stations lying between those fixed by the levelling operations are adjusted by simple proportion to accord with the latter. In the table the spirit levelled values are printed thus, 284\%00, \&c., to distinguish them from the adjusted trigonometrical values. The column in which the mean trigonometrical heights are given is barred across where necessary, as after deduction of Stn. XXVI from Stn. XXV, page 77_ , to indicate that one set of adjustments ends and another begins. The trigonometrical heights always refer to the upper mark in the surface of the circular pillar on which the theodolite stood. Descriptions follow this table, exactly indicating the surfaces on which the levelling staff stood during the determinations of the spirit levelled heights.

The height given in the last column is the approximate height of the structure above the ground at the base of the station.

The heights of the initial stations above Mean Sea Level are taken from the Karachi Longitudinal Series of the North-West Quadrilateral, and are as follows :-

LXI (Akoria) 55.9 feet; LXIV (Bhilgaon) $100 \cdot 4$ feet; $\quad$ LXVI (Jhund) 373.8 feet.

| Astronomical Date |  | Number and Name of Station | Observed <br> Vertical Angle |  | Height in feet |  |  | Terrestrial Refraction |  |  | Height in feet of 2nd Station above Mean Sea Level |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1856 |  |  |  |  |  | 若EE雷 |  |  |  |  | Trigonometrical Results |  | Final Rosult |  |
|  |  |  |  |  |  |  |  |  |  |  | By each deduction | Mean |  |  |
|  | $\boldsymbol{h} \boldsymbol{m}$ |  | 017 |  |  |  | " |  |  |  |  |  |  | feet |
| Jan. 28 | 247 | LXI (Akoria) | $\text { E○ } 5 \quad 9 \cdot 3$ | $8$ | $2 \cdot 6$ | 5*6 |  | 61 | -056 | $+428 \cdot 8$ | 484.7 |  |  |  |
| " 30,31, Feb. 1 | 257 | I (Viráwáh) | $\text { D } \circ 213 \mathrm{I} \cdot 5$ | 14 | $2.6$ | 5•7 | 1092 | 61 | -056 | + $428 \cdot 8$ | 4847 |  |  |  |
| " 21,22,25 | 230 | LXIV (Bhilgaon) | E $0533^{\circ} \mathrm{I}$ | 12 | $2 \cdot 6$ | $5 \cdot 6$ | 1002 | 60 | -060 | $+385^{\circ} \mathrm{I}$ | $485 \cdot 5$ | $485^{\circ} 0$ | 485 | 1 |
| , 30,31, Feb. 1 | 347 | I (Viráwáh) | D $02030^{\circ} \mathrm{I}$ | 14 | $2 \cdot 6$ | 5•7 | 1002 |  |  | +385 I | 4855 | 4850 | 485 | 1 |

Nors.-Stations IXI (Akoria) and LXIV (Bhilgaon) appertain to the Kar\&chi Longitudinal Series of the North.West Quadrilateral.

| Astronomical Date |  | Number and Name of Station | Observed Vertical Angle |  | Height in feet |  | $\begin{aligned} & \text { 号 } \\ & \text { 苟 } \\ & \text { E } \\ & \text { © } \end{aligned}$ | Terrestrial Refraction |  |  | Height in feet of 2nd Station above Mean Sea Level |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1856 | Mean of ＇Times of obser－ vation |  |  |  | E | $\stackrel{\square}{\theta}$ |  | 毕 |  |  | Trigonometrical Results |  | Final Result |  |
|  |  |  |  |  |  | 茝 |  | $\pm$ | ค． |  | By each deduc－ tion | Mean |  |  |
|  | $\boldsymbol{h} \quad \mathrm{m}$ |  | －＇ 1 |  |  |  | ＂ |  |  |  |  |  |  | fot |
| Jan．15，16，17 | 236 | II（Khársar） | D o 9 I•2 | 12 | 2.6 | $5 \cdot 6$ | 1187 |  |  |  | 484．8 |  |  |  |
| ＂30，31，Feb． 1 | 310 | I（Viráwáh） | D ○ 816.4 | 12 | 3.0 | $5 \cdot 7$ | 1187 |  | 067 | 129 | 484 |  |  |  |
| ＂21，22，25 | 247 | LXIV（Bhilgaon） | E 0512.4 | 18 | $2 \cdot 6$ | $5 \cdot 6$ |  |  |  | ＋ $397{ }^{\circ}$ | $497 \cdot 4$ |  |  |  |
| ＂15，16，17 | 245 | II（Khársar） | D $02047^{1} 1$ | 12 | $2 \cdot 6$ | $5 \cdot 6$ | 1038 | 58 | －056 | $+397^{\circ} \mathrm{O}$ | $497 * 4$ |  |  |  |
| ＂18，19 | 316 | IXXVI（Jhund） | D o 329.7 | 16 | $2 \cdot 6$ | $5 \cdot 6$ |  |  |  |  |  |  |  |  |
| ＂16，17 | 245 | II（Khársar） | D ○ 11 45．2 | 12 | $2 \cdot 6$ | $5 \cdot 6$ | 1021 | 59 |  | ＋ 124.2 | $498 \cdot 0$ | $497 \cdot 8$ | 498 | 2 |
| ${ }^{\prime}{ }^{30,31, ~ \mathrm{Feb}, 1}$ | 310 | I（Viráwáh） | D o 816.4 | 12 | 3.0 | 5．7 | 1187 | 80 |  | 12.9 | $498 \cdot 0$ |  |  |  |
| \％15，16，17 | 236 | II（Khársar） | D○ 9 I．2 | 12 | $2 \cdot 6$ | $5 \cdot 6$ | 1187 | 80 |  |  | $498 \cdot$ |  |  |  |
| ＂21，22，25 | 34 | LXIV（Bhilgaon） | E 0.954 .1 | 16 | $2 \cdot 7$ | $5 \cdot 6$ |  |  |  |  |  |  |  |  |
| ＂11，12 | 29 | III（Kálunjhar） | D 0340.5 | 8 | $2 \cdot 6$ | $5 \cdot 6$ | 1649 | 105 |  | ＋1066．1 | $1166 \cdot 5$ |  |  |  |
| ＂31，Feb． 1 | 244 | I（Viráwáh） | E 011113.6 | 10 | 2.7 | 5.7 |  |  |  | ＋ 684.2 |  | $1168 \cdot 2$ | 1169 | － |
| ＂11，12 | 142 | III（Kálunjhar） | D $02816 \cdot 1$ | 8 | $2 \cdot 6$ | $5 \cdot 6$ | 1177 | 82 | ． 070 | ＋684．2 | $1169{ }^{2}$ | $1168 \cdot 2$ | 1169 |  |
| ＂15，16，17 | 241 | IJ（Khársar） | E 02027.8 | 14 | $2 \cdot 7$ | 5．6 | 852 |  |  |  | 1168．8 |  |  |  |
| ＂11，12 | 212 | III（Kálunjhar） | Do33 3．2 | 8 | $2 \cdot 6$ | $5 \cdot 6$ | 852 |  | －06 | ＋6710 | $1168 \cdot 8$ |  |  |  |
| ＂31，Feb． 1 | 259 | I（Viráwáh） | D 01742.5 | 10 | $2 \cdot 7$ | $5 \cdot 7$ |  |  |  |  |  |  |  |  |
| Feb．8，9 | 230 | IV（Iwália） | D $01056 \cdot 7$ | 10 | $2 \cdot 6$ | $5 \cdot 6$ | 1963 | 125 |  | 195.5 | $289 * 5$ |  |  |  |
| Jan．11，12 | 210 | III（Kálunjhar） | D $02937^{\circ} \mathrm{O}$ | 10 | $2 \cdot 6$ | 5．6 |  |  |  |  |  |  |  |  |
| Feb．8，9 | 319 | IV（Iwália） | D 0 O 3.0 | 10 | $2 \cdot 6$ | 5．6 | 2036 | 131 |  | － 885 ＇9 | $282 \cdot 3$ | $285 \cdot 3$ | 287 | 5 |
| ＂4，5，6 | 34 | V （Bela） | D 022 20．5 | 12 | 2.6 | $5 \cdot 6$ |  |  |  |  |  |  |  |  |
| ＂8，9 | 248 | IV（Iwália） | E ○ $457^{\circ} 9$ | 12 | $2 \cdot 6$ | $5 \cdot 6$ | 1174 | 71 |  | －472．1 | 284＊1 |  |  |  |
| Jan．31，Feb． 1 | 319 | I（Viráwáh） | D 01126.9 | 10 | 2.6 | 5．7 |  |  |  |  |  |  |  |  |
| Feb．4，5，6 | 258 | V（Bela） | D 0200.5 | 12 | $2 \cdot 6$ | 5．6 | 2174 | 146 |  | ＋ 273.9 | $758 \cdot 9$ |  |  |  |
| Jan．11，12 | 230 | III（Kálunjhar） | D 02028.6 | 8 | $2 \cdot 6$ | 5．6 |  |  |  |  |  |  | 758 |  |
| Feb．4，5，6，Mar． 5 | 245 | $\nabla$（Bela） | Do $221^{\circ} \mathrm{O}$ | 16 | $2 \cdot 7$ | 5．6 | 1555 | 97 |  | － 414.8 | $753 \cdot 4$ | 756 | 75 | 5 |
| ＂8，9 | 248 | IV（Iwália） | E ○ $457 \%$ | 12 | $2 \cdot 6$ | $5 \cdot 6$ |  |  |  |  |  |  |  |  |
| ＂ $4,5,6$ | 34 | V （Bela） | D 022 20．5 | 12 | 2.6 | $5 \cdot 6$ | 1174 | 71 |  | $+472 \cdot 1$ | $758 \cdot$ |  |  |  |
| ，29，Mar． 1 | 252 | IV（Iwália） | D $01325^{\circ} \mathrm{O}$ | 12 | $2 \cdot 6$ | $5 \cdot 8$ |  |  |  |  |  |  |  |  |
| ＂26，27，28 | 249 | VI（Dajka） | Do 351．7 | 12 | $2 \cdot 6$ | $5 \cdot 4$ | 1131 | 53 |  | － 158.9 | 126.4 |  |  | ＊ |
| Mar．3，4，5 | 256 | $V$（Bela） | D 03311.2 | 14 | $2 \cdot 6$ | $5 \cdot 6$ |  |  |  |  |  | 124 |  |  |
| Fcb．26，27，28 | 252 | VI（Dájka） | E 02116.5 | 12 | $2 \cdot 6$ | $5 \cdot 4$ | 791 |  |  | －634．5 | $122 \cdot 3$ |  |  |  |
| ＂8，9 | 38 | IV（Iwália） | D 0922.0 | 12 | $2 \cdot 6$ | $5 \cdot 6$ |  |  |  |  | 28.2 |  |  |  |
| \＃15，18，21，23 | 251 | VIII（Pata－i－Sháh） | D 0 9 11.9 | 20 | $2 \cdot 6$ | $5 \cdot 7$ | 1245 |  |  | $3^{1.1}$ | 2822 |  |  |  |
| ＂26，27，28 | 254 | VI（Dájka） | E○ 328.5 | 20 | 10.4 | $5 \cdot 4$ |  |  |  |  |  | 28I• 6 | 28400 | 5 |
| \％21，23 | 251 | VIII（Pata－i－Sháh） | D 01326.0 | 12 | 13.2 | $5 \cdot 7$ | 623 |  |  | $+156.5$ | $280 \cdot 9$ |  |  |  |
| ${ }^{\text {n }}$ 15，16，18，21，23 | 241 | VIII（Pata－i－Sháh） | D o $334{ }^{\text {I }}$ | 22 | $2 \cdot 6$ | $5 \cdot 7$ | 613 |  |  | ＋21．1 |  | 305＊1 | 304．51 | 5 |
| Apr．1，2 | 33 | X（Khánmír） | Do 554.0 | 10 | $2 \cdot 6$ | $5 \cdot 6$ | 613 |  |  |  | 3051 |  |  | 5 |


| Astronomical Date |  | Number and Name of Station | Observed <br> Vertical angle |  | Height in feet |  | $\begin{aligned} & \text { 号 } \\ & \text { 荷 } \\ & \text { 豆 } \\ & \text { O } \end{aligned}$ | $\left\|\begin{array}{l}\text { Terrestrial } \\ \text { Refraction }\end{array}\right\|$ |  |  | Height in feet of 2nd Station above Mean Sea Level |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1856 | $\left\|\begin{array}{c} \text { Mean of } \\ \text { Times } \\ \text { of obser- } \\ \text { ration } \end{array}\right\|$ |  |  |  |  | $\begin{aligned} & \text { 若 } \\ & \text { 首 } \end{aligned}$ |  | 范 |  |  | $\left.\right\|_{\substack{\text { Trigono } \\ \text { Resi }}}$ | metrical ults |  |  |
|  |  |  |  |  | \％ | 嵩 |  | $\begin{aligned} & \stackrel{\otimes}{\mathbf{a}} \\ & \stackrel{1}{2} \end{aligned}$ | － |  | By each deduc－ tion | Mean | Result |  |
|  |  |  | 1 |  |  |  | ＂ |  |  |  |  |  |  | feet |
| Nov．21，22 | 259 | X（Khánmír） | $\begin{array}{lll}\text { D } 021 & 8.9\end{array}$ | 8 | $2 \cdot 6$ | $5 \cdot 6$ | 486 | 27 |  |  | $56 \cdot 8$ | 56．8 | 56.72 | 5 |
| ，11，12，13 | 251 | XII（Monába） | E $01330 \cdot 5$ | 12 | $2.6$ | $5 \cdot 6$ | 486 | 27 | － 0 | －247 7 | 56 | 56 | 5672 | 5 |
| ＂12，13 | 251 | XII（Monába） | D $0.23 \mathrm{I} \cdot 5$ | 10 | 2：6 | $5 \cdot 6$ | 666 | 8 | $\cdot 012$ | $+59.7$ | 116.4 | 116.4 | $116 \cdot 37$ | 5 |
| 17 | 33 | XIV（Wándia） | D o $836 \cdot 9$ | 4 | $2 \cdot 6$ | $5 \cdot 6$ | 666 | 8 | 012 | ＋ 597 | 1104 | 116 | 16 37 | 5 |
| Fob．15，16，18，21，28 | 35 | VIII（Pata－i－Sháh） | D 0 111．1 | 20 | $3 \cdot 2$ | 5．7 |  | 55 |  | ＋206．7 | 490＊7 |  |  |  |
| Mar．14，15 | 35 | XI（Chitror） | D 01438.5 | 8 | $2 \cdot 6$ | $6 \cdot 2$ | 1047 | 55 |  |  | 4907 |  |  |  |
| （1） | 313 | X（Khánmír） | E O $45^{\circ} \mathrm{C}$ | 16 | 3.2 | $5 \cdot 6$ | 642 | 35 | －055 | ＋185．3 | $489 \cdot 8$ |  |  |  |
| （2） | 39 | XI（Chitror） | D $01445^{\circ} 8$ | 16 | $2 \cdot 6$ | $6 \cdot 2$ | 642 | 35 | O55 | ＋1853 |  | $490^{\circ} 0$ | $49^{\circ}$ | ＊ |
| Nov．12，13 | 247 | XII（Monába） | E 02023.6 | 8 | $3 \cdot 0$ | $5 \cdot 6$ | 593 | 37 | －062 | ＋433＊9 | $490 \cdot 6$ |  |  |  |
| ＂19，20 | 35 | XI（Chitror） | $\text { D } \circ 2923.9$ | 8 | $2 \cdot 6$ | $6 \cdot 2$ | 593 | 37 |  | ＋433 9 |  |  |  |  |
| ＂ 17 | 313 | XIV（Wándia） | E 01731.5 | 4 | $3 \cdot 2$ | $5 \cdot 6$ | 574 | 25 | －044 | ＋372．6 | $489^{\circ} 0$ |  |  |  |
| ＂19，20 | 257 | XI（Chitror） | D ○ $2636 \cdot 8$ | 8 | $2 \cdot 6$ | 6．2 | 574 |  |  | ＋372 6 |  |  |  |  |
| Feb．26，27，28 | 32 | VI（Dájka） | E $\circ 12293$ | 14 | $2 \cdot 6$ | 5.4 | 657 | 27 | －041 | $+341.6$ | $467 \cdot 9$ |  |  |  |
| Mar．8，10，12 | 312 | IX（Kanduka） | D $0225^{\prime} 2$ | 14 | $2 \cdot 8$ | $5 \cdot 6$ | 657 | 27 | 041 | ＋341－6 |  |  |  |  |
| Feb．18，21 | 321 | VIII（Pata－i－Sháb） | E 0044.2 | 10 | $2 \cdot 6$ | $5 \cdot 7$ | 845 | 30 | $\cdot 036$ | $+184^{2}$ | 468．2 |  |  |  |
| Mar．10，12 | 257 | IX（Kanduka） | D $01345^{\circ}$ | 8 | 10.6 | $5 \cdot 6$ | 845 | 3 |  | ＋1842 |  | $467 \cdot 7$ | 468 | 12 |
| Apr．1，2 | 35 | X（Khánmír） | D ○ ○ 7．5 | 12 | $2 \cdot 6$ | 5.6 | 854 | 35 | ． 041 | $+164.0$ | $468 \cdot 5$ |  |  |  |
| Mar．8，10，12 | 337 | IX（Kanduka） | D $01310 \cdot 7$ | 14 | $2 \cdot 6$ | $5 \cdot 6$ | 854 | 35 | 041 | ＋1640 | 468 |  |  |  |
| ＂14，15 | 243 | XI（Chitror） | D o 617.9 | 8 | $2 \cdot 6$ | 6.2 | 604 | 17 | －028 |  | $466 \cdot 1$ |  |  |  |
| ＂8，10，12 | 327 | IX（Kanduka） | D 0332.6 | 14 | $3 \cdot 2$ | $5 \cdot 6$ | 604 | 17 |  | － 239 |  |  |  |  |
| Feb． $4,5,6$, Mar． 4,5 | 312 | V （Bela） | D o 2526.6 | 20 | $2 \cdot 7$ | $5 \cdot 6$ | 1046 | 65 | －062 | $-545.4$ | 212．8 |  |  |  |
| Mar．6，7 | 257 | VII（Gángta） | E 09590 | 8 | $2 \cdot 6$ | 5.6 | 1046 | 65 |  | －545 4 |  |  |  |  |
| Feb．26，27，28 | 325 | VI（Dájka） | D o 614.9 | 18 | $2 \cdot 6$ | 5.4 | 1096 | 31 | －028 | $+79^{1}$ | 205.4 | 210：7 | 211 | 5 |
| Mar．6，7 | 38 | VII（Gángta） | Do11 8．2 | 8 | $3 \cdot 5$ | $5 \cdot 6$ |  | 3 |  | ＋ 79 |  |  |  |  |
| ，8，10，12 | 326 | IX（Kanduka） | D ○ 16 21．9 | 12 | $2 \cdot 6$ | $5 \cdot 6$ | 891 | 52 |  | －253．9 | 213.8 |  |  |  |
| ＂6，7 | 310 | VII（Gáugta） | E\％ 3003 | 8 | $2 \cdot 6$ | $5 \cdot 6$ | 891 | 52 | － 05 | －2539 | 213 |  |  |  |
| Nov．11，12， 13 | 324 | XII（Monába） | D $0612 \cdot 8$ | 14 | 2.6 | 5.6 | 727 | 5 | －07 | － 2.0 | 54．7 |  |  |  |
| ＂8，10 | 336 | XVI（Mália） | D $06 \begin{array}{ll} \\ \text { 1 }\end{array}$ | 8 | $2 \cdot 6$ | $5 \cdot 7$ |  | 5 |  |  |  | 54\％ | 63．67 | 18 |
| ＂ 17 | 236 | XIV（Wándia） | D o $846 \cdot 9$ | 4 | $2 \cdot 6$ | 5．6 | 718 | 20 | $\cdot 028$ | $-63.1$ | $53 \cdot 3$ |  |  |  |
| ＂8，10 | 249 | XVI（Mália） | D 0248.9 | 10 | $2 \cdot 6$ | 5.7 | 718 | 20 |  | $-63$ | 533 |  |  |  |
| ＂21，22 | 250 | X（Khánmír） | D ○ 1628.6 | 8 | $2 \cdot 6$ | 5．6 | 647 | 36 |  | －219＊6 | 84.9 |  |  |  |
| ＂23，24 | 250 | XIII（Kesmára） | E $0635^{\circ} \mathrm{I}$ | 10 | $2 \cdot 6$ | 5．6 | 647 | 36 | 056 | －219 6 |  |  |  |  |
| ＂12，13 | 256 | XII（Monába） | D ○ 422 I 3 | 10 | 2.6 | $5 \cdot 6$ | 704 | 17 | 024 | $+28.7$ | 85.4 | 84.3 | 84 | 5 |
| ＂23，24 | 313 | XIII（Kesmára） | D○ 7 711 | 10 | $2 \cdot 6$ | $5 \cdot 6$ | 704 | 17 |  | ＋287 |  |  |  |  |
| ＂25，26，27 | 31 | XV（Kákraji） | D ○ 7 9＊4 | 14 | $2 \cdot 6$ | $5 \cdot 6$ | 799 | 28 | $\cdot 035$ | －19．3 | 82.6 |  |  |  |
| ＂23，24 | 31 | XIII（Kesmára） | Do $530 \cdot 8$ | 10 | $2 \cdot 6$ | 5．6 | 799 |  | O35 | －193 |  |  |  |  |

（1）The mean of observations taken on 1st and 2nd April，and 21st and 22nd November， 1856.
（2）
Do．do
14th and 15th March，and 10th and 20th Norember，1856．＊Not forthcoming．

| Astronomical Date |  | Number and Name of Station | Observed Vertical Angle |  | Height in feet |  |  | Terrestrial Refraction |  |  | Height in feet of 2nd Station above Mean Sea Level |  |  | 星 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1856 | Mean of <br> Times <br> of obser- <br> vation |  |  |  |  |  |  |  |  |  | Trigonometrical Results |  | Final Result |  |
|  |  |  |  |  |  |  |  |  |  |  | By each deduction | Mean |  |  |
| Nov. 11,12,18 " 25,26 |  | XII (Monába) <br> XV (Kákraji) | $\left.\begin{array}{cccc}  & 0 & 1 & \prime \prime \\ \text { D } 0 & 4 & 25 & \cdot 9 \\ \text { D } 0 & 8 & 18 & 1 \end{array} \right\rvert\,$ | $\begin{aligned} & 14 \\ & 14 \end{aligned}$ | $\begin{aligned} & 2.6 \\ & 2.6 \end{aligned}$ | $\begin{aligned} & 5 \cdot 6 \\ & 5 \cdot 6 \end{aligned}$ |  | 27 | -034 | + 45.6 | 102.3 | $102 \cdot 7$ | 103 | feet |
|  | 310 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 30 |  |  |  |  |  |  |  | -000 |  |  |  |  |  |
|  | 338 | XVI (Mália) | D o 220.7 | 26 | 3*3 | 5•6 | 594 | 0 |  | $+47 \cdot 8$ | $101 \cdot 4$ |  |  | 36 |
|  | 329 | XV (Kákraji) | D O 748.2 | $45$ | $3^{\prime 2}$ | $5 \cdot 5$ |  |  |  |  |  |  |  | 30 |
| " 23,24 | 31 | XIII (Kesmára) | D o 5 30.8 | 10 | $2 \cdot 6$ | $5 \cdot 6$ | 799 |  | -035 | $+19^{\circ} 3$ | 104*5 |  |  |  |
| , 25,26,27 | 31 | XV (Kákraji) | D 0789.4 | 14 | $2 \cdot 6$ | $5 \cdot 6$ | 799 |  |  |  |  |  |  |  |
| (3) | 326 | XV (Kákraji) | D 0 0 47.1 | 34 | 3.3' | $5 \cdot 5$ | 583 | -13 | -022 | + $76 \cdot 0$ | $178 \cdot 7$ |  |  |  |
| (4) | 321 | XVII (Rangpur) | D ○ $938 \cdot 3$ | 42 | $3 \cdot 2$ | $5 \cdot 5$ | 58 | -13 | 02 | + 760 | 178 |  |  | 6 |
| (5) | 330 | XIX (Pangasia) | Do 126.1 | 20 | $3 \cdot 2$ | 5.5 |  |  |  |  |  |  |  |  |
| (6) | 317 | XVII (Rangpur) | D $08^{52} \mathrm{I}$ | 32 | $3 \cdot 2$ | 5.5 | 574 | -14 | - 024 | + 62.8 | 1 |  |  |  |
| (7) | 333 | XVI (Mália) | D o 0 18.3 | $3 \mathbf{I}$ | $3^{\cdot 2}$ | $5 \cdot 6$ | 493 |  |  | $+63.7$ |  |  |  |  |
| (8) | 320 | XIX (Pangasia) | Do 9 4.7 | 30 | $3 \cdot 2$ | 5•5 | 493 | -25 | O51 | +637 | 1173 |  |  |  |
| (6) | 317 | XVII (Rangpur) | D o 8 52.1 | 32 | $3 \cdot 2$ | 5.5 | 574 | -14 |  | $-62 \cdot 8$ | 115.9 | 116.6 | 117 | 0 |
| (5) | 330 | XIX (Pangasia) | Do 1 26.1 | 20 | $3 \cdot 2$ | 5•5 | 574 |  |  |  | 1159 |  |  |  |
| Nov. 27 | 342 | XV (Kákraji) | EO 1 2.0 | 4 | $2 \cdot 6$ | 5.6 | 620 |  | - 008 | +114.5 | 217*2 |  |  |  |
| $" 1852-53$ | 341 | XVIII (Chalarwa) | Doil 31'1 | 10 | $2 \cdot 6$ | $5 \cdot 6$ | 620 |  |  | +114 5 | 2172 | $217 \cdot 8$ | 218 | 16 |
| Jan. . 17 | 427 | XVII (Rangpur) | D 0.24 .6 | 4 | 4*3 | 5.4 |  |  |  | $+39^{\circ}$ | $218 \cdot 4$ |  |  |  |
| Dec. 16 | 422 | XVIII (Chalarwa) | Do 7 6.9 | 4 | 3•8 | $5 \cdot 4$ | 530 | - 6 |  | + 390 | 2184 |  |  |  |
| Jan. 17 | 252 | XVII (Rangpur) | E $01049{ }^{\prime} 7$ | 6 | 3*7 | 5* 4 |  |  |  | +228.0 |  |  |  |  |
| Dec. 25 | 346 | $\mathbf{X X}$ (Dúngarpur) | D 019 29.6 | 4 | $4^{\circ} 0$ | $5^{\circ} 4$ | 510 |  | . 002 | +228.0 | 4074 |  |  | * |
|  |  |  |  |  |  |  |  |  |  |  |  | 404*7 | 404 | - |
| " 16 | 31 | XVIII (Chalarwa) | E 06649 | 4 | 3.9 | 5*4 | 581 |  |  | +184.1 | 401.9 |  |  |  |
| " 25 | 310 | XX (Dúngarpur) | D 015 26.2 | 6 | 4*3 | $5 \cdot 4$ | 581 |  |  | +184 | 4019 |  |  |  |
| " 16 | $\begin{array}{ll}3 & 21 \\ 3 & 53\end{array}$ | XVIII (Chalarwa) | D o 1 4.3 | 4 | $6 \cdot 9$ | $5 \cdot 4$ | 689 |  | -010 | $+95^{\circ} 3$ | 313.1 |  |  |  |
| Jan. 6 | 353 | XXI (Sápakra) | D $01036 \cdot 8$ | 4 | $3 \cdot 8$ | $5 \cdot 4$ | 689 | - 7 | O10 | $+953$ | 313 |  |  | 26 |
| Dec. 25 | 318 | XX (Dúngarpur) | D) $106 \cdot 9$ | 4 | 3.8 | $5 \cdot 4$ |  |  | - 046 |  |  | 313*5 | 313 | 26 |
| Jan. 6,7 | 313 | XXI (Sápakra) | D $0 \quad 249^{\circ} 3$ | 8 | $3 \cdot 9$ | $5 \cdot 4$ | 847 | 39 | -046 | - 90.9 | 313.8 |  |  |  |
| $\text { " } \quad 17$ | 340 | XVII (Rangpur) | D 0 2 21'7 | 4 | 3•8 | $5{ }^{\circ} 4$ | 657 | -18 | 8-027 | $+67.7$ | $247{ }^{1} 1$ |  |  |  |
| " 18 | $33^{1}$ | XXII (Virpur) | Do 921.7 | 4 | $3 \cdot 9$ | $5 \cdot 4$ | 657 |  | -27 | $+677$ | 2471 |  |  |  |
| $\text { Dec. } \quad 25$ | 337 | $\mathbf{X X}$ (Dúngarpur) | D O I3 25 ${ }^{\circ}$ | 4 | $3 \cdot 8$ | $5 \cdot 4$ | 628 | $15$ | $5 \cdot 024$ | $-154.4$ |  | $248 \cdot 7$ | 248 | 5 |
| Jan. 18 | 8243 | XXII (Virpur) | E 0 315.7 | 4 | $3 \cdot 7$ | $5 \cdot 4$ | 628 | 15 | $5 \cdot 024$ | -154 4 | 2503 | 2487 | 248 | 5 |
| (9) | 324 3 | XIX (Pangasia) | Doo $033^{\circ} \mathrm{L}$ | 18 | 3.2 | 5.5 | . 756 | -30 | - 040 | +141'5 | 258-1 |  |  |  |
| (10) | 323 | XXII (Virpur) | Do 1315.6 | 24 | $3 \cdot 2$ | 5'5 | . 756 | -30 | - ${ }^{\circ}$ | +1415 | 2581 |  |  |  |

(1) The mean of observations taken on 4th and 9th April, 1854, and 7th, 8th, and 10th November, 1856. (2) The mean of observations taken on 10 th, 11th, 15th, 16th and 17th April, 1854, and 25th, 26 th, and 27 th November, 1856 . (3) The mean of observations taken on 15th, 16 th , and 17th April, 1854, and 25th, 26th and 27th November, 1856. (4) The mean of observationstaken on 20th and 23rd april, 1854, and 1st, 2nd and 5th December, 1856. (5) The mean of observations taken on 27th and 28th April, 1854, and 14th December, 1856. (6) The mean of observations taken on 23rd and 24th April, 1854, and 2nd and 5th December, 1856. (7) The mean of observations taken on 9 th April, 1854, and 8th and 10th November, 1856 . (8) The mean of observations taten on 27 th and 28th April, 1854, and 6th November, and 14th December, 1856 . (9) The mean of observations taken on 27th and 28th April, 1854, and 14th December 1856. (10) The mean of observations taken on 26th April, 1854, and 16th December, 1856. * Not forthcoming. $\quad$ Rojected.

| Astronomical Date |  | Number and Name of Station | Obeerved Vortical Angle |  | Height in feet |  |  | Terrestrial Refraction |  |  | Height in feot of 2nd Station above Mean Sea Level |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1852－53 | Mean of Times of obser－ vation |  |  |  | T | $\begin{aligned} & \text { E! } \\ & \text { ti } \end{aligned}$ |  | 范 |  |  | $\boldsymbol{r}_{\text {Trigonor }}^{\text {Reve }}$ | metrical <br> ults |  |  |
|  |  |  |  |  |  | 宫 |  | \＆ |  |  | $\begin{gathered} \text { By each } \\ \text { deduc- } \\ \text { tion } \end{gathered}$ | Mean | Result |  |
|  | h m |  | －，＂ |  |  |  | ＂ |  |  |  |  |  |  | feet |
| Dec． 25 | 324 | XX（Dángarpur） | D o 1 47．3 | 4 | 3.6 | $5 \cdot 4$ |  |  |  | ＋ $77 \cdot 0$ | 481＇7 |  |  |  |
| Jan． 21 | 310 | XXIII（Chatrikhera） | Do 98.3 | 6 | 3．8 | $5 \cdot 5$ | 711 | 33 | O46 | $+770$ | 481 |  |  |  |
| ＂ 6 | 35 | XXI（Sápakra） | EO I II•o | 6 | 3.7 | $5 \cdot 4$ | 783 | 31 | $\cdot 040$ | $+167 \cdot 6$ | 48I•I | 481 3 | 481 | 8 |
| ＂ 21 | 321 | XXIII（Chatrikhera） | D 01321.4 | 4 | $3 \cdot 7$ | $5 \cdot 5$ | 783 | 3 | －40 | ＋167．6 |  |  |  |  |
| Jan． 20 | 242 | XXIV（Wánkáner） | D○ 11004 | 6 | 3．8 | $5 \cdot 4$ |  | 46 | $\cdot 061$ | $-120^{\circ}$ | 48I•I |  |  |  |
| 21 | 341 | XXIII（Chatrikhera） | D ○ 0 11．7 | 4 | $3 \cdot 8$ | $5 \cdot 5$ | 754 | 46 | －061 | $-120.0$ | 481 |  |  |  |
| Dec． 27 | 255 | XX（Dúngarpur） | E ○ $318 \cdot 1$ | 4 | 3．7 | $5 \cdot 4$ |  | 45 | －060 | ＋196．0 | 600．7 |  |  |  |
| Jan． 20 | 249 | XXIV（Wánkáuer） | D $\bigcirc 1426.9$ | 4 | $3 \cdot 7$ | $5 \cdot 4$ | 750 | 45 | ． 060 | ＋196．0 | 6007 |  |  |  |
| ＂ 18 | 253 | XXII（Virpur） | $\text { E O } 1239^{\circ} 1$ | 4 | 3＇9 | 54 |  |  |  |  | $601 \cdot 4$ | 601．2 | 601 |  |
| \％ 20 | 258 | XXIV（Wánkáner） | $\text { D } \circ 2313.3$ | 4 | $3 \cdot 9$ | $5 \cdot 4$ | 668 | 22 | －033 | ＋ 352.7 | 6014 | $601 \cdot 2$ | 601 | 5 |
| ＂ 21 | 3 41 | XXIII（Chatrikhera） | D o 0 11．7 | 4 | $3 \cdot 8$ | $5 \cdot 5$ |  | 46 | －061 | ＋120＊0 | $601 \cdot 4$ |  |  |  |
| 》 20 | 242 | XXIV（Wánkáner） | DOII 0.4 | ． 6 | $3 \cdot 8$ | $5 \cdot 4$ | 754 | 46 | －061 | ＋120．0 | 6014 |  |  |  |
| ＂$\quad 21$ | 329 | XXIII（Chatrikhera） | $\begin{array}{lllll}\text { E O } 15 & 5.3\end{array}$ | 4 | 3.8 | $5 \cdot 5$ | 672 | 38 | $\cdot 057$ | ＋398．2 | 879.5 |  |  |  |
| \％ 24 | 30 | XXV（Tarkia） | D 025 10．9 | 6 | $3 \cdot 7$ | $5 \cdot 5$ | 672 | 38 | － 5 | ＋398 2 | 8792 | $879^{\circ} 4$ | 877＊66 | 5 |
| \＃ 20 | 37 | XXIV（Wánkáner） | E 048 8．0 | 6 | $3 \cdot 8$ | $5 \cdot 4$ | 886 | 55 | －062 | ＋278．1 | 879.3 |  |  |  |
| ＂ 24 | 251 | XXV（Tarkia） | D○1711．8 | 4 | 3．8 | $5 \cdot 5$ |  | 55 |  | $+2781$ | 8793 |  |  |  |
| ＂ 20 | 320 | XXIV（Wánkáner） | D ○ 8 7．5 | 6 | 3.8 | $5 \cdot 4$ | 639 | 20 | 031 | $-57.2$ | 544.0 |  |  |  |
| ＂ 26 | 37 | XXVI（Kakána） | Do 22.3 | 4 | $3 \cdot 8$ | $5 \cdot 4$ | 639 |  |  |  | 5440 |  |  | ＊ |
| ＂ 24 | 316 | XXV（Tarkia） | D 02026.8 | 6 | 3．9 | $5 \cdot 5$ |  |  |  |  |  |  |  |  |
| ＂26，27 | 316 | XXVI（Kakána） | E $0850 \cdot 1$ | 10 | $3 \cdot 8$ | $5 \cdot 4$ | 774 | 43 | $\cdot 056$ | －333．6 | $545 \cdot 8$ |  |  |  |
| 》 27 | 316 | XXVI（Kakána） | E 0126.8 | 4 | $3 \cdot 8$ | $5 \cdot 4$ |  |  |  |  |  |  |  |  |
| ＂ 31 | 331 | XXVII（Maidhar） | D $02731 \cdot 7$ | 4 | $3 \cdot 8$ | $5 \cdot 4$ | 989 | 36 | －036 | $+576 \cdot 8$ | 1122.5 |  |  |  |
| 》 24 | 37 | XXV（Tarkia） | E 06004 | 4 | $3 \cdot 8$ | $5 \cdot 5$ |  |  |  |  |  | 1117．9 | 11 | 5 |
| ＂ 81 | 35 | XXVII（Maidhar） | D $\bigcirc 1636 \cdot 3$ | 4 | $3 \cdot 8$ | $5 \cdot 4$ | 708 | 41 | －058 | ＋235．6 | $3 \cdot 3$ |  |  |  |
| ＂ 27 | 254 | XXVI（Kakána） | E 0.484 .2 | 6 | 3.8 | $5 \cdot 4$ | 962 | 46 | －048 |  | $867 \cdot 9$ |  |  |  |
| ＂ 29 | 255 | XXVIII（Bháyásar） | D $01841 \cdot 3$ | 4 | $3 \cdot 8$ | $5 \cdot 4$ | 962 | 46 | － 048 | $+322 \cdot 2$ | 8679 | 868. | 868 |  |
| 》 31 | 313 | XXVII（Maidhar） | D 01553.6 | 4 | 3．8 | $5 \cdot 4$ |  | 62 |  |  |  | 868 I | 868 | 5 |
| n 29 | $33^{2}$ | XXVIII（Bháyásar） | D ○ O 27．2 | 4 | $3 \cdot 7$ | $5 \cdot 4$ | 98 | 62 |  |  | $868 \cdot 3$ |  |  |  |
| ＂ 81 | 320 | XXVII（Maidhar） | D $01741 \cdot 3$ | 6 | $3 \cdot 8$ | $5 \cdot 4$ | 884 |  | 044 | $-284^{1} 1$ | $833 \cdot 8$ |  |  |  |
| Feb． 3 | 316 | XXIX（Chitália） | E 0478 | 4 | 3．9 | $5 \cdot 5$ | 884 | 39 |  |  |  |  |  |  |
| Jan． 29 | 320 | XXVIII（Bháyásar） | D ○ 8 35.4 | 6 | 3.8 | $5 \cdot 4$ |  |  |  |  |  | 834 | 34 | 5 |
| Feb． 3 | 37 | XXIX（Chitália） | D 0614.2 | 4 | $3 \cdot 8$ | 5．5 | 978 | 48 | －049 | －33．9 | 834.2 |  |  |  |
| Apr． 25 | 337 | XXVIII（Bháyásar） | D ○ 19 4．1 | 4 | 3.8 | 5．4 |  |  |  |  | $536 \cdot 0$ |  |  |  |
| ＂15，16 | 350 | XXX（Mumaiya） | E 0426.7 | 10 | $3 \cdot 9$ | $5 \cdot 4$ | 960 | 45 | －047 | $-332 \cdot 1$ | 536 | $536 \cdot 2$ | 537 | 4 |
| ＂ 28 | 3 31 | XXIX（Chitália） | $\text { D. ○ } 1733.4$ | 4 | $3 \cdot 6$ | $5 \cdot 4$ | 1161 | 53 | $\cdot 046$ | $-297 \cdot 6$ | $536 \cdot 4$ |  |  |  |
| ＂15，16 | 350 | XXX（Mumaiya） | D ○ O 8．9 | 10 | $3 \cdot 7$ | $5 \cdot 4$ |  | 53 | 046 | －297 6 | 5364 |  |  |  |


| Astronomical Date |  | Number and Name of Station | Observed Vertical Angle |  | Height in feet |  |  | Terrestrial Refraction |  |  | Height in feet of 2nd Station above Mean Ses Level |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1853 | Mean of Times of obser－ vation |  |  |  | ］ | $\begin{aligned} & \text { 若 } \\ & \text { B } \end{aligned}$ |  |  |  |  | Trigonom | metrical ults |  |  |
|  |  |  |  |  | \％ | 宮 |  | $\underset{\sim}{⿷ 匚}$ | ค边 |  | $\begin{gathered} \text { By each } \\ \text { deduc- } \\ \text { tion } \end{gathered}$ | Mean | Result |  |
|  | $h \cdot m$ |  | －， |  |  |  | ＂ |  |  |  |  |  |  | feet |
| Apr． 26 | 252 | XXVIII（Bháyásar） | D 017 II．9 | 4 | $3 \cdot 7$ |  | 1177 | 59 | － 050 | －288．5 | 579．6 |  |  |  |
| 23 | 325 | XXXI（Trákura） | D ○ 0 32．3 | 6 | 3.9 | $5 \cdot 4$ | 1177 | 59 | $\bigcirc$ | $-2885$ | 579 | 3 | 580 | 4 |
| ＂ 16 | 328 | XXX（Mumaiya） | D $0.435^{\circ} 5$ | 4 | 3.6 | $5 \cdot 4$ | 828 | 38 | － 046 | $+42 \cdot 7$ | 578．9 |  |  |  |
| ＂ 23 | 39 | XXXI（Trákura） | D 08850 | 4 | $3 \cdot 7$ | $5 \cdot 4$ |  | 38 | －46 | ＋ 427 | 578 |  |  |  |
| 28 | 252 | XXIX（Chitália） | D 01519.5 | 4 | $3 \cdot 8$ | $5 \cdot 4$ | 1111 | 34 |  | 215．1 | 618．9 |  |  |  |
| Mar． 24 | 327 | XXXIII（Jitori） | D $0210 \cdot 3$ | 4 | $3 \cdot 7$ | $5 \cdot 4$ | III | 34 | －31 | 2151 |  | 619．2 | 620 | 5 |
| Apr． 16 | 314 | XXX（Mumaiya） | D o $535 \cdot 8$ | 4 | $3 \cdot 8$ | $5 \cdot 4$ | 1045 | 24 | $\cdot 023$ | $+83 \cdot 3$ | 619＊5 |  |  |  |
| Mar． 25 | 359 | XXXIII（Jitori） | DOII 8．5 | 6 | ＊0．2 | $5 \cdot 4$ | 1045 | 24 |  | $+833$ |  |  |  |  |
| Apr． 16 | 340 | XXX（Mumaiya） | D o 912.3 | 4 | 3．8 | $5 \cdot 4$ | 1088 | 51 | $\cdot 047$ | － 29.9 | $506 \cdot 3$ |  |  |  |
| ＂ 20 | 318 | XXXII（Deo－ki－Galol） | D $07 \mathbf{7 2 0} 4$ | 6 | $3 \cdot 7$ | $5 \cdot 5$ |  | 5 |  | －29＇9 | 5063 |  |  |  |
| （1） | 348 | XXXI（Trákura） | $\begin{array}{llll}\text { D o II } & 4.7 \\ \text { D }\end{array}$ | 14 | 3.8 3.8 | 5.4 | 1216 | 68 | $\cdot 056$ | －72．7 | $506 \cdot 6$ | ． $508 \cdot 3$ | 509 | 4 |
| （2） | 35 | XXXII（Deo－ki－Galol） | Do 7 I＇I | 10 | $3 \cdot 8$ | $5 \cdot 5$ |  |  |  | 72－7 |  |  | 50 |  |
| Apr． 8 | 420 | XXXIV（Konkáwáo） | D 01115.0 | 6 | to． 2 | $5 \cdot 4$ | 829 | 23 | －028 | －111＊4 | $512 \cdot 0$ |  |  |  |
| ＂ 21 | 320 | XXXII（Deo－ki－Galol） | D 0 I $57{ }^{\circ}$ | 6 | 4．0 | 5．5 | 829 | 23 |  | －1174 | 5120 |  |  |  |
| ＂ 16 | 33 | XXX（Mumaiya） | D o 3 51．8 | 4 |  | 5．4 | 916 | 40 | － 044 | ＋ 85.2 | 621.4 |  |  |  |
| ＂ 5 | 329 | XXXIV（Konkáwáo） | DO1011．1 | 6 | 3.9 | $5 \cdot 4$ | 916 | 40 | －44 | ＋85 2 |  |  |  |  |
| ＂ 21 | 320 | XXXII（Deo－ki－Galol） | D o $157^{\circ} \circ$ | 6 | 4.0 | 5．5 | 829 |  | －028 | ＋1114 | 617．9 | 6215 | 622 | 30 |
| 8 | 420 | XXXIV（Konkáwáo） | D $01115^{\circ} \mathrm{O}$ | 6 | to． 2 | $5 \cdot 4$ | 829 | 23 | － 028 | ＋1114 | 6179 | 6215 | 622 | 3 |
| Mar． 24 | 48 | XXXIII（Jitori） | D $05^{2} 211$ | 4 | $3 \cdot 8$ | $5 \cdot 4$ | 660 | 14 | －021 | ＋6．1 | $625 \cdot 3$ |  |  |  |
| Apr． 5 | 256 | XXXIV（Konkáwáo） | D 0539.8 | 4 | $3 \cdot 7$ | $5 \cdot 4$ |  | 14 |  |  |  |  |  |  |
| ＂ 28 | 314 | XXIX（Chitália） | D ○ 1 9．5 | 4 | $3 \cdot 7$ | 5：4 | 896 | 45 | ． 050 | ＋148．6 | $982 \cdot \frac{\ddagger}{6}$ |  |  |  |
| ＂ 30 | 354 | $\mathbf{X X X V}$（Itria） | D $01225^{\circ} \mathrm{I}$ | 8 | 3•8 | 5.4 |  | 45 | － 0 |  |  |  |  |  |
| Mar． 24 | 331 | XXXIII（Jitori） | D o $026 \cdot 0$ | 4 | $3 \cdot 7$ | 5．4 | 1260 | 34 | －027 | ＋353．7 | 972．9 | 971．6 | 972 | I |
| Apr．$\quad 30$ | 319 | XXXV（Itria） | D $\circ 1930.9$ | 4 | $3 \cdot 8$ | $5 \cdot 4$ |  | 34 | 027 | ＋353 7 | 9729 | 97.6 | 972 |  |
| Dec．12，13 | 250 | XXXVI（Sakpur） | D 0248.4 | 10 | $2 \cdot 3$ | $5 \cdot 4$ | 1458 | 92 |  | $+338 \cdot 6$ | 970＊2 |  |  |  |
| ＂ 10 | 250 | XXXV（Itria） | D 01832.9 | 4 | $3 \cdot 8$ | 5.4 | 1458 | 92 | －63 | ＋338 6 | 970 |  |  |  |
| Mar． 24 | 358 | XXXIII（Jitori） | D 01127.8 | 4 |  | 5．4 | 1499 | 48 |  | $+12.4$ | $631 \cdot 6$ |  |  |  |
| May 6 | 321 | XXXVI（Sakpur） | D 0120.6 | 6 | 3.8 | $5 \cdot 4$ | 1499 | 48 | －32 | $+124$ | 6316 | $633^{\circ} \mathrm{O}$ | 634 | 1 |
| Dec． 10 | 250 | XXXV（Itria） | D o $1832 \cdot 9$ | 4 | $3 \cdot 8$ | 5．4 | 1458 | 92 | －063 | －338．6 | $634 * 3$ |  |  |  |
| ＂12，13 | 250 | XXXVI（Sakpur） | D 0248.4 | 10 | $2 \cdot 3$ | $5 \cdot 4$ | 1458 | 92 | －63 | －338 6 | 6343 |  |  |  |
| Mar． 24 | 427 | XXXIII（Jitori） | D o 4 58．7 | 4 | $3 \cdot 8$ | $5 \cdot 4$ | 1338 | 71 | －054 | ＋198＊ | $817 \cdot 2$ |  |  |  |
| ＂ 28 | 339 | XXXVII（Manáwa） | D 015 1．9 | 4 | $3 \cdot 7$ | $5 \cdot 4$ | 1338 | 71 | 054 | ＋198．0 | 8172 |  |  |  |
| Apr． 5 | 316 | XXXIV（Konkáwáo） | Do 314.6 | 4 | $3 \cdot 8$ | $5 \cdot 4$ | 1167 |  |  | ＋190＊5 | 812.0 | 814．6 | 815 | 5 |
| Mar． 28 | 326 | XXXVII（Manáwa） | D 014 20．3 | 4 | $3 \cdot 8$ | 5.4 | 1167 | 59 | O51 | ＋190 5 | 8120 | 814 |  |  |
| May $\quad 6$ | 31 | XXXVI（Sakpur） | D 0882.4 | 4 | 3.7 | $5 \cdot 4$ |  |  | － 060 | ＋165．2 | 794＊＊ |  |  |  |
| Mar． 30 | 45 | XXXVII（Manáwa） | D $01510 \cdot 0$ | 4 | $3 \cdot 7$ | $5 \cdot 4$ | 1575 | 94 |  | ＋165 2 | 794 |  |  |  |


| Astronomical Date |  | Number and Name of Station | Observed Vertical Angle |  | Height in feet |  |  | TerrestrialRefraction |  |  | Height in feet of 2nd Station above Mean Sea Level |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1853 | $\left\|\begin{array}{c} \text { Mean of } \\ \text { Times } \\ \text { of obser-- } \\ \text { vation } \end{array}\right\|$ |  |  |  | ］ | 莒 |  |  |  |  | $\underset{\text { Resu }}{\substack{\text { Trigonom } \\ \text { Ren }}}$ | metrical ults |  |  |
|  |  |  |  |  | $\infty$ | 蓸 |  | 发 | 会落 |  | $\begin{array}{\|c\|} \text { By each } \\ \text { deduc- } \\ \text { tion } \end{array}$ | Mean | Result |  |
|  | $h \quad m$ |  | － 1 |  |  |  | ＂ |  |  |  |  |  |  | foet |
| Apr． 5 | 359 | XXXIV（Konkáwáo） | E $01842 \cdot 6$ | 6 |  |  | 1640 |  |  |  |  |  |  |  |
| 1 | 317 | XXXVIII（Sarkala） | D $04258^{\text {\％}} 9$ | 6 | $3 \cdot 8$ | $5 \cdot 4$ | 1640 |  |  | ＋1489．0 | $2110 \cdot 5$ |  |  |  |
| Feb． 26 | 325 | XXXVII（Manáwa） | E $03550 \cdot 9$ | 4 | $3 \cdot 8$ | $5 \cdot 4$ |  |  |  |  |  | 21094 | 2110 | 5 |
| Apr．$\quad 1$ | 33 | XXXVIII（Sarkala） | D $05058 \cdot 9$ | 4 | $3 \cdot 8$ | $5 \cdot 4$ | 1012 | 55 |  | $3 \cdot 7$ | 2108 3 |  |  |  |
| Feb． 26 | 343 | XXXVII（Manáwa） | E ○ $18 \quad 977$ | 4 | $3 \cdot 8$ | $5 \cdot 4$ |  |  |  |  |  |  |  |  |
| Mar． 4 | 337 | XXXIX（Nandivela） | D ○ 3535.5 | 4 | $3 \cdot 7$ | $5 \cdot 5$ | 1169 |  |  | ＋ 9249 | 395 |  |  |  |
| Feb． 28 | 343 | XXXVIII（Sarkala） | D 01938.8 | 4 | 3．8 | $5 \cdot 4$ |  |  |  |  |  | 1736.8 |  | 5 |
| Mar． 4 | 343 | XXXIX（Nandivela） | E O $342 \cdot 2$ | 4 | 3．8 | 5．5 | 1092 | 71 |  | － 3754 |  |  |  |  |
| Feb． 28 | 337 | XXXVIII（Sarkala） | D 056 3．7 | 4 | $3 \cdot 8$ | $5 \cdot 4$ |  |  |  |  |  |  |  |  |
| Mar． 8 | $\begin{array}{ll}3 & 7\end{array}$ | XL（Jákia） | E $042{ }^{2} 2 \cdot 6$ | 4 | $3 \cdot 8$ | $5 \cdot 5$ | 871 |  |  | －1269＊4 | $840^{\circ}$ |  |  |  |
| ， 4 | 352 | XXXIX（Nandivela） | D $04342 \cdot 2$ | 6 | $3 \cdot 8$ |  |  |  |  |  |  | $840 \cdot 3$ | 842 | 5 |
| 8 | 314 | XL（Jákia） | E 0320.7 | 4 | 3＇7 | 5＊5 | 804 | 56 |  | －896＊2 | $840 \cdot 6$ |  |  |  |
| ＂ 4 | 341 | XXXIX（Nandivela） | D $12529^{\circ} 7$ | 10 | 3．8 | 5．5 |  |  |  |  |  |  |  |  |
| ＂ 9 | 32 | XLI（Nántej） | E 11598 | 4 | 3•7 | 5．5 | 691 | 40 |  | $-16343$ | $102 \cdot 5$ |  |  |  |
| ＂ 8 | 320 | XL（Jákia） | D $\circ 3649.7$ | 4 | 3•8 | $5 \cdot 5$ |  |  |  |  |  | 104＊7 | 106 | 8 |
| 9 | 39 | XLI（Nántej） | E $02422 \cdot 5$ | 4 | $2 \cdot 3$ | 5．5 | 814 | 39 |  | －733＊4 | $106 \cdot 9$ |  |  |  |
| 8 | 327 | XL（Jákia） | D $03437 \cdot 7$ | 4 | 3．8 | $5 \cdot 5$ |  |  |  |  |  |  |  |  |
| 11 | 314 | XLII（Dangarwári） | E○21 9．5 | 6 | $3 \cdot 8$ | $5 \cdot 5$ | 906 | 53 |  | － 743.9 | $96 \cdot 4$ |  |  |  |
| ＂ 9 | 420 | XLI（Nántej） | D $0646 \cdot 3$ | 4 | $3 \cdot 8$ | $5 \cdot 5$ |  |  |  |  |  | $94 \cdot 8$ | 96 | $\dagger$ |
| 11 | 450 | XLII（Dangarwári） | D o $540 \cdot 3$ | 6 | $3 \cdot 9$ | $5 \cdot 5$ | 715 |  |  |  | 93＇1 |  |  |  |
| Mar． 1855 | 338 | XLII（Dangarwári） | D 01856.2 | 6 | $4 \cdot 7$ | 5•1 |  |  |  | 82.1 |  |  |  |  |
| ＂ 12 | 326 | ＊Diu Level Datum Tower | E $\circ 1553 \cdot 1$ | 8 | $3 \cdot 9$ | $4 \cdot 8$ | 160 | 3 |  |  | 127 | $12 \%$ | 14.28 |  |

＊This is an auciliary Station for the determination of height only，and its data are not published in this volume．$\dagger$ Not forthcoming．

## Description of Spirit-levelled Points.

When determining the Spirit-levelled heights, given on pages 74__ to 77_J. the levelling staff stood on the surfaces hereafter described.

| VIII (Pata-i-Sháh) | On a peg at the foot of the station, height $=278 \cdot 97$ feet. To this value, $5 \cdot 03$ feet (the height of the upper mark-stone above this peg) being added, the height of the upper mark-stone was found to be $284 \cdot 00$ feet. |
| :---: | :---: |
| $\mathbf{X}$ (Khánmír) | On a peg at the side of the station, height $=300 \cdot 84$ feet. To this value, 3.67 feet (the height of the upper mark-stone above this peg) being added, the height of the upper mark-stone was found to be $304 \cdot 51$ feet. |
| XII (Monába) | On a peg close to the pillar, height $=55 \cdot 15$ feet. To this value, 1.57 feet (the height of the upper surface of the pillar above this peg) being added, the height of the upper surface of the pillar was found to be $56 \cdot 72$ feet. |
| XIV (Wándia) | On the upper mark-stone. |
| XVI (Mália) | On a peg at the side of the station, height $=\mathbf{3 8} \cdot 77$ feet. To this value, $\mathbf{1 4} \cdot 80$ feet (the height of the upper mark-stone above this peg) being added, the height of the upper mark-stone was found to be $53 \cdot 57$ feet. |
| XXV (Tarkia) XXVI (Kakána) | On the upper surface of the circular pillar. |

For further particulars of these stations, see pages 4—л. to 7—ј.

The height of Diu Level Datum Tower above mean sea level, viz., 14.28 feet, refers to the upper surface of the slab, on which is engraved the numeral 14, which is flush with the stone pavement of the tower. The height was obtained by direct comparison with the adjoining Tide Gauge, vide pages xI_J. and xII_J.
W. H. COLE, .

In eharge of Computing Office.

## KATTYWAR MERIDIONAL SERIES.

## PRINCIPAL TRIANGULATION. AZIMUTHAL OBSERVATIONS.

## At XX (Dángarpur)

Lat. N. $22^{\circ} 48^{\prime} 13^{\prime \prime} \cdot 54$; Long. E. $71^{\circ} 2^{\prime} 6^{\prime \prime} \cdot 62=\stackrel{h}{4} 444^{m} 8^{*} 4$; Height above Mean Sea Level, 404 feet.
December 1852 ; observed by Lieutenant D. J. Nasmyth, r.e., with Troughton and Simms' 18 -inch Theodolite No. 2.

Star observed
Mean Right Ascension 1852.0
Mean North Polar Distance 1852.0
Local Mean Times of Elongation, December 22
$\delta$ Ursæ Minoris (West and East).
$18^{\mathrm{h}} 20^{\mathrm{m}} 5^{\mathrm{b}}$
$3^{\circ} 24^{\prime} 6^{\prime \prime} \cdot 3^{8}$
$\left\{\begin{array}{llll}\text { Western } & 6^{\text {b }} & 9^{m} \\ \text { Eastern } & 18 & 18\end{array}\right.$

|  |  |  | fack lift |  |  |  | facr bight |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Observed Horizontal Angle : Diff. of Readings Ref. Mark - Star |  | Reduction in Are to Time of Elongation | Reduced Observation Ref. Mark-Star at Elongation | Observed Horizontal Angle: Diff. of Readings Ref. Mark - Star |  | Reduction in Are to Time of Elongation | Reduced Observation <br> Ref. Mark - Star at Elongation |
| Dec. 22 | W. | $\begin{array}{rr} 180 & 1 \\ \& & 1 \\ 0 & 1 \end{array}$ | - 11 | $\boldsymbol{m} 8$ | 11 | - 11 | - 11 | m | , " | - 11 |
|  |  |  | $\begin{array}{r} 34116 \cdot 13 \\ 4120 \cdot 83 \end{array}$ | $\begin{array}{ll} 14 & 28 \\ 11 & 59 \end{array}$ | $\left\lvert\, \begin{array}{r} +026 \cdot 45 \\ 018 \cdot 13 \end{array}\right.$ | $\begin{array}{r}\text { + } \\ +34142.58 \\ \\ \\ 38 \\ \hline\end{array}$ | + 34014.07 | 2548 | 124.14 +12.17 | + $34138 \cdot 21$ |
|  |  |  |  | $1159$ | $\circ 18 \cdot 13$ |  | 4024.10 4143.27 | $\begin{array}{r}23 \\ 24 \\ 248 \\ \hline\end{array}$ | 112.17 | $36 \cdot 27$ $44 \cdot 26$ |
|  |  |  | 4128.27 <br> 41 <br> 125 | 912 11 12 | 0 <br> 0 <br> 0 $15 \cdot 650$ | $38 \cdot 92$ $40 \cdot 97$ | $4141 \cdot 77$ | - 53 | $\bigcirc 0 \cdot 10$ | $4 \mathrm{4} \cdot 87$ |
| ", 22 | E. | $\begin{array}{cc} 180 & 1 \\ \& & \\ 0 & 1 \end{array}$ | $\begin{array}{r} -34011 \cdot 84 \\ 4016 \cdot 87 \end{array}$ | $\begin{array}{ll} 20 & 17 \\ 18 & 27 \end{array}$ | $\begin{array}{r} -051 \cdot 80 \\ 042 \cdot 85 \end{array}$ | $-34063 \cdot 64$ | - 3 39 15.76 | $30 \quad 5$ | - 153.66 | $-34069 \cdot 42$ |
|  |  |  |  |  |  | 59.72 | 3921.90 | 2823 | $1{ }^{1} 41 \cdot 17$ | 63.07 |
|  |  |  | $41 \quad 5 \cdot 83$ |  | - 0.14 |  | 4054.67 | 918 | $\bigcirc 10 \cdot 89$ | $65 \cdot 56$ |
|  |  |  | $\begin{array}{ll}41 & 4.30\end{array}$ | 311 | $\bigcirc 1.28$ | 65.58 | $41 \quad 6.63$ | 7 - | - 6.19 | 72-82 |
| " 23 | W. | $\begin{gathered} 190 \quad 12 \\ \& \\ 10 \quad 12 \end{gathered}$ | $\begin{array}{rr} 341 & 1 \cdot 03 \\ 4 I & 6 \cdot 43 \\ 41 & 35 \cdot 03 \\ 41 & 32 \cdot 40 \end{array}$ | $\begin{array}{rr} 17 & 3 \\ 15 & 24 \\ 1 & 30 \\ 0 & 3 \end{array}$ | $\begin{array}{r} +\quad 36 \cdot 72 \\ 029.94 \\ 00.29 \\ 030.00 \end{array}$ | $\begin{array}{r} \left.+341 \begin{aligned} & 37.75 \\ & 36 \cdot 37 \\ & 35 \cdot 32 \\ & 32.40 \end{aligned} \right\rvert\, \end{array}$ | $\begin{array}{r} +34022 \cdot 33 \\ 4028 \cdot 00 \\ 4 \mathrm{I} 32 \cdot 47 \\ 4 \mathrm{I} 30 \cdot 67 \end{array}$ | $\begin{array}{r} 2442 \\ 2324 \\ 83 \\ 825 \\ 7 \quad 5 \end{array}$ | $\begin{array}{rr} +1 & 17 \cdot 11 \\ 1 & 9 \cdot 19 \\ 0 & 8 \cdot 96 \\ 0 & 6 \cdot 34 \end{array}$ | + $34139^{\circ} 44$ |
|  |  |  |  |  |  |  |  |  |  | +3719 |
|  |  |  |  |  |  |  |  |  |  | $41 \cdot 43$ 37.01 |
|  |  |  |  |  |  |  |  |  |  |  |
| " 23 | E. | $\begin{gathered} 190 \quad 12 \\ \& \\ 10 \quad 12 \end{gathered}$ | - $3 \begin{array}{r}39 \\ 40 \\ 40 \\ 40.94 \\ \\ 40\end{array}$ | $\begin{array}{lr} 22 & 33 \\ 21 & 9 \end{array}$ | - 13.95 | $-34061 \cdot 89$ | $-3390.97$ |  |  | $-34069 \cdot 05$ |
|  |  |  |  |  |  | 69*45 | 3914.27 | 3022 | 155.83 | $70 \cdot 10$ |
|  |  |  | 40 59 <br> 41  <br> 41  | $\begin{array}{r} 21 \\ 3 \\ 3 \end{array} 3^{2}$ | $\begin{array}{lll} 0 & 1.57 \\ 0 & 0.25 \end{array}$ | $\begin{aligned} & 61 \cdot 44 \\ & 65 \cdot 18 \end{aligned}$ | $\begin{aligned} & 40 \quad 42 \cdot 66 \\ & 4054 \cdot 00 \end{aligned}$ | $\begin{array}{rr} 13 & 33 \\ 11 & 3 \end{array}$ | $\begin{array}{lll} 0 & 23 \cdot 10 \\ 0 & 15 \cdot 39 \end{array}$ | $69 \cdot 39$ |
|  |  |  | 414.93 | 125 |  |  |  |  |  |  |
|  |  |  | $41 \quad 6 \cdot 56$ | 12 | - 0.13 | 66.69 |  |  |  |  |

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} \& \multirow[b]{2}{*}{} \& \multirow[t]{2}{*}{} \& \multicolumn{4}{|c|}{pack lbpt} \& \multicolumn{4}{|c|}{pacr bigit} \\
\hline \& \& \& Observed Horizontal Angle : Diff. of Readings Ref. Mark-Star \&  \& Reduction in \(\Delta \mathrm{rc}\) to Time of Elongation \& \begin{tabular}{l}
Reduced Observation \\
Ref. Mark-Star at Klongation
\end{tabular} \& Observed Horizontal Angle: Diff. of Readings Ref. Mark-Star \&  \& Reduction in Arc to Time of Elongation \& Reduced Obserretion Ref. Mark-Star at Elongation \\
\hline \multirow{3}{*}{Dec. 24} \& \multirow{3}{*}{W.} \& \(\bigcirc\), \& - , " \& \(m\) \& 1 " \& - " " \& - 1 \& \(m\) \& 1 " \& - , \\
\hline \& \& \multirow[t]{2}{*}{\[
\begin{gathered}
200 \\
\& \\
20 \\
20 \\
20
\end{gathered}
\]} \& (
+34124.26
4126.76
4137.00 \& \(\begin{array}{rrr}11 \& 18 \\ 9 \& 1 \\ 5 \& 23\end{array}\) \& a
\(+016 \cdot 12\)
010.28
0 \& +341
\(40 \cdot 38\)

47
$40 \cdot 65$ \& +34049.40
4054.13

4140.96 \& [ $\begin{array}{r}20 \\ 18 \\ 18 \\ 24 \\ 2\end{array} 10$ \&  \& $$
\begin{array}{r}
34141 \cdot 93 \\
38 \cdot 47 \\
41 \cdot 56
\end{array}
$$ <br>

\hline \& \& \& $4137 \cdot 00$

4136.33 \& $\begin{array}{ll}5 & 23 \\ 7 & 7\end{array}$ \& | $\circ$ |
| :--- | \& $40 \cdot 65$

$42 \cdot 72$ \& 4140.96
4139 \& 210 \& 0
0 \&  <br>

\hline \multirow[t]{3}{*}{" 24} \& \multirow[t]{3}{*}{E.} \& \multirow[t]{3}{*}{$$
\begin{gathered}
2000^{20} \\
\& \\
2020
\end{gathered}
$$} \& \multirow[t]{3}{*}{\[

$$
\begin{array}{r}
-34042 \cdot 73 \\
4049 \cdot 70 \\
4056 \cdot 03 \\
4055 \cdot 83
\end{array}
$$
\]} \& 1338 \& - 023.43 \& - $34066 \cdot 16$ \& - $33922 \cdot 86$ \& 2821 \& - $140 \cdot 94$ \& - $34063 \cdot 80$ <br>

\hline \& \& \& \& 1150 \& 017.65 \& - 67.35 \& $3932 \cdot 10$
$3933 \cdot 26$ \& 2642 \& $\begin{array}{ll}1 & 29.64 \\ 0 & 0.70 \\ 0\end{array}$ \& 340
62.74
6.96
6.91 <br>
\hline \& \& \& \& 937
9115 \& $\begin{array}{r} \\ \hline \\ \hline\end{array} 11170$ \& $67 \cdot 73$

$71 \cdot 80$ \& $\begin{array}{ll}41 & 1.26 \\ 41 & 2.94\end{array}$ \& $\begin{array}{rr}2 & 22 \\ 1 & 9\end{array}$ \& | 1 |
| :--- |
| 0.70 |
| 0 | \& 61.96

63.11 <br>

\hline \multirow[t]{4}{*}{" 25} \& \multirow[t]{4}{*}{W.} \& \multirow[t]{4}{*}{$$
\begin{gathered}
210 \quad 29 \\
\& \quad 29 \\
30 \quad 29
\end{gathered}
$$} \& \multirow[t]{4}{*}{\[

$$
\begin{array}{r}
3 \\
\hline
\end{array}
$$ $$
\begin{array}{rl}
41 & 18 \cdot 47 \\
41 & 19 \cdot 53 \\
41 & 35 \cdot 03 \\
41 & 27 \cdot 23
\end{array}
$$

\]} \& 1224 \& \multirow[t]{4}{*}{\[

$$
\begin{array}{r}
+\circ \\
\hline \circ \\
\circ \\
\circ \\
\hline
\end{array}
$$ 15.06

\]} \& \multirow[t]{4}{*}{} \& \multirow[t]{4}{*}{\[

$$
\begin{array}{r}
34035.74 \\
404913 \\
4114.33 \\
4139.30
\end{array}
$$

\]} \& \multirow[t]{4}{*}{\[

$$
\begin{array}{rl}
21 & 44 \\
1937 \\
3 & 12 \\
1 & 58
\end{array}
$$

\]} \& \multirow[t]{4}{*}{\[

$$
\begin{array}{rr}
+ \\
+ & 59.68 \\
0 & 48.59 \\
0 & 1.29 \\
0 & 0.49
\end{array}
$$

\]} \& \multirow[t]{4}{*}{\[

$$
\begin{array}{r}
+34135.42 \\
37.72 \\
42.62 \\
39^{\circ} 79
\end{array}
$$
\]} <br>

\hline \& \& \& \& 1055 \& \& \& \& \& \& <br>
\hline \& \& \& \& \& \& \& \& \& \& <br>
\hline \& \& \& \& 646 \& \& \& \& \& \& <br>

\hline \multirow[t]{3}{*}{, 25} \& \multirow[t]{3}{*}{E.} \& \multirow[t]{3}{*}{$$
\begin{gathered}
210 \quad 29 \\
\& \\
3029
\end{gathered}
$$} \& \multirow[t]{2}{*}{$-34026 \cdot 17$

$4032 \cdot 06$} \& \multirow[t]{2}{*}{\[
$$
\begin{aligned}
& 1729 \\
& 1548
\end{aligned}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
-038 \cdot 47 \\
031 \cdot 42
\end{array}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
-340 \begin{array}{r}
64 \cdot 64 \\
63 \cdot 48
\end{array}
\end{array}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
-33930 \cdot 27 \\
3946 \cdot 87
\end{array}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& 2736 \\
& 2543
\end{aligned}
$$

\]} \& \multirow[t]{2}{*}{} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
-34065.95 \\
70.04
\end{array}
$$
\]} <br>

\hline \& \& \& \& \& \& \& \& \& \& <br>
\hline \& \& \& $40 \mathbf{5 2 \cdot 4 6}$

4049.63 \& $$
\begin{array}{ll}
11 & 51 \\
13 & 23
\end{array}
$$ \& 017.73

0
0 \& $70 \cdot 19$

72.26 \& $$
\begin{array}{ll}
41 & 6 \cdot 07 \\
41 & 1.23
\end{array}
$$ \& \[

$$
\begin{aligned}
& 246 \\
& 442
\end{aligned}
$$

\] \& \[

$$
\begin{array}{ll}
\circ & 0.97 \\
0 & 2.78
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 67.04 \\
& 64 \cdot 11
\end{aligned}
$$
\] <br>

\hline " 26 \& \multirow[t]{4}{*}{W.} \& \multirow[t]{4}{*}{$$
\begin{array}{r}
220 \quad 38 \\
\& \\
40 \quad 38
\end{array}
$$} \& \multirow[t]{2}{*}{+

+3425.43
4128.47} \& \multirow[t]{2}{*}{$\begin{array}{rr}10 & 48 \\ 9 & 14\end{array}$} \& \multirow[t]{4}{*}{+014.75

010.78} \& \multirow[t]{4}{*}{} \& \multirow[t]{4}{*}{$$
\begin{array}{r}
34047 \cdot 14 \\
4058.56 \\
4139 \cdot 07 \\
4137.70
\end{array}
$$} \& \multirow[t]{4}{*}{\[

$$
\begin{array}{rr}
20 & 18 \\
17 & 54 \\
3 & 0 \\
1 & 34
\end{array}
$$

\]} \& \multirow[t]{4}{*}{\[

$$
\begin{array}{rrr}
0 & 52 \cdot 08 \\
0 & 40.45 \\
0 & 1.14 \\
0 & 0.31
\end{array}
$$

\]} \& \multirow[t]{4}{*}{\[

$$
\begin{array}{r}
34139.22 \\
39^{\circ} 01 \\
40.21 \\
38.01
\end{array}
$$
\]} <br>

\hline \& \& \& \& \& \& \& \& \& \& <br>
\hline \& \& \& $4130 \cdot 80$ \& 926 \& \& \& \& \& \& <br>
\hline \& \& \& 4125.94 \& 11 II \& \& \& \& \& \& <br>

\hline " 26 \& \multirow[t]{2}{*}{E.} \& \multirow[t]{2}{*}{$$
\begin{array}{r}
22038 \\
\& \\
40 \quad 38
\end{array}
$$} \& -34057.44

4059.46 \& | 9 | 45 |
| ---: | ---: |
| 8 | 17 |
| 2 | 17 | \&  \& \[

$$
\begin{array}{r}
-340 \begin{array}{r}
69 \cdot 43 \\
68 \cdot 11
\end{array}
\end{array}
$$

\] \& \[

$$
\begin{array}{|r}
-339 \\
\\
\\
40
\end{array}
$$ \quad 9.60

\] \& \[

$$
\begin{array}{ll}
23 & 56 \\
21 & 29
\end{array}
$$

\] \& \[

- $$
\begin{array}{rl}
1 & 12 \cdot 07 \\
0 & 58.06
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
\left.-30 \begin{array}{r}
68 \cdot 97 \\
67 \cdot 66
\end{array}\right)
\end{array}
$$
\] <br>

\hline \& \& \& $\begin{array}{ll}41 & 8.30 \\ 41 & 5.97\end{array}$ \& $\begin{array}{lll}2 & 17 \\ 4 & 0\end{array}$ \& | $\circ$ |
| :--- | 0.66 \& $68 \cdot 96$

$67 \cdot 99$ \& $4051 \cdot 27$

$4045 \cdot 73$ \& \[
$$
\begin{array}{rr}
10 & 59 \\
13 & 5
\end{array}
$$

\] \& \[

$$
\begin{array}{ll}
0 & 15 \cdot 25 \\
0 & 21.60
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 66 \cdot 52 \\
& 67 \cdot 33
\end{aligned}
$$
\] <br>

\hline \& \multirow[t]{2}{*}{W.} \& \multirow[t]{2}{*}{$$
\begin{gathered}
23050 \\
\& \\
50 \quad 50
\end{gathered}
$$} \& $+34148 \cdot 00$

$4140 \cdot 63$ \& $\begin{array}{ll}3 & 36 \\ 2 & 33\end{array}$ \& +
+
0

0 1.63 \& + 3 41 49.63 \& $$
\begin{array}{r}
34128 \cdot 27 \\
413 \mathrm{I} \cdot 80
\end{array}
$$ \& \[

$$
\begin{array}{r}
1032 \\
924
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
+014 \cdot 01 \\
011.15
\end{array}
$$
\] \& $\begin{array}{r}\text { P } \\ +312 \\ \hline\end{array}$ <br>

\hline \& \& \& 4129.54

4123.93 \& $\begin{array}{rr}945 \\ 11 & 4\end{array}$ \& | 011199 |
| :--- |
| -15.41 | \& $41 \cdot 53$

$39 \cdot 34$ \& $4144^{\circ} 20$
41

40 \& $$
\begin{array}{lr}
2 & 2 \\
3 & 20
\end{array}
$$ \& \[

$$
\begin{array}{ll}
0 & 0.52 \\
0 & 1.40
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 44 \cdot 72 \\
& 41^{\prime} 88_{1}
\end{aligned}
$$
\] <br>

\hline " 27 \& \multirow[t]{5}{*}{E.} \& \multirow[t]{5}{*}{$$
\begin{array}{r}
230 \quad 50 \\
\& 50 \\
50 \quad 50
\end{array}
$$} \& \multirow[t]{5}{*}{\[

$$
\begin{array}{r}
-34051 \cdot 17 \\
4055 \cdot 57 \\
41 \quad 9.36 \\
41 \quad 6 \cdot 93
\end{array}
$$

\]} \& \multirow[t]{5}{*}{\[

$$
\begin{array}{rr}
12 & 32 \\
11 & 8 \\
1 & 12 \\
0 & 11
\end{array}
$$

\]} \& \multirow[t]{5}{*}{\[

\left\lvert\, $$
\begin{array}{rrr}
-0 & 19.79 \\
0 & 15.60 \\
0 & 0.18 \\
0 & 0.00
\end{array}
$$\right.

\]} \& \multirow[t]{5}{*}{\[

$$
\begin{array}{r}
-34070 \cdot 96 \\
71 \cdot 17 \\
69 \cdot 54 \\
66 \cdot 93
\end{array}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
-3406 \cdot 17 \\
4024 \cdot 87
\end{array}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{ll}
21 & 39 \\
1933
\end{array}
$$

\]} \& \multirow[t]{2}{*}{\[

$$
\begin{array}{r}
-\quad 058 \cdot 99 \\
048 \cdot 09
\end{array}
$$
\]} \& - $34065 \cdot 16$ <br>

\hline \& \& \& \& \& \& \& \& \& \& 72.96 <br>
\hline \& \& \& \& \& \& \& $4053 \cdot 27$ \& 931 \& $0.11 \cdot 43$ \& 64.70 <br>
\hline \& \& \& \& \& \& \& $4044 \cdot 13$ \& $\begin{array}{ll}11 & 17 \\ 19 & 34\end{array}$ \& - $16 \cdot 08$ \& 60.21
63.94 <br>

\hline \& \& \& \& \& \& \& $$
\begin{array}{ll}
40 \quad 15.53 \\
40 \quad 16 \cdot 24
\end{array}
$$ \& \[

$$
\begin{array}{ll}
19 & 34 \\
20 & 14
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 048 \cdot 41 \\
& 0 \quad 51 \cdot 78
\end{aligned}
$$
\] \& 63.94

68.02 <br>
\hline
\end{tabular}

Abstract of Astronomical Azimuth observed at XX (Dúngarpur) 1852.

1. By Eastern Elongation of $\delta$ Ursæ Minoris.

| Face <br> Zero |  | $\begin{gathered} \mathbf{L} \\ 180^{\circ} \end{gathered}$ | $\begin{aligned} & \mathbf{R} \\ & 0^{\circ} \end{aligned}$ | $\begin{gathered} \mathrm{L} \\ 190^{\circ} \end{gathered}$ | $\begin{aligned} & \mathbf{R} \\ & 10^{\circ} \end{aligned}$ | $\begin{gathered} \mathbf{L} \\ 200^{\circ} \end{gathered}$ | $\begin{gathered} \mathbf{R} \\ 20^{\circ} \end{gathered}$ | $\begin{gathered} \mathbf{L} \\ 210^{\circ} \end{gathered}$ | $\begin{gathered} \mathbf{R} \\ 30^{\circ} \end{gathered}$ | $\begin{gathered} \mathrm{L} \\ 221^{\circ} \end{gathered}$ | $\mathbf{R}$ $41^{\circ}$ | $\begin{gathered} \mathbf{L} \\ 231^{\circ} \end{gathered}$ | $\begin{gathered} \mathbf{R} \\ 51^{\circ} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Date |  | December 22 |  | December 23 |  | December 24 |  | December 25 |  | December 26 |  | December 27 |  |
|  |  | $\begin{array}{cc} \prime \prime \prime \\ 63 \cdot 64 & 69 \cdot 42 \end{array}$ |  | $\begin{array}{cc}\prime \prime \\ 61.89 & \text { 69.05 }\end{array}$ |  | " |  | " |  | " | " | " | 11 |
| Observed difference |  |  |  | 66.16 | . $63 \cdot 80$ | $64 \cdot 64$ | 65.95 | $69 \cdot 43$ | 68.97 | 70•96 | $65 \cdot 16$ |
| of Circle-Readings, |  | $\begin{aligned} & 59.72 \\ & 65 \cdot 97 \end{aligned}$ | 63.0765.56 |  |  | $61 \cdot 89$ 69.45 | $70 \cdot 10$ $65 \cdot 76$ <br> $69 \cdot 39$ | $\begin{aligned} & 67 \cdot 35 \\ & 67.73 \end{aligned}$ | $\begin{aligned} & 62 \cdot 74 \\ & 61 \cdot 96 \end{aligned}$$63 \cdot 11$ | $\begin{aligned} & 63 \cdot 48 \\ & 70 \cdot 19 \\ & 72 \cdot 26 \end{aligned}$ | $\begin{aligned} & 70^{\circ} 04 \\ & 67 \cdot 0 \\ & 64 \cdot 11 \end{aligned}$ | $\begin{aligned} & 68 \cdot 43 \\ & 68 \cdot 1 \mathrm{I} \\ & 68 \cdot 96 \\ & 67 \cdot 99 \end{aligned}$ | $\begin{aligned} & 67 \cdot 66 \\ & 66 \cdot 52 \\ & 67 \cdot 33 \end{aligned}$ | 71-17 | $72 \cdot 96$ |
| Ref. M.-Star |  |  |  | $\begin{aligned} & 6 \mathrm{r} \cdot 44 \\ & 65 \cdot 18 \\ & 6{ }^{2} \cdot 1 \end{aligned}$ | 69.54 | 64.70 |  |  |  |  |  |  |  |
| reduced to Elongation |  | $65 \cdot 58$ | $72 \cdot 82$ |  | 66•93 | $60 \cdot 21$ |  |  |  |  |  |  |  |
|  |  |  |  | $66 \cdot 69$ |  |  |  |  | $\begin{aligned} & 63.94 \\ & 68.02 \end{aligned}$ |  |  |  |  |
| Means |  | $63.73 \quad 67 \cdot 72$ |  | 64.93 | 68.58 | $68 \cdot 26$ | 62•90 | $67 \cdot 64$ | 66.79 | $68 \cdot 62 \quad 67 \cdot 62$ |  | $69.65 \quad 65.83$ |  |
|  | $\bigcirc$ | 1 |  |  | " |  |  |  |  |  |  |  |  |
| Means of both faces | - 3 | 4065 |  |  |  | 65 |  | 67 |  |  |  |  |  |
| Az. of Star fr. S., by W. | 183 | 4123 |  |  |  | 23 |  | 24 |  |  |  |  |  |
| Az. of Ref. M. ${ }^{\text {m }}$ | 180 | -17 |  | 16 |  | 18 |  | 17 |  |  |  |  |  |

2. By Western Elongation of $\delta$ Ursæ Minoris.

| $\begin{aligned} & \text { Face } \\ & \text { Zero } \end{aligned}$ |  | $\begin{gathered} \mathbf{L} \\ 180^{\circ} \end{gathered}$ | $\begin{gathered} \mathbf{R} \\ \mathbf{0}^{\circ} \end{gathered}$ | $\begin{gathered} \mathbf{L} \\ 190^{\circ} \end{gathered}$ | $\begin{gathered} \mathbf{R} \\ 10^{\circ} . \end{gathered}$ | $\begin{gathered} \mathrm{L} \\ 200^{\circ} \end{gathered}$ | $\begin{aligned} & \mathbf{R} \\ & 20^{\circ} \end{aligned}$ | $\begin{gathered} \mathbf{L} \\ 210^{\circ} \end{gathered}$ | $\begin{gathered} \mathbf{R} \\ 30^{\circ} \end{gathered}$ | $\begin{gathered} \mathbf{L} \\ 221^{\circ} \end{gathered}$ | $\begin{gathered} \mathbf{R} \\ 41^{\circ} \end{gathered}$ | $\begin{gathered} \mathrm{L} \\ 231^{\circ} \end{gathered}$ | $\begin{gathered} \mathbf{R} \\ 51^{\circ} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Date |  | December 22 |  | December 23 |  | December 24 |  | December 25 |  | December 26 |  | December 27 |  |
|  |  | " | " | " | " | " | " | " | " | " | " | " | " |
| Observed difference |  | 42.58 | 38.21 | 37.75 | $39 \cdot 44$ | 40.38 | 41.93 | 37.91 | 35.42 | 40.18 | 39.22 | $49^{\circ} 63$ | 42.28 |
| of Circle-Readings, |  | 38.96 | $36 \cdot 27$ | 36. 37 | 37-19 | 37.04 | 38.47 | 34:59 | 37.72 | 39.25 | $39^{\circ} \mathrm{O}$ | 41.45 | 42.95 |
| Ref. M. - Star |  | 38.92 | 44.26 | $35 \cdot 32$ | 41.43 | $40 \cdot 65$ | 41.56 | 38.25 | $42 \cdot 62$ | 42.01 | $40^{2} 21$ | 41.53 | $44^{\cdot 72}$ |
| Reduced to Elongation |  | $40 \cdot 97$ | $4{ }^{1} \cdot 87$ | 32.40 | 37 -01 | $42 \cdot 72$ | $39 \cdot 41$ | 32.99 | 39•79 | 41'70 | 38.01 | 39.34 | 4184 |
| Means |  | $40 \cdot 36 \quad 40 \cdot 15$ |  | $35 \cdot 46$ | $38 \cdot 77$ | 40.20 | 40•34 | $35 \cdot 94$ | $38 \cdot 89$ | $40 \cdot 79$ | $39 \cdot 11$ | 42.99 | 42.95 |
|  | - | , " |  | " |  | " |  | " |  | " |  | " |  |
| Means of both faces | + ${ }^{3}$ | 4140 | 10.26 | $\begin{aligned} & 37 \cdot 11 \\ & 36 \cdot 57 \\ & 13.68 \end{aligned}$ |  | $\begin{aligned} & 40 \cdot 27 \\ & 36 \cdot 24 \\ & 16 \cdot{ }_{51} \end{aligned}$ |  | $\begin{aligned} & 37 \cdot 4 \mathbf{I I} \\ & 35 \cdot 8 \mathbf{I} \\ & 13 \cdot 22 \end{aligned}$ |  | 39.9535.383 |  | $\begin{aligned} & 42.97 \\ & 35^{\circ} \cdot 05 \end{aligned}$ |  |
| Az. of Star fr. S., by W. | 176 |  |  |  |  |  |  |  |  |  |  |  |  |
| Az. of Ref. M: \# | 180 | - 17 | $7 \cdot 26$ |  |  | $15 \cdot 33$ | 38.02 |  |  |  |  |  |


| (by Eastern Elongation | ... |  | 180 - | 17.30 |
| :---: | :---: | :---: | :---: | :---: |
| Astronomical Azimuth of Referring Mark ... $\{$ by Western " | ... |  | " | 15.67 |
| ( Mean | ... |  | " | 16.49 |
| Angle Referring Mark and XVIII (Chalarwa), see page 29-J. ante | ... | 7 | 1956 | 21.95 |
| Astronomical Azimuth of Chalarwa by observation | ... |  | 19956 | $38 \cdot 44$ |
| Geodetical Azimuth of ", by calculation from that adopted (Vol. II, page 141) at Kaliánpur, see page 71__ ante | ... |  | 19956 | 36.15 |
| Astronomical-Geodetical Azimuth at XX (Dúngarpur) | ... | + |  | $2 \cdot 29$ |

## At XXXIV (Konkáwáo)

Lat. N. $21^{\circ} 39^{\prime} 11^{\prime \prime} \cdot 96$; Long. E. $70^{\circ} 58^{\prime} 36^{\prime \prime} \cdot 07=44354 \cdot 4$; Height above Mean Sea Level, 622 feet. October 1853 ; observed by Lieutenant D. J. Nasmyth, r.E., with Troughton and Simms' 18 -inch Theodolite No. 2.

Star observed
Mean Right Ascension 1853.0
Mean North Polar Distance 1853.0
Local Mean Times of Elongation, October 7
$a$ Ursæ Minoris (West and East).
$1^{\mathrm{h}} \quad 5^{\mathrm{m}} 54^{\mathrm{g}}$
$1^{\circ} 28^{\prime} 26^{\prime \prime} \cdot 93$
$\left\{\begin{array}{llll}\text { Eastern } & 6^{\mathrm{b}} & 5^{\mathrm{m}} \\ \text { Western } & 17 & 58\end{array}\right.$




## Abstract of Astronomical Azimuth observed at XXXIV (Konkáwáo) 1853.

1. By Eastern Elongation of a Ursæ Minoris.

| Face <br> Zero |  | L 180 | R <br> $0^{\circ}$ | $\begin{gathered} \text { L } \\ 190^{\circ} \end{gathered}$ | R <br> $10^{\circ}$ | $\begin{gathered} \quad \mathbf{L} \\ 200^{\circ} \end{gathered}$ | $\begin{gathered} \mathbf{R} \\ 20^{\circ} \end{gathered}$ | $\begin{gathered} \mathrm{L} \\ 211^{\circ} \end{gathered}$ | $\begin{gathered} \mathbf{R} \\ 81^{\circ} \end{gathered}$ | $\begin{gathered} \mathbf{L} \\ 221^{\circ} \end{gathered}$ | $\begin{gathered} \mathbf{R} \\ 41^{\circ} \end{gathered}$ | $\begin{gathered} \mathbf{L} \\ 281^{\circ} \end{gathered}$ | $\begin{gathered} \mathbf{F} \\ 51^{\circ} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Date | October 14 |  |  | October 9 |  | October 10 |  | October 11 |  | October 12 |  | October 18 |  |
|  | " |  |  | " | " | " | " | * | " | " |  |  |  |
|  | *29.32 * 30.93 |  |  | 35*94 | 31•13 | 27.61 | 30.84 | 33.50 | 29'17 | 30.31 | 30•70 | $30 \cdot 11$ | 25.24 |
|  | ${ }^{27}$ \% $30 \quad 34.49$ |  |  | 31.86 | $32 \cdot 69$ | $33 \cdot 47$ | $29^{\circ} 59$ | 34-37 | 31•77 | 30.35 | 29.48 | 28.86 | $27 \cdot 53$ |
|  |  |  |  | $34^{\circ} 26$ | 29.19 | 31-76 | 29.85 | 32.58 | $30 \cdot 42$ | 31.29 | 29*78 | $30^{\prime} 78$ | $26 \cdot 29$ |
|  |  |  |  | $30 \cdot 98$ | $25 \cdot 34$ | $33 \cdot 05$ | 30.09 | $32 \cdot 04$ | $30 \cdot 60$ | 33.09 | 28-20 | 31-75 | 27.62 |
|  | + 25.86+29 |  | ${ }^{2} 20 \cdot 13$ | $32 \cdot 90$ | 27-18 | $28 \cdot 72$ | 26:76 | $30 \cdot 50$. | 31.09 | $32 \cdot 07$ | 29.07 | 30.87 | $28 \cdot 33$ |
| Observed difference |  |  | ${ }^{22}$ 228 | $3 \mathrm{I} \cdot 53$ | 28-26 | 34-38 | 30.72 | $30 \cdot 64$ | 28.00 | $32 \cdot 60$ | 25.94 | $25 \cdot 96$ | $30 \cdot 87$ |
| of Circle-Readings, | $* 29.81$27.48 |  | ${ }^{24} 2.28$ | $31 \cdot 41$ |  | 32-53 |  |  | 30•84 | 30'76 | 25.90 | 26.01 |  |
| Ref. M.-Star | 27.4829.61 |  | 29.24 |  |  |  |  |  |  | $34 \cdot 20$ |  | 29*56 |  |
| reduced to Elongation | 31-34 |  | 28.40 |  |  |  |  |  |  |  |  |  |  |
|  | 30.82 |  | 26.71 |  |  |  |  |  |  |  |  |  |  |
|  | $\begin{aligned} & 29.71 \\ & 26.60 \end{aligned}$ |  | $26 \cdot 58$ |  |  |  |  |  |  |  |  |  |  |
|  | $30^{\circ} 54$ |  | $\begin{aligned} & 27.58 \\ & 26 \cdot 03 \end{aligned}$ |  |  |  |  |  |  |  |  |  |  |
| Means | 28•77 |  | 25*99 | 32•70 | $28 \cdot 97$ | 31.65 | 29.64 | 32.27 | 30*27 | 31-83 | $28 \cdot 44$ | 29.24 | 27.65 |
|  | - | 1 | $\prime \prime$ | " |  | $\prime$ |  | $\prime \prime$ |  | $\prime \prime$ |  | " |  |
| Means of both faces |  | $35 \quad 2$ | $27 \cdot 38$ | $\begin{aligned} & 30 \cdot 83 \\ & 59 \cdot 48 \end{aligned}$ |  | $\begin{aligned} & 30 \cdot 65 \\ & 59 \cdot 16 \end{aligned}$ |  | $3 \mathrm{r} \cdot 27$ |  | 30.14 |  | 28.45 |  |
| Az. of Star fr. S., by W. | 181179 | 34 <br> 59 | $\begin{aligned} & 57.44 \\ & 30.06 \end{aligned}$ |  |  | $\begin{aligned} & 58 \cdot 73 \\ & 27 \cdot 46 \end{aligned}$ |  | $\begin{aligned} & 58 \cdot 30 \\ & 28 \cdot 16 \end{aligned}$ |  | $57 \cdot 87$ |  |
| Az. of Ref. M. " |  |  |  | $\begin{aligned} & 38.65 \end{aligned}$ |  |  |  | $\begin{aligned} & 59 \cdot 16 \\ & 28 \cdot{ }_{51} \end{aligned}$ | 29 | 42 |

2. By Western Elongation of $\alpha$ Ursæ Minoris.

| Face <br> Zero |  | $\begin{gathered} \mathrm{L} \\ 180^{\circ} \end{gathered}$ | $\begin{aligned} & \mathbf{R} \\ & \mathbf{0}^{\circ} \end{aligned}$ | $\begin{gathered} \mathbf{L} \\ 190^{\circ} \end{gathered}$ | R $10^{\circ}$ | L $200^{\circ}$ | $\begin{gathered} \mathbf{R} \\ 20^{\circ} \end{gathered}$ | L $2100^{\circ}$ | $\begin{gathered} \mathbf{R} \\ \mathbf{3 0} \end{gathered}$ | L ${ }_{\text {221 }}{ }^{\circ}$ | $\begin{gathered} \mathbf{R} \\ \mathbf{4 1}^{\circ} \end{gathered}$ | $\begin{gathered} L \\ 231^{c} \end{gathered}$ | $\begin{gathered} \mathbf{R} \\ 51^{\circ} \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Date <br> Observed difference of Circle-Readings, Kef. M. - Star reduced to Elongation |  | October 14 |  | October 9 |  | October 10 |  | October 15 |  | October 16 |  | October 18 |  |
|  |  | " | " | " | " | " | " | " | 1 | " | " | " | " |
|  |  | *18.36 | *23.35 | 31-25 | 27-13 | 29.82 | 26-30 | $28 \cdot 47$ | 27-33 | 17.18 | $30 \cdot 05$ | 36.02 | 31-36 |
|  |  | *22.60 | ${ }^{27}{ }^{2}{ }^{2}$ | 27.93 | 37-17 | $33 \cdot 36$ | 29.54 | $25^{15}$ | $26 \cdot 15$ | 22.49 | 26.94 | 30•54 | $32 \cdot 85$ |
|  |  | 21.18 | ${ }^{2} 27 \cdot 92$ | $26 \cdot 20$ | 31-14 | 28.84 | 29:80 | $28 \cdot 10$ | $32 \cdot 0$ | 20.89 | $27 \cdot 87$ | 23.19 | 31.58 |
|  |  | 18.76 | 31-62 | 25.89 | $30 \cdot 48$ | $27 \cdot 86$ | 31.66 | 19.45 | 29.34 | 19.23 | $26 \cdot 31$ | $23 \cdot 05$ | $30 \cdot 84$ |
|  |  | 15.63 | 29.35 | 26.90 | $26 \cdot 64$ | 25.58 | 31.70 | 19.27 | $25 \cdot 32$ | 18.64 | $26 \cdot 07$ | 21.45 | 28.74 |
|  |  | 16.24 | 27.52 | $25 * 49$ | 29.92 | $26 \cdot 48$ | 30.32 | 23.37 | $27 \cdot 67$ | 19.74 | $26 \cdot 43$ | $24.24 \quad 30 \cdot 28$ |  |
|  |  | 18.23 | 29.69 |  | 29.64 | $26 \cdot 26$ | 35*75 | 21.12 | 26•14 | $21 \cdot 84$ |  |  |  |
|  |  | 18.66 | 29.74 | 32.11 |  |  |  | 21.75 |  |  |  |  |  |
|  | 19.51 |  | 27.50 |  |  |  |  |  |  |  |  |  |  |
| Means |  | 18.80 | $28 \cdot 22$ | 27-28 | 30•53 | 28•31 | 30.72 | $23 \cdot 34$ | 27 71 | 20.00 | 27-28 | $26 \cdot 42$ | 30.94 |
|  | $\bigcirc$ | - 1 | " | " |  | $\prime$ |  | " |  | " |  | " |  |
|  |  |  |  | 28.91 |  | 29.52 |  | 25.52 |  | $23 \cdot 64$ |  | 28.68 |  |
| Az. of Star fr. S., by W. | 178 | 25 | 26.78 26.29 | $0 \cdot 73$ |  | 1.0530.57 |  | $\begin{array}{r} 3 \cdot 21 \\ 28 \cdot 73 \end{array}$ |  | 3.6427.28 |  | $\begin{array}{r} 2 \cdot 34 \\ 31 \cdot 02 \end{array}$ |  |
| Az. of Ref. M. " | 179 | 592 | $26 \cdot 29$ |  | . 64 |  |  |  |  |  |  |  |  |

Nors.-Where observations occurred on the same pair of zeros on different nights they are reduced in this abstract to one date-the most convenient-by allowing for star's change of place. The date so adopted appears at the head of the column, and the reduced observation is preceded by an asterisk.

Abstract of Astronomical Azimuth observed at XXXIV (Konkáwáo) 1853-(Continued).

W. H. COLE,

In charge of Computing Office.


Fig. Na. 21

Fig. Na. 20



Slak 1 Grack $=12$ aprike $\propto \frac{1}{760320}$

PRINOGIPAI TRIANGUIAATION-KAINYWAF MMHRIDIONAT BHMRIBG.


Goak 1 Grach $=12$ cpithe o $\frac{1}{760380}$


## guzerat longitudinal series.

## gUZERAT LONGITUDINAL SERIES.

## guZerat Longitudinal series.

## GUZERAT LONGITUDINAL SERIES.

## INTRODUCTION.

The Guzerat (Gujarát) Longitudinal Series of the South-West Quadrilateral is the chain of Principal Triangles that follows the parallel of $23^{\circ}$ from the meridian of $75^{\circ}$ to that of $71^{\circ}$. It starts in the Vindhyáchal Mountain Range, some thirty miles west of Indore (Indor) and Mhow (Mau), traverses the plains of Gujarát by way of Ahmedabad (Amdávad), and ends in the Káthiáwár (Káthiávad) peninsula near the southern edge of the Ran of Outch (Kachh). It emanates from Karsod-Indráwan, a side of the Khánpisura Meridional Series, and it closes 260 miles to the westward on the side Chalarwa-Sápakra of the Kattywar (Káthiávad) Meridional Series. In longitude $73^{\circ} 50^{\prime}$ it is cut at right angles by the Singi Meridional Series, and in longitude $72^{\circ} 50^{\prime}$ it is met from the north, but not crossed, by the Abu Meridional Series, the side of junction being Sanoda-Mirzápur.

At the junction of the Guzerat Longitudinal and the Singi Meridional Series is situated the Kagarol compound figure : this figure has been allotted to the latter series, and the stations have been numbered accordingly; but in order to avoid a hiatus, the figure and all details connected with it are included in this Series. A pentagon round the station of Wastrál has been constructed where the Abu Meridional Series meets the Guzerat: it has been apportioned to the latter. A pentagon, with one central angle wanting, exists on the Guzerat Longitudinal Series in longitude $74^{\circ} 40^{\circ}$ round the station of Mehwása: its existence was unintentional and was due to an unsuccessful attempt to make Indráwan-Gumánpur the side of junction of the Khánpisura and Guzerat Series. With the exception of the Kágarol compound figure and the Wastríl and Mehwása pentagons, the Series under review consists of single triangles throughout, thirty-one in number.

The Guzerat Longitudinal Series was designed in 1850, in conjunction with the Abn Meridional Series, for the purpose of affording a trigonometrical basis for the topographical surveys of Gujarát and the Káthiáwár peninsula, countries not then incorporated in the Indian Atlas.

During the sammer of 1850 the Bombay Triangulation Party, then located at Neemuch (Nimach) under Lieutenant Harry Rivers of the Bombay Engineers, reeeived orders to discontinue their work on the Gurhágarh Meridional Series, and were direeted instead to carry a series down the meridian of Mount Abu and on reaching Ahmedabed to change its

IV-
GUZERAT LONGITUDINAL SERIES.
direction and follow the parallel of $23^{\circ}$ both to the east and west. Captain A. Strange had by this time carried the principal work of the Karáchi Longitudinal Series from Sironj to within a few miles of Mount Abu and the approximate work some 40 miles to the westward beyond, and Lieutenant Rivers had to select a base from the latter.

During the Field Season of $1850-51$ the approximate work of the Abu Meridional Series was completed as far south as the stations of Lakwára, Rakhiál and Amalyára, and several of the final angles had been observed, but nothing was done on the Guzerat Longitudinal Series. South of the side Kárdo-Kaináth of the Abu Series, the country had proved very difficult and unsuitable for triangulation : it was absolutely flat and covered with trees, and towers had to be built at all the stations : many delays were encountered in clearing the rays and every line required a distinct ray-trace survey. If Rivers could have seen this country before commencing work he would have recommended the adoption of a chain of single triangles for the Abu Series instead of polygons, but now that he was on the ground it was too late to get his instructions changed. He asked leave, however, to make the Guzerat Longitudinal into a single series, and to this the Surveyor General assented : as high towers were required at all the stations and great numbers of valuable fruit trees had to be cut down on every ray, a double series would undoubtedly have entailed enormous additional expenditure.

The Bombay Party passed the summer of 1851 at Ahmedabad. Towards the end of

Season 1851-52.

## Persominel.

Lieutenant H. Rivers, Bombay Fingineers, 1st Assistant.
Lieutenant D. J. Naemyth, Bombay Engineers, 2nd Assistant.
Mr. T. Sanger, Senior Sub-Assistanto
" J. DaCosta, 8ub-Assistant.
", J. W. Rossenrode, $\begin{aligned} & \text { Ditto. } \\ & \text { Ditto. }\end{aligned}$ the rainy season the native portion suffered so much from fever, that they were not in a fit state to take the field before November. During October, however, Rivers himb self succeeded in selecting a few stations of the Guzerat Longitudinal Series in the vicinity of Ahmedabad. In November he regularly took up its approximate work, working westwards from the meridian of $72 \frac{1}{2}^{\circ}$ along the parallel of $23^{\circ}$. Messrs. Sanger and DaCosta were left behind on the Abu Series clearing the rays. They were the only two assistants with the party available for work, Mr. McGill having only lately joined the survey; but as the nature of the country was such that every line required a ray-trace survey and numerous fruit trees of great value had to be cut, Rivers considered it advisable to place them both on this duty. Rivers returned to the Abu Series on December 15th, in the hopes of finding sufficient rays cleared to allow him to commence the observations of the final angles, but he was disappointed as only a few were ready.

On December 22nd he went to Sanoda, as being the station at which the Abu Meridional and the Guzerat Longitudinal Series meet, and observed $\delta$ Ursæ Minoris for azimuth. He was joined here on December 29th by Lieutenant D. Nasmyth, a young officer of the Bombay Engineers, who had been appointed to the Great Trigonometrical Survey of India a few weeks previously. Towards the beginning of January Rivers proceeded to the head of the Gulf of Cambay (Khambhat) to make arrangements for connecting the heights
of the stations of the Guzerat Longitudinal Series and thence those of the Abu Meridional and Karáchi Longitudinal Series with mean sea level. His plan was to erect a tidal station near the mouth of the Sabbarmati river and to then connect it by levelling with the nearest principal station of the Guzerat Longitudinal Series: he afterwards found, however, that such operations would occupy him entirely to the exclusion of trigonometrical work; as too he had much difficulty in obtaining a level capable of such accurate observations as were required, he abandoned the enterprise, and substituted for his line of levels a minor series of triangulation, the approximate work of which Mr. DaCosta proceeded to take up. This latter series is known as the Sábarmati Minor Series; it appertains to the principal Series under review, and is described in detail at the end of this Introduction.

On Rivers's return from Cambay he took up the final angles of the Abu Series; and during February he succeeded in completing the observations at all the stations with the exception of Siniána. In December he observed for azimuth at Sanoda station to $\delta$ Ursæ Minoris. He then took up the principal work of the Guzerat Longitudinal Series, commencing in longitude $72^{\circ} 50^{\prime}$ and working westwards: the stations of Jhinjhar, Bhagwinnji and Rundan had not yet been selected and were therefore not now observed from Mirzápur, Wastrál or Pálri. It would in fact appear that the Wastrál pentagon as afterwards constructed by Nasmyth was foreign to the original intention of Rivers, who probably purposed to extend the Guzerat Longitudinal Series eastward from the side Bárdoli-Mirzápur: this explanation too would account for the one single triangle, that exists on the Abu Series of hexagons. By the end of March Rivers had carried a principal Series of single triangles from Mirzapur and Sanoda as far west as the side Hasalpur-Kárigángar. In April he added two more stations, Por and Ingrori, and at the latter observed an astronomical azimuth of verification to a Ursæ Minoris: he then returned to his recess quarters at Ahmedabad, which he reached about the middle of May.

In October, 1851, at the urgent request of Lieutenant Rivers, Mr. J. W. Rossenrode, who had had great experience in trigonometrical operations in flat and wooded countries, was withdrawn from Bengal, and appointed an additional assistant to the Bombay Party to instruct the assistants in the ray-trace system. Unfortunately, however, owing to the immense distance that he had to travel, he did not join Lieutenant Rivers till February 15th, when the clearance of the rays, the special work for which he had been sent, had with much labour and trouble been carried out in the most difficult parts of the country. He was therefore on arrival despatched to the southern edge of the Ran of Cutch and was employed up to the first of May in selecting stations, clearing rays and building towers both for the western extremity of the Guzerat Longitudinal Series and the central portion of the Kattywar Meridional Series. He rejoined Lieutenant Rivers at Ahmedabad on May 15th.

The section of the Guzerat Longitudinal Series, situated between the meridians of $71^{\circ}$ and $73^{\circ}$, runs through a perfectly flat country, for the most part covered with trees : towers of twenty-five feet high were required to command sides of 12 miles, and after mutual visibility had been obtained between two stations in November, three or four additional feet

VI- .
had to be added in order to allow for the decreased effect of refraction in April. In the rocky table-land of Káthiáwar, where the western end of the Series had now arrived, bricks were unknown, and the pillars had to be constructed of stone.

When the party again took the field, Rivers having applied for furlough, and having

Season 1852-53. Presonnel.
Lieutenant H. Rivers, Bombay Engineers, 1st Assistant.
Lieutenant D. J. Nasmyth, Bombay Engineers, 2nd Assistant.
Mr. T. Sanger, Sub-Assistant.
"J. DaCosta, Ditto.
", J. McGill, Ditto. every expectation of its being granted, handed the party over to Nasmyth, who at once set out for the Káthiáwár peninsula to resume operations on the Guzerat Longitudinal Series, Rivers remaining behind. The personnel was further weakened by the return of Mr. Rossenrode to Bengal and by the absence of Mr. Sanger on sick-leave : the only assistants that remained for duty were Mr. DaCosta and Mr. McGill, the latter of whom had been but one year in the Department. During the previous season Mr. Rossenrode had selected stations as far west as Rangpur*, and had built the towers up to Kuária and Nárechána; but the hexagon that he had constructed round Rangpur was, owing to the smallness of the sides, not considered suitable for inclusion in a principal series, the more especially as the country in that part was comparatively open and no real necessity had existed for curtailing the lengths of the rays. On arrival at Ingrori, the first station visited, careful examination shewed that nothing less than adding 20 feet to the Degam tower and 10 feet to that of Ingrori would render the stations mutually visible, and the work of raising the towers was therefore commenced at once. Nasmyth decided, whilst this was being done, to make a reconnaissance of the country to the westward to see whether he could not improve Rossenrode's approximate series and especially the hexagon round Rangpur, the stations of which were only some 5 or 6 miles apart; he was engaged on this work when he was rejoined by Rivers, who had in the meantime learnt that his application for furlough had been refused and who had, on receipt of the unwelcome news, set out post-haste in no easy frame of mind to resume charge of the triangulation. The result of the revision of the approximate series was that the triangles were made more symmetrical, and but seven stations were required to get over the same extent of country as under the original arrangement had taken ten. By December 1st the towers at all the stations of the Guzerat Longitudinal Series, west of the meridian of $7 \mathbf{2}^{\circ}$, were in readiness for the final observations.

The main body of the party with Rivers and Nasmyth now returned to Ingrori to take up the final angles, whilst Mr. DaCosta was detached to conduct the approximate work of the Kattywar Meridional Series. During December, 1852, five stations of the Guzerat Series were visited and observed from, and in January, 1853, the principal angles of its western section were completed. The party then took up the final work of the Kattywar Meridional Series.

In November, 1854, Mr. Sanger was detached from the main body of the party,

[^42]then employed in Káthiáwár, with orders to carry the approximate work of the Guzerat Longitudinal Series eastwards from Ahmedabad : he began at Wastrál, and before the season was over had selected all the stations as far east as Kágarol : during the latter half of the field season of 1856-57, Mr. McGill followed over the same ground, building the pillars at Mr. Sanger's stations and clearing the rays.

By May, 1858, the Kattywar Meridional Series and the Cutch Coast Series were both fully completed, and the only principal triangulation of

Season 1858-59.
Personnefle
Lieutenant D. J. Nasmyth, Bombay Fingineers, 2nd Assistant.
Mr. J. DaCosta, Sub-Assistant. " J. McGill, " Ditto.
" C. McGill, Ditto. the South-West Quadrilateral that still remained to be done was the portion of the Series under review that lies between the meridians of $73^{\circ}$ and $75^{\circ}$. In October, 1858, as the Political Agents in Gujarat reported that the country had quieted down from the excitement of the mutiny, Nasmyth, who had succeeded to the charge of the party, considered it a favorable opportunity to take up the final observations of the central section of the Guzerat Longitudinal Series, i.e., the portion that is situated between the stations of Mirzapur and Kágarol. The mutiny had not yet died out in Malwa (Málwa), and so the approximate work on the eastern section of the Series between Kágarol and Indráwan had to be left in abeyance. Ground was broken in Gujarát on October 25th, and as Mr. Sanger's approximate work appeared in parts defective, Nasmyth began by revising it : having definitely settled on the first two or three triangles in the vicinity of Mirzapur he returned to Pálri to commence the final observations, leaving the revision of the approximate series to Mr. DaCosta. Early in November he received notice of a disturbance that had broken out among the Náikrás at Nárukot, and shortly after he learnt that the Rao Sahib and Tantia Topi had appeared on the frontiers of Gujarat: armed bands of plunderers were often now to be met traversing the country, and the operations of detached surveyors became unsafe. Mr. DaCosta, who was on in advance at Kágarol received warning from the Political authorities to retire at once to Baroda (Vadodra), which he succeeded in reaching in safety: he had been, though unaware of it, within 14 miles of the ubiquitous Tantia's camp. By the end of December, 1858, the final work had been completed as far as the side Rundan-Bhagwanji, and in January five more stations were observed at, bringing the Series up to Ghoraráo-Wardhari. News then arrived that the Bhils were rising, and the Political officers warned Lieutenant Nasmyth not to cross the Mahi. He had, therefore, no alternative but to leave off at Ghorarao and to withdraw to Cutch where he took up some minor triangulation.

On the rays Poera-Rámesri and Poera-Gohilia the signals were not visible till sunset, and it therefore became necessary to determine the relative heights of those stations by simultaneous vertical observations to lamp signals from the two extremities of each ray: this was done on the former by Lieutenant Nasmyth and Mr. DaCosta and on the latter by Messrs. DaCosta and McGill who were both equipped with 12 -inch theodolites.

On December 31st, 1858, some severe shocks of earthquake were felt all over Gujarat,

VIII-K.
in consequence of which Nasmyth thought it advisable to check the position of the upper mark-stones at all stations which had high towers: these stones had been plumbed over the lower buried marks by Mr. J. McGill. Nasmyth examined three towers, and found that Poera, Rámesri and Gohilia had all slightly deflected. New marks were accordingly established to which all observations have been referred.

The Bombay Triangulation Party passed the summer of 1859 at Rajjkot, where they were joined in October by Lieutenant (now Major-General) Charles Haig of the Royal Engineers, an officer of the Bombay Engineers, who had lately been appointed to the Great Trigonometrical Survey. For two months both Captain Nasmyth and Lieutenant Haig were employed as Military Engineers at the siege of Dwárka (Dvárka) ; but at the fall of that place in December, 1859, they resumed the trigonometrical operations, and the remainder of the field season 1859-60 wa's spent in extending the minor triangulation of Cutch and Káthiáwár. On March 10th, 1860, Captain Nasmyth proceeded on furlough and Lieutenant Haig assumed charge of the work : on April 19th, the party marched under Mr. DaCosta to their recess quarters at Rájkot, and Lieutenant Haig set out for Murree (Mari) where he joined Major J. T. Walker's Party.

The programme of work laid down for the Bombay Party, during this field season, was to take up the Guzerat Longitudinal Series at the

Season 1860-61.
Personnrl.
Lieutenant C. T. Haig, Bombay Fingineers, 2nd Assistant.
Mr. J. DaCosta, Civil 2nd Assistant.
" J. McGill, Senior Sub-Assistant.
„ G. A. Anding, 3rd Class Sub-Assistant. side Wardhari-Ghoráráo, carry it eastward until it met the Khánpisura Meridional Series, and then to return and work southwards from a side of this new work down the meridian of $73 \frac{1}{2}^{\circ}$ to meet the southern unfinished portion of the Singi Meridional Series. The head-quarters of the party quitted Rájkot on November 15th, and reached Wardhari on the 30th. Mr. McGill had taken the field about a month previously to lay out the approximate work. Up to the middle of January, Mr. DaCosta was employed on the secondary triangulation in Káthiáwár: he then left for the Deccan to take up the approximate work of the Mangalore (Mangalúr) Meridional Series, on which he remained employed till the close of the field season.

At the beginning of the season the progress of the party met with some serious checks. The stations of Játhrábhor, Kágarol and Rencha, which are situated at the junction of the Singi and Guzerat Series, had been selected some years previously. In the approximate chart furnished to Lieutenant Haig the ray between Játhrábhor and Ghoráráo was laid down, but after several days had been spent in felling trees it was found to be impracticable. Another delay was caused by a mistake of the mason who instead of repairing the old Rencha station, built a new station at another village also called Rencha, and the signal-man shewed his heliotrope to Ghoráráo from this latter. Lieutenant Haig himself too went to this new station and did not find out his mistake until he had put up his instrument.

On arriving at Bhor Lieutenant Haig found the ray Bhor-Patangri impossible owing
to a large hill intervening: having observed all the other rays he went to Patángri and selected a new station there: whilst the pillar was being built he visited Játhrábhor and Kágarol, and then went back to Ghorárao and observed there the correct ray to Rencha: Kágarol, Patángri, and Bhor were then revisited, and on January 20th, 1861, the Kágarol compound figure at the junction of the two Principal Series was finished.

In the meanwhile Mr. McGill, who had been carrying the approximate series southwards on the Singi meridian, made excellent progress until he reached Kesarwa, when he and all his party were prostrated with jungle fever and had to retire to Broach (Bharúch) : he was unable to resume his work during the field season. Mr. McGill's absence necessitated a change of programme; for he was the only officer available for the approximate work and it had been expected that he would be able to select all the stations of the Singi Meridional Series and also make considerable progress with the approximate work of the Guzerat Longitudinal Series to the east of the Singi meridian before Lieutenant Haig had finished the observations of the Kágarol compound figure, as he would have done, if all had gone right. Lieutenant Haig thus found no approximate work ready for him on the Guzerat Longitudinal Series and had to commence selecting his stations himself; but his progress proved so slow, that towards the end of January he gave it up and returned to Bhor with the object of observing at the new stations of the Singi Meridional Series already selected. On this work he remained employed for the remainder of the season of 1860-61.

It may be mentioned that the cause of McGill's party being prostrated was due to his entering a tract of country which, earlier than the middle of February, is most deadly; but this fact was unknown to Lieutenant Haig or Mr. McGill till after the unfortunate experience.

The party passed the recess season of 1861 at Poona (Puna), and in October following

Season 1861-62.
Personnel.
Lieutenant C. T. Haig, Bombay Engineers, 1st Assistant.
Mr. J. DaCosta, Civil 2nd Assistant.
" J. McGill, Junior Civil 2nd Assistant. " G. A. Anding, 3rd Class Sub-Assistant.
again took the field. The first stations visited were Játhrábhor and Patángri of the Kágarol compound figure, and an attempt was made to prolong the Guzerat Longitudinal Series eastwards from the side that joined them. The plan, however, was found impracticable, and the side PatángriBhor had to be substituted. At first Lieutenant Haig
himself took up the approximate work and carried it eastwards to the meridian of $74 \frac{1}{2}^{\circ}$, where he left it in charge of Mr. McGill, and returned to Patángri to observe $\delta$ Ursæ Minoris for azimuth; and shortly after Christmas he commenced the observations of the final angles of the Series. By the end of January, 1862, he had carried the principal work eastwards to the side Samohi-Kukinda, and on February 22nd at Karsod he completed the Guzerat Longitudinal Series. During this season a verificatory azimuth at the station of Patángri was observed to $\delta$ Ursæ Minoris.

Lieutenant Haig had instructed Mr. McGill, when carrying on the approximate work, to maintain the series single throughout and to close on the side. Indráwan-Gumanpur of the Khánpisura Meridional Series, and he had accordingly made the northern flank of his series

## $\mathbf{x}$ - .

run viá the stations Kukinda, Mehwása, Tharkheri, and Indráwan, and had chosen Samohi and Pípliabán on the southern flank. When Haig had observed the angles at Pípliabán he learnt from Mr. McGill that he was unable to close on the side Indráwan-Gumánpur; for the station of Gumánpur had been selected during the progress of the Khánpisura Meridional Series solely with a view to its suitability for the Mograba hexagon, and without any regard to exterior use, it being concealed from the north and west by a ridge that rendered the rays Pípliabán-Gumánpur and Tharkeri-Gumánpur impracticable.

On hearing of this check Haig decided to try and close on the side Kaula-ka-MátaIndráwan of the Khánpisura Meridional Series, and to attain this object he added the station of Kuwása; thus unintentionally constructing a pentagon round Mehwása. But Kaula-kaMáta like Gumánpur had been selected with regard to its own series only and was situated on the roof of a temple, the spire of which intercepted all view from the west. It therefore became necessary to build a new station on the same hill,* which was the only one available in the vicinity, and to make the side Karsod-Indráwan the closing side of the Guzerat Longitudinal Series, for which it proved admirably suited.

The Mehwása pentagon is incomplete, the angle at Mehwása between Samohi and Pípliabán being wanting. When the observations at Mehwása were being taken, the surrounding stations were observed in the following order, Samohi, Kukinda, Kuwása, Tharkheri, Pípliabán, and the mistake was made of not re-observing Samohi and of completing the round at Pípliabán. When the station of observation is at the centre of a polygon, a round of intersections is incomplete, and consequently no central equation can be formed, unless the first station in the round is intersected again at the end of the round.

All the angles of the Guzerat Longitudinal Series, were observed with Troughton and Simms' 18 -inch Theodolite No. $2 \dagger$, and were taken on 6 pairs of zeros. Rivers's method of changing zeros on the western section of the Series was one that he had introduced himself and first employed on the Abu Meridional Series : the zeros he used were as follows:-

$$
\frac{0^{\circ} I^{\prime}}{180^{\circ} 1^{\prime}}, \frac{10^{\circ} 12^{\prime}}{190^{\circ} 12^{\prime}}, \frac{20^{\circ} 20^{\prime}}{200^{\circ} 20^{\prime}}, \frac{30^{\circ} 29^{\prime}}{210^{\circ} 29^{\prime}}, \frac{40^{\circ} 38^{\prime}}{220^{\circ} 38^{\prime}} \text { and } \frac{50^{\circ} 50^{\prime}}{230^{\circ} 50^{\prime}} \text {. }
$$

Over the ordinary method, usually followed then in the survey, viz. :-

$$
\frac{0^{\circ} \circ^{\prime}}{180^{\circ} 0^{\prime}}, \frac{10^{\circ} 0^{\prime}}{190^{\circ} 0^{\prime}}, \frac{20^{\circ} 0^{\prime}}{200^{\circ} 0^{\prime}}, \frac{30^{\circ} 0^{\prime}}{210^{\circ} 0^{\prime}}, \frac{40^{\circ} \circ^{\prime}}{220^{\circ} o^{\prime}} \text { and } \frac{50^{\circ} 0^{\prime}}{230^{\circ} 0^{\prime}},
$$

he claimed the advantage for his system that it brought the zero of the micrometer over every 10 minutes of the degree and also so shifted the reading as to cancel error of "run".

Each change of zero was made in fact to fulfil the following conditions:-(1) In the degrees each zero was $10^{\circ}$ in excess of the preceding one; (2) At each zero a different $10^{\prime}$

[^43]division in the degree was intersected; (3) Each zero was a different number of minutes from the division to be intersected, being in two cases to the right of that division and in three to the left.

Nasmyth on the central section of the Series followed Rivers, as also did Haig in the Kágarol compound figure : in 1860, however, Colonel A. S. Waugh, for reasons which will be found fully explained at pages xir to xvir of the Introduction to the Great Indus Series (vide Volume III of the Account of the Operations of the Great Trigonometrical Survey of India) ordered the following to be the zero settings of theodolites with three microscopes:-

$$
\frac{0^{\circ} 0^{\prime}}{180^{\circ} 0^{\prime}}, \frac{70^{\circ} 1^{\prime}}{250^{\circ} 1^{\prime}}, \frac{140^{\circ} 2^{\prime}}{320^{\circ} 2^{\prime}}, \frac{210^{\circ} 3^{\prime}}{30^{\circ} 3^{\prime}}, \frac{280^{\circ} 4^{\prime}}{100^{\circ} 4^{\prime}} \text { and } \frac{350^{\circ} 5^{\prime}}{170^{\circ} 5^{\prime}},
$$

the changes in the minutes were introduced with a view to cancelling the effects of any errors in the construction of the threads of the micrometer screws. In consequence of this order Haig worked with the following pairs of zeros, viz:-

$$
\frac{0^{\circ} I^{\prime}}{180^{\circ} 1^{\prime}}, \frac{70^{\circ} 1 I^{\prime}}{250^{\circ} 11^{\prime}}, \frac{140^{\circ} 22^{\prime}}{320^{\circ} 22^{\prime}}, \frac{210^{\circ} 28^{\prime}}{30^{\circ} 28^{\prime}}, \frac{280^{\circ} 39^{\prime}}{100^{\circ} 39^{\prime}} \text { and } \frac{350^{\circ} 50^{\prime}}{170^{\circ} 50^{\prime}},
$$

on the eastern section of the Series, a system that combined Colonel Waugh's large sweeps in the degrees with Rivers's changes, in the ten-minute divisions to be intersected and in the odd minutes.

When the triangulation of the South-West Quadrilateral was completed two values were obtainable for both the latitude and longitude of each of the three stations Patángri, Mirzápur and Monába, and also for both the length and azimuth of each of the three sides Patángri-Bhor, Mirzápur-Wastrál, and Monába-Wándia: the closing errors in all these cases may be exhibited as follows:-

|  | Patángri. |  | Patangri-Bhor. |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Latitude. | Longitude. | Aximuth. | Side in feet. |
| When calculated from the side Bálágara-Búda of the Karáchi Longitudinal Series vid the northern section of the Khánpisura Meridional Series and the eastern section of the Guzerat Longitudinal Series. | $22^{\circ} 52^{\prime} 15^{\prime \prime} \cdot 603$ | $73^{\circ} 55^{\prime} 49^{\prime \prime} \cdot 156$ | $16^{\circ} 47^{\prime} 34^{\prime \prime} \cdot 449$ | 80457 ² |
| When calculated from the side Tána-Lakarwás of the Karáchi Longitudinal Series $v i d$ the northern section of the Singi Meridional Series. | $\begin{array}{lllll}22 & 52 & 15 & 671\end{array}$ | $735549 \cdot 563$ | $1647 \quad 27 \cdot 336$ | $80453 \cdot 2$ |
| Closing errors ... | + 0.068* | + 0.407* | $-7.113$ | $-4^{\circ} 0$ |

* The geographical error in feet is available from these quantities, as 1 foot $=0 \prime \prime \cdot 01$, both on meridian and parallel.

|  | Mirzápur. |  | Mirzápur-Wastral. |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Latitude. | Longitude. | Azimuth. | Side in feet. |
| When calculated from the side Jeraj-Márd of the Karáchi Longitudinal Series vid the Abu Meridional Series. | $22^{\circ} 59^{\prime} 17^{\prime \prime} \cdot 859$ | $72^{\circ} 52^{\prime} 34^{\prime \prime} \cdot 695$ | $91^{\circ} 4^{\prime} 29^{\prime \prime} \cdot 147$ | $56132 \cdot 7$ |
| When calculated from the side Tána-Lakarwás of the Karachi Longitudinal Series vid the northern section of the Singi Meridional Series and the central section of the Guzerat Longitudinal Series. | $225917 \cdot 708$ | $72 \quad 5234 \cdot 708$ | $91426 \cdot 190$ | $5^{61} 35^{1}$ I |
| . Closing errors ... | + 0.151* | -0.013* | + 2.957 | $-2.4$ |


| : | Monábat. |  | Monába-Wándia. |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Latitude. | Longitude. | Aximuth. | Side in feet. |
| When calculated from the side Bhilgaon-Akoria of the Karachi Longitudinal Series vid the Kattywar Meridional Series. | $23^{\circ} 16^{\prime} 35^{\prime \prime} \cdot 909$ | $70^{\circ} 51^{\prime} 111^{\prime \prime} \cdot 778$ | $80^{\circ} 25^{\prime} 20^{\prime \prime} \cdot 028$ | $67441 \cdot 4$ |
| When calculated from the side Jeraj-Márd of the Karáchi Longitudinal Series vid the Abu Meridional Series and the western section of the Guzerat Longitudinal Series. | $231635 \quad 770$ | $705111 \cdot 850$ | $80 \quad 2516 \cdot 982$ | $67442 \cdot 4$ |
| Closing errors ... | + $0.139 \dagger$ | -0.072† | $+3.046$ | - 1•0 |

* The geographical error in feet is available from these quantities, as 1 foot $=0^{\prime \prime} \cdot 01$, both on meridian and parallel.
+ It should be noted that Monába is a station of the Kattywar Meridional Series, and situated some 25 miles north of the junction of that Series with the Guzerat Longitudinal Series. It is selected here as the point of comparison because it was so employed in the Simultaneous Reduction of the South-West Quadriluteral.
- On the completion of the simultaneous reduction of the South-West Quadrilateral, it was found that the portions of the errors which had actually fallen to the Guzerat Longitudinal Series were, and had been dispersed on it as follows :-

|  | - In Latitude. | In Longitude. | In Azimuth. | In Side. Log. feet. |
| :---: | :---: | :---: | :---: | :---: |
| On the eastern or Haig's section between Karsod and Patángri, length 75 miles. | $+0.061$ | $\begin{gathered} \prime \prime \\ -0.331 \end{gathered}$ | $\begin{gathered} \prime \prime \\ -0.479 \end{gathered}$ | $\begin{gathered} +0 \cdot 000,0045,0 \\ \text { or } 0 \cdot 65 \text { inch } \\ \text { per mile. } \end{gathered}$ |
| On the central or Nasmyth's section between Patángri and Mirzápur, length 68 miles. | -0.050 | -0.037 | - I 453 | -0.000,0201,6 or 2.95 inches per mile. |
| On the western or Rivers's section between Mirzápur and Chalarwa, length 113 miles. | -0.125 | +0.134 | - $5 \cdot 048$ | $-0 \cdot 000,0118,9$ or 1•74 inches per mile. |

The heights of the Principal Stations of the Guzerat Longitudinal Series depend in the first instance on the values of the stations of Karsod and Indrawán of the Khánpisura Meridional Series; next on the heights of the stations of Poera, Jhinjhar, Wastral, Sola, Sánand, Khoraj, Hasalpur, and Ingrori determined by spirit-levelling operations executed during the seasons of 1875-76 and 1876-77; and lastly on the heights of the stations of Chalarwa and Sápakra which were fixed in the adjustment of the Kattywar Meridional Series. The intermediate heights, of which the values were obtained trigonometrically, shewed at Poera a cumulative error of +3 feet and at Jhinjhar and Wastral a further error of +2 feet, and on the section Ingrori to Sápakra of: -3 feet: these were dispersed by simple proportion. Between Jhinjhar and Ingrori the spirit-levelled heights are sufficiently numerous to give the heights of the remaining stations directly.

Several stations of the Sábarmati Minor Series were also connected with in the spirit-levelling operations referred to above, and their values of height thus finally fixed.

## Secondary Triangulation.

An important secondary chain of triangulation known as the Sábarmati Minor Series appertains to the Guzerat Longitudinal Series. It starts from the side Sánand-Palri of the latter, 10 miles south-west of Ahmedabad, and follows the Sábarmati River to its mouth at the head of the Culf of Cambay: from thence it runs along the western edge of the gulf until it joins the Kattywar Minor Meridional Series No. IV at the side Haibatpur-Bharbhír. Some 6 miles north of the town of Cambay, the Guzerat Coast Minor Series, that emanates
near Surat from a principal side of the Singi Meridional Series, meets the Sábarmati Minor Series at the side Rhoni-Omliála of the latter in latitude $22 \frac{1^{\circ}}{}{ }^{\circ}$.

The Sábarmati Minor Series is 75 miles long, and consists of three quadrilaterals and twenty-one single triangles, the rays averaging 6 miles in length : it was designed by Lieutenant Rivers for the purpose of connecting the heights of the stations of the Guzerat Longitudinal Series and thence those of the Abu Meridional Series and the Karáchi Longitudinal Series with mean sea level.

This connection was originally intended to be made by a line of levels; but a chain of triangulation was ultimately preferred as the more suitable method; no sufficiently accurate instrument could be procured for the levelling operations, and an officer of special training would have been required to conduct them : besides this a great advantage was gained by adopting triangulation, in that the position of the head of the Gulf of Cambay was geographically fixed. The angles were observed on two pairs of zeros, viz :$\frac{0^{\circ}}{180^{\circ}}$ and $\frac{30^{\circ}}{210^{\circ}}$.

The work of selecting the stations was first taken up by Mr. J. DaCosta in February 1851, who by the end of the field season had carried the approximate work as far as the head of the gulf. In November, 1853, he had, however to return, and do some of his work over again : in the interval trees had grown and obscured a few of the rays, and here and there a platform had been destroyed: in one or two instances too the symmetry of the triangles required improvement. By the middle of December he had performed these duties and crossed the gulf at Gogha to take up the triangulation on the Kattywar Coast.

In January, 1854, Lieutenant Nasmyth having lately completed the Kattywar Minor Longitudinal Series decided to take up the observations of the final angles of the Sábarmati Series. Leaving the establishment to reach Khún Bandar in a larger boat, Nasmyth hurried onward from Gogha in a smaller one to the mouth of the Sábarmati river, and commenced at once a reconnaissance of the locality, having in the meantime wandered over the whole tract of mud, through which the Sábarmati river finds its way to the sea, in seareh of a suitable spot for the tide gauge. But the party whom he had left behind were forced, owing to the inundation of the spring tides, to make a considerable detour before they could reach Sikotar-Máta, and a week had elapsed before tents, horses and baggage had arrived at their destination. DaCosta had brought the approximate work only as far south as the side Mitli-Rhoni, and had selected Sikotar-Máta as the site for the tide gauge. Nasmyth however, preferred Tarakpur to Sikotar-Máta and built a trigonometrical station there: he then heard that at Tarakpur during the neap tides cattle could drink from the Sábarmati, and fearing therefore that the spot was under the influence of the river and not suitable for tidal observations, he detached Mr. McGill to choose some point nearer the sea. The latter eventually chose the two stations, Pipli and Ambli, of the Sábarmati Series, from which could be fixed a more suitable site and one which Nasmyth approved for the tide gauge, the latter was situated 660 yards south by west of Sikotar-Máta station, on what appeared hard, solid mud, that was unlikely to be washed away by the river. By the end of January Nasmyth had observed all the final angles from Sikotar-Máta as far north as Nandhanpur, and by

February 13th he had joined on the principal side Sanand-Pálri of the Guzerat Longitudinal Series: this completed the minor series from Ahmedabad to the head of the gulf.

Tidal observations were taken by Mr. DaCosta in the early months of 1855 at Miáni Bandar and Diu (Dív) on the Káthiáwár Coast. Sikotar-Máta proved a most ineligible spot for the gauge : sand silted over it, the mud bank on which it stood was gradually shifting, and it was exposed to the whole force of the current of the Sábarmati; it was thereupon decided that no tidal station could be erected nearer to the mouth of the Sábarmati than Gogha. The Kattywar Minor Meridional Series No. IV was designed in 1855 to follow the meridian of $72^{\circ}$ and to thus connect the Guzerat Longitudinal and Kattywar Minor Longitudinal Series, but by 1860 the work had not been carried out. The only means therefore of checking the heights of stations of the Abu Meridional Series by means of a tidal station at Gogha was by computing the heights through the Kattywar Minor Longitudinal, Kattywar Meridional and Guzerat Longitudinal Series. This was considered too long a circuit, and consequently in November, 1860, Mr. DaCosta was detached by Lieutenant Haig to Bhávnagar with orders to connect the eastern extremity of the Kattywar Minor Longitudinal with the southern extremity of the Sábarmati Minor Series by means of a small chain of triangles. The stations of the Kattywar Meridional Minor Series No. IV had been previously selected as far north as Haibatpur by Mr. DaCosta, and the pillars both at Haibatpur and Bharbhir, the extremities of his side of origin, had been built. He left Rájkot on November 5th, 1860, and by the 13th of January following he had selected the stations, built the pillars, and observed the angles. He effected a connection with Nasmyth's former work at the side Ambli-Pipli, and this connection completed the triangulation of the Sábarmati Minor Series.

Two Minor Series, known as Kattywar Minor Meridional Series Nos. III and IV, are connected with principal sides of the Guzerat Longitudinal Series near its western extremity, the former with the side Nárechána-Charari, along the meridian of $71 \frac{1}{2}^{\circ}$, the latter with Ingrori-Kárigangar along the meridian of $72^{\circ}$ : they close at their southern extremities on sides of the Kattywar Coast Minor Series and Kattywar Minor Longitudinal Series respectively. They were of great value to the topography of Káthiáwár. As they have been apportioned to the Kattywar Meridional Series and not to the Guzerat Longitudinal Series, and have been fully dealt with in the Introduction to the former, no further reference is necessary to them here.

The Guzerat Longitudinal Series running as it does throughout its whole length through a flat and densely wooded country, had to be made a single chain owing to the great expenses of tower-building and ray-clearing: on these accounts too the amount of secondary work that was carried out during the principal operations was very limited. No secondary stations were built, not half a dozen peaks were intersected, and it was useless to lay down the positions of particular trees when the whole country was covered with them. On the western section of the Series some fifteen intersected points exist, including the palace of Halvad : in Ahmedabad the clock tower and five or six domes and minarets were fixed, and four points in the city of Kaira were laid down from the Sábarmati Minor Series: on
the central section of the Series the positions of the palace of Balásinor (Vádashinor), of the town of Godhra, and of eleven other points were determined. On the eastern section of the Series some 15 or 20 buildings of different kinds were intersected.

In 1869.72 when the Topographical Survey of Gujarát was in hand, a minor series of triangles was carried down the river Mahi. It started from the principal side GhoráráoPoera and closed on the side Dhuváran-Sárod of the Guzerat Coast Minor Series.* It was commenced by Lieutenants A. W. Baird and J. R. McCullagh and finished by Messrs. A.D. Christie and C. H. McA'Fee, an observer working at each end simultaneously. The observations were taken with 10 -inch theodolites on four zeros, except at one station where a 6 -inch theodolite was used : the average length of the rays was 8 miles.

[^44]October, 1889.
S. C. BURRARD.

GUZERAT LONGITUDINAL SERIES.
PRINCIPAL TRIANGULATION. ALPHABETICAL LIST OF STATIONS.


## GUZERAT LONGITUDINAL SERIES.

## PRINCIPAL TRIANGULATION. NUMERICAL LIST OF STATIONS.



# GUZERAT LONGITUDINAL SERIES. 

## PRINCIPAL TRIANGULATION. DESCRIPTION OF STATIONS.

This Series is divided into two portions by the Singi Meridional Series and in order to make it continuous it has been necessary to include the data appertaining to Stations XII to XVIII of the Singi Series. Of the Principal Stations, the stations of origin, and those numbered I to X, XVII, XVIII, XX, and XXIII as also those which belong to the Singi Meridional Series, are situated on hills or rising ground, and with the exception of Station IX of the Khánpisura Meridional Series, of which the construction is not known, and of Station XVII of the Singi Meridional Series, where there is only one mark on a projecting rock, consist of isolated and perforated pillars of masonry from 5 to 7 feet high, having a mark engraved on the rock in sitû or on a stone embedded at the ground level, and another mark at the surface in the normal of the first. Round these pillars, platforms of earth and rubble or earth and wood have been built for the observatory tent to rest on. At several of these stations an aperture through the platform and pillar was left for reference to the ground level mark. At all the remaining stations which are situated in the plains it was found necessary to construct towers to overlook the curvature of the earth. These are solid, 12 to 40 feet in height, built either of sun-dried bricks or stones set in mud cement and in a few cases of loose stones, and having a broad base. Each encloses a central pillar of masonry, sometimes solid, sometimes perforated, which carries marks at the top and at the ground level; in the former, other marks are inserted generally at every 5 feet: the upper portion of these pillars, about 5 feet, is circular and isolated. Access to the mark at ground level is obtained by an aperture which was left for the purpose.

The following descriptions have been compiled from those given by the Officers who executed the Series, from the records of Captain Baird's Leveling Operations in 1874, to 1876, and from General Keports of the Kattywar Topographical Survey, supplemented as regards adjacent villages, \&c., from the Topographical maps of the country traversed. Some details regarding the heights and the construction of the stations have been gathered from reports, contingent bill, and other records of the Series. The local sub-divisions in which the several stations are situated, have been derived, where practicable, from the latest Annual Reports furnished by the District Officers to whose charge the stations are committed.
IX.-(Of the Khannisura Meridional Series). Karsod Hill Station, lat. $23^{\circ} 7^{\prime}$, long. $75^{\circ} 28^{\prime}$ —observed at in 1848 and 1862 -is situated on a small hill about $1 \frac{1}{2}$ miles W. of Chota Karsod, and 1 mile N. of Rojri village. It is towards the S. extremity of the hill, and 119 (ft. ?) 8 (in.?) $\mathbf{S}$. of the southern wall of a pagoda (temple): pargana Barnagar, Gwalior territory.

The station consists of a platform most prohably constructed in a manner similar to those at the adjacent stations and contains two marks, the upper 4.27 feet above the lower. When again visited in 1862, in the course of the Operations of this Series, the station was found to be about 5 feet in height. The nearest villages are Rasulabad and Maulana.
XIII.-(Of the Khanpisura Meridional Series). Indráwan Tower Station, lat. $22^{\circ} 49^{\prime}$, long. $75^{\circ} 13^{\prime}$ observed at in 1847, 1848 and 1862 -is situated on rising ground, about 1 mile N.E. of the village from which the station obtains its name, $1 \frac{1}{2}$ miles from Barwál, and 8 miles N.N.E. of Desi : pargana Baduáwar, district Dhár, Bheel Agency.

The station as originally built in April 1847 consisted of a solid pillar of masonry sunk to a depth of 6.3 feet, containing two marks, the upper in the surface of the pillar being at the ground level; over this a platform of loose stones, $7 \cdot 46$ feet in height, with a mark at the top was constructed. In November 1848 an addition of $2 \cdot 17$ feet was made to the height of the platform. It was again visited in February 1862 in the course of the Operations of this Series, when it was simply stated that it is built 4.75 feet high. In 1869 the loose stone platform was removed, and over the original mark at the ground level, a pillar of masonry 7.46 feet in height was built surrounded by a platform of stones of the same height as the pillar. An arched aperture from E. to W. gives access to the ground level mark. It thus appears that the station as last constructed is $2 \cdot 17$ feet lower than that of November 1848.
I. Kaula-ka-Máta Hill Station, lat. $23^{\circ} 8^{\prime}$, long. $75^{\circ} 13^{\prime}$-observed at in 1862 -is situated on an isolated and symmetrically shaped hill, about 20 yards S. of the large temple of Kaula-Máta from which the hill derives
its name. On the roof of the temple and E. of the spire is station "XI. Kaula-ka-Mata" of the Khánpisura Meridional Series; but as all view towards the west was intercepted by the temple, it became necessary to establish this station for the Guzerat Longitudinal Series: Sailina State of the Western Malwa Agency.

The station consists of a platform of earth and rubble enclosing an isolated and perforated pillar of masonry, 5.93 feet in height, which contains a lower and upper mark, the former engraved on a projecting rock about 10 inches above the ground.
II. Tharkheri Hill Station, lat. $22^{\circ} 52^{\prime}$, long. $74^{\circ} 53^{\prime}$-observed at in 1862 -is situated on a high tableland, about 2 miles S.E. of the village which gives its name to the station: Jhábua State, Bheel Agency.

The station consists of a platform enclosing an isolated aud perforated pillar of masonry, 4.81 feet in height, which contains a lower and upper mark-stone.
III. Kuwása Hill Station, lat. $23^{\circ} 8^{\prime}$, long. $74^{\circ} 42^{\prime}$-observed at in 1862 -is situated on the highest and about the centre of a group of low hills, about 4 miles W. of the town of Kuwása: Jhábua State, Bheel Agency.

The station consists of a platform of earth and rubble and logs of wood, enclosing an isolated and perforated pillar of masonry, $5 \cdot 00$ feet in height, with lower and upper mark-stone.
IV. Mehwása Hill Station, lat. $22^{\circ} 55^{\prime}$, long. $74^{\circ} 40^{\prime}$-observed at in 1862-is situated on the highest point of the two S.E. hills about $2 \frac{1}{2}$ miles N.E. of the town Bhágor: Jhábua State, Bheel Agency.

The station of 1862 consisted of a platform of earth and rubble and logs of wood, about 5 feet in height, enclosing an isolated and perforated pillar of masonry $2 \cdot 37$ feet in height which contained a lower and upper mark-stone. It was visited in 1878-79 by Lieutenant Gore who rebuilt the platform $2 \frac{1}{2}$ feet in height.
V. Pípliabán Hill Station, lat. $22^{\circ} 42^{\prime}$, long. $74^{\circ} 49^{\prime}$-observed at in 1862 -is situated on the site of the deserted village so called, and about 2 miles S. of Sonar : Jhábua State, Bheel Agency.

The station consists of a platform of earth and rubble, enclosing an isolated and perforated pillar of masonry, 5 feet in height, which contains a lower and upper mark-stone.
VI. Samohi Hill Station, lat. $22^{\circ} 39^{\prime}$, long. $74^{\circ} 28^{\prime}$-observed at in 1862 -is situated on the eastern and highest part of a hill, about 1 mile S.S.W. of village so called : Jhábua State, Bheel Agency.

The station consists of a platform of earth and rubble, enclosing an isolated and perforated pillar of masonry, $5 \cdot 47$ feet in height, which contains a lower and upper mark-stone.
VII. Kukinda Hill Station, lat. $23^{\circ} 2^{\prime}$, long. $74^{\circ} 29^{\prime}$-observed at in 1862 -is situated on a high hill of that name about a mile W. of the small village of Morjeri : Jhábua State, Bheel Agency.

The station consists of a platform of earth and rubble and logs of wood, enclosing an isolated and perforated pillar of masonry, 5 feet in height, which contains a lower and upper mark-stone. Access to the lower mark is provided for.
VIII. Kápri Hill Station, lat. $22^{\circ} 55^{\prime}$, long. $74^{\circ} 13^{\prime}$-observed at in 1862-is situated on a table-land of the Vindhyáchal range of hills which run N. and S. and partially divide the Báriya State from the parganas of Dohad and Jhálod, about $1 \frac{1}{2}$ miles $N$. of Kápri village, and the same distance S.W. of the village of Dagária: sub-division Jhálod, district Panch Máháls.

The station consists of a platform of earth and rubble and logs of wood, enclosing an isolated and perforated pillar of masonry, 5 feet in height, which contains a lower and upper mark-stone.
IX. Punákot Hill Station, lat. $22^{\circ} 37^{\prime}$, long. $74^{\circ} 12^{\prime}$-observed at in 1862 -is situated on the ridge of a high hill to the S.S.W. of the village from which the station has been named. The ascent from the village of Punákot is very gradual and is practicable for laden carts. Báriya State, district Rewákánta.

The station consists of a platform of earth and rubble, enclosing an isolated and perforated pillar of masonry, 5.06 feet in height, which contains a lower and upper mark-stone.
XII.-(Of the Singi Meridional Series). Játhrábhor Hill Station, lat. $23^{\circ}{ }^{2}{ }^{\prime}$, long. $73^{\circ} 43^{\prime}$ —observed at in 1860, 1861 and 1862-is situated on a range of hills, about 2 miles to S.W. of Játhrábhor village: thána Lunáwára, district Rewákánta.

The station consists of a platform of earth and rubble, enclosing an isolated and perforated pillar of masonry 5 feet in height, with an aperture for access to the lower mark. The nearest villages are Kali, Gugulia and Sagarda.
XIII.-(Of the Singi Meridional Series). Patángri Hill Station, lat. $22^{\circ} 52^{\prime}$, long. $73^{\circ} 56^{\prime}$ —observed at in 1861-62-is situated on a high, flat-topped hill forming portion of a range, about $\frac{1}{2}$ a mile S.E. by S. of the village of Patángri: thána and state Báriya, district Rewákánta.

The station consists of a platform of earth and rubble, enclosing an isolated and perforated pillar of masonry 2 feet in height with mark-stones at top and bottom, and an aperture giving access to the latter. The nearest villages are Diwigam, Nawágám, Kupda and Pála.
XIV.-(Of the Singi Meridional Series). Kágarol Hill Station, lat. $22^{\circ} 53^{\prime}$, long. $73^{\circ} 42^{\prime}$-observed at in 1860-61-is situated on a low, isolated hill, about $\frac{1}{2}$ miles N.W. of the village of Pipalia; the hill is also named Pipalia-ni-Dúngari, and is in lands of the town of Serah : pargana Godhra, district Panch Máháls.

The station consists of a platform of earth and rubble, enclosing an isolated and perforated pillar of masonry 5 feet in height, having an aperture for access to the lower mark. The nearest villages are Dharaula, Jhoj and Nawágam.
XV.-(Of the Singi Meridional Series). Wardhari Hill Station, lat. $23^{\circ} 6^{\prime}$, long. $73^{\circ} 30^{\prime}$-observed at in 1860-is situated on one of the ranges of hills to S.E. of the village of Wardhari from which there is an ascent of a quarter of a mile to the station : thána and state Lunáwára, district Rewákánta.

The station consists of a platform of earth and rubble, enclosing an isolated and perforated pillar of masonry, 5.83 feet in height, with an aperture giving access to the lower mark. 'I'he nearest village is Kadáchla.
XVI.-(Of the Singi Meridional Series). Ghorarao Hill Station, lat. $22^{\circ} 52^{\prime}$, long. $73^{\circ} 24^{\prime}$-observed at in 1859 and 1860 -is situated on a ridge of hills in lands of the village of Kuni which is $\frac{1}{2}$ a mile nearly N., the town of Bálásinor is about 6 miles distant in the same direction : taluka Thásra, district Kaira.

The station consists of a platform of earth and rubble, enclosing an isolated and perforated pillar of masonry, 5 feet in height, having an aperture for access to the lower mark. The directions of the following villages are:-Mahi Itadi, Wanora and Rauja, N. ; Panch Máháls villages, E. ; Sanjol and Menpur, S. ; and Rauja and Balara, W.
XVII.-(Of the Singi Meridional Series). Bhor Hill Station, lat. $22^{\circ} 40^{\prime}$, long. $73^{\circ} 52^{\prime}$-observed at in $1860-61$ and 1862 -is situated on the southern of two rocks on the high hill of Bhalapur to the S. of the village of Bhor: thána Báriya, district Rewákánta.

As regards the construction of the station the following is all that is forthcoming:-"The platform for the observatory was made of bamboos resting on logs of wood fixed in the crevices of the rocks and the mark is made on the rock". The nearest villages are Virol, Khánpáda, Jhab and Sagarmu.
XVIII.—(Of the Singi Meridional Series). Rencha Hill Station, lat. $22^{\circ} 42^{\prime}$, long. $73^{\circ} 39^{\prime}$-observed at in 1860-61-is situated on an isolated hill locally known as Wagh Dúngar, having the village of Rencha at its western foot: pargana Kálol, district Panch Máháls.

The station consists of a platform of logs of wood covered over with earth, enclosing an isolated and perforated pillar of masonry 5 feet in height, with marks at top and bottom, and an aperture for access to the lower mark which is cut ou the rock. The nearest villages are Sárangpur and Chaláli.
X. Jhiria Hill Station, lat. $23^{\circ} 1^{\prime}$, long. $73^{\circ} 18^{\prime}$-observed at in 1859 -is situated on a hill about 1 mile W. of the village of Hotwár and 6 miles N.W. of Bálásinor: thána and state Bálásinor, district Rewákánta.

The station consists of a platform of rubble, 6 feet in height, enclosing an isolated and perforated pillar of stone and mortar, with an arched aperture on the $S$. side for access to the lower mark.
XI. Poera or Poeda Tower Station, lat. $22^{\circ} 55^{\prime}$, long. $73^{\circ} 15^{\prime}$ —observed at in 1859 -stands about $\frac{1}{8}$ of a mile E. of the village of Phagwel Poeda, and 8 miles nearly W. of Bálásinor : taluka Kapadwanj, district Kaira.

The station consists of a tower of sun-dried bricks supported by earthwork and brushwood, enclosing a central, perforated pillar of masonry 30.8 feet in height, the upper 5 feet of which is isolated, with an aperture on the N . side for access to the lower mark. The original lower mark, indicated by a circle and dot engraved on a stone, is in the intersection of lines drawn through marks at the outer part of small apertures, through and through the tower, left for the purpose. Subsequent to an earthquake on the 31st December 1858, a new lower mark was engraved, $1 \cdot 25$ inches to the S.W., and just without the circle of the original mark. The new mark was employed when the observations were taken.
XII. Rámesri Tower Station, lat. $23^{\circ} 0^{\circ}$, long. $73^{\circ} 10^{\prime}-$ observed at in $1859 —$ stands S. of the village of Rámesri to which it appertains: taluka Kapadwanj, district Kaira.

The station consists of a tower of sun-dried bricks supported by earthwork and brushwood, enclosing a central, perforated pillar of masonry 30.82 feet in height, the upper 5 feet of which is isolated, with an aperture on the N . side for access to the lower mark. The upper mark was displaced by the earthquake of the 31st December 1858, and a new mark to which the observations refer indicated by a dot, $0 \cdot 6$ of an inch $E$. of the original mark, which has been left undisturbed.
XIII. Gohilia Tower Station, lat. $22^{\circ} 53^{\prime}$, long. $73^{\circ} 7^{\prime}$-observed at in 1859 -stands adjoining the village of Gohilia, hamlet of the Gaekwar village of Mahisa : taluka Báwisi, Mahi Kánta Agency.

The station consists of a tower of sun-dried bricks and mud cement, enclosing a central, perforated pillar of masonry 24.2 feet in height, with an arched aperture on the E. side for access to the lower mark. The earthquake of the 31st December 1858 displaced the upper mark, and a new mark, 0.8 of an inch to S.W. of the original, was made, both marks have circles engraved round them. The observations refer to the new mark. The directions and distances of the circumjacent villages are:-Katana N., mile $\frac{1}{\frac{1}{2}}$; Kaklia W., mile 1; and Bársída N.W., mile 1.
XIV. Blagwánji Tower Station, lat. $23^{\circ} 0^{\prime}$, long. $73^{\circ} 2^{\prime}$ —observed at in 1858 -stands within the limits of and about a mile $\mathbf{S}$. of the village from which it has been named: taluka Kapadwanj, district Kaira.

The station consists of a tower of sun-dried bricks and mud cement, enclosing a central, perforated pillar of masonry $23 \cdot 12$ feet in height, with an aperture on the N . side for access to the lower mark.
XV. Rundan Tower Station, lat. $22^{\circ} 53^{\prime}$, long. $72^{\circ} 57^{\prime}$-observed at in 1858 -stands about $\frac{1}{3}$ of a mile N. of the village of Rundan, and $4 \frac{3}{4}$ miles N.N.E. of the large village of Súnj : taluka Mehmadabad, district Kaira.

The station consists of a tower of sun-dried bricks and mud cement, enclosing a central, perforated pillar of burnt bricks and morter, 23.04 feet in height, which has a mark at the level of the ground and another at top; access to the lower mark being obtained by an aperture on the N . side of the tower. The directions and distances of the circumjacent villages are :-Bilia Muwára W., mile $\frac{1}{\frac{1}{2}}$; Jália N.N.E., mile $\frac{3}{4}$; Kaloli S.W., miles $1 \frac{1}{4}$; and Sarasauni (on the Watrak river) W.N.W., miles $2 \frac{1}{2}$.
XVI. Mirzápur Tower Station, lat. $22^{\circ} 59^{\prime}$, long. $72^{\circ} 53^{\prime}$-observed at in 1852 and 1858 -is situated on a sandy hill about a mile W. by S. of the village of Mirzápur, and 4 miles N.N.W. of the large village of Haldarwás on the right bank of the Wátrak river : taluka Daskroi, district Ahmedabad.

The station consists of a tower enclosing a solid pillar of masonry, 18 feet in height, which has a mark-stone at top and others at 3, 8, 13 and 18 feet respectively below it, the lowest being at the ground level. The directions and estimated distances of the circumjacent villages are :-Chándivel Bhátpura W.N.W., mile $\frac{s}{4}$; Warod (on the left bank of the Meswo river) W.S.W., miles $2 \frac{3}{4}$; Kániel S. by E., miles $1 \frac{1}{2}$; and Patáwat (on the western bank of the Wátaok) S.E., miles 3. When visited in 1858 in the course of the operations of this Series, no alteration appears to have been made in the construction of the station.
XVII. Jhinjhar Hill Station, lat. $22^{\circ} 53^{\prime}$, long. $72^{\circ} 48^{\prime}$-observed at in 1858 -is situated on a hill, about $1 \frac{1}{4}$ miles $S$. by $W$. of the village from which it takes its name, and $4 \frac{1}{2}$ miles $N$. of the city of Mehmadabad on the B.B. and C.I. Railway: taluka Mehmadabad, district Kaira.

The station consists of a tower of sun-dried bricks and mud cement, enclosing a central, perforated pillar of masonry 10.04 feet in height, with an aperture on the $N$. side for access to the ground level mark. The directions and distances of the circumjacent villages are :-Rohisa W. by N., mile 1; Dájipura E. by N., miles $1 \frac{1}{2}$; and Ghoráli on the Wárak river, S.S.E. miles 2.
XVIII. Wastrál Hill Station, lat. $22^{\circ} 59^{\prime}$, long. $72^{\circ} 43^{\prime}$-observed at in 1852 and 1858-1859-is situated on a small sandy hill about half a mile S.W. of the village of Wastrál, and $2 \frac{1}{2}$ miles W.N.W. of Gátrád on the western bank of the Khári river: 'Taluka Daskroi, district Ahmedabad.

The station consists of a solid platform 7 feet in height, enclosing a central, isolated pillar of masonry. The directions and distances of the circumjacent villages are :-Rámol S.W. by S., mile 1 ; Mehmadpur S.E. by S., miles $1 \frac{1}{4}$; Khokhra Mehmadabad W. by N., miles $3 \frac{4}{4}$ : and Wanch S.S.E., miles $3 \frac{1}{2}$.
XIX. Sanoda Tower Station, lat. $23^{\circ} 7^{\prime}$, long. $72^{\circ} 48^{\prime}$-observed at in 1852 -stands on the rising ground about $\frac{3}{4}$ of a mile S.E. of the village from which the station has been named. The whole country in the neighbourhood is much covered with large trees: sub-division Degám, Baroda State.

The station consists of a tower (most probably built in a manner similar to those at the adjacent stations) enclosing a solid pillar of masonry. Four small pillars have been built outside the tower, and the intersection of lines engraved on them will give the position of the upper station mark. Other mark-stones have also been fixed at every 5 feet in the pillar.
XX. Pálri Hill Station, lat. $22^{\circ} 54^{\prime}$, long. $72^{\circ} 34^{\prime}$-observed at in 1852 and 1858 -is on a sandy hill, about $\frac{3}{4}$ of a mile E. of the village from whieh it has been named, and $2 \frac{1}{4}$ miles $\mathbf{E}$. by $\mathbf{N}$. of the large village of Kásandra on the right bank of the Sábarmati river: taluka Daskroi, district Ahmedabad.

The station consists of a platform 6 feet in height, enclosing a central, isolated pillar of masonry. The directions and distances of the circumjacent villages are:-Miroli S., miles $1 \frac{3}{4}$; Giramtha S.E. by E., miles 24 ; and Ord N.E. by E., miles $1 \frac{18}{4}$.
XXI. Sola Tower Station, lat. $23^{\circ} 5^{\prime}$, long. $72^{\circ} 34^{\prime}$-observed at in 1852 -is situated on a small sandy hill about a mile N.E. of the village of Sola, 200 yards S. of a Bar or Banyan tree, and $1 \frac{1}{8}$ miles due N. of mile post No. 318 of the B.B. and C.I. Railway: taluka Sánand, district Ahmedabad.

The station consists of a tower 25 feet in height, enclosing a pillar of masonry in which mark-stones have been placed at every 5 feet. Four small pillars are built outside on the production of the diagonal lines of the tower, and the intersection of the lines on these will give the position of the upper mark. The village of Gotha lies to N.E. about $\frac{3}{4}$ of a mile, and the city of Ahmedabad to S.E., abuut 6 miles.
XXII. Sánand Tower Station, lat. $22^{\circ} 59^{\prime}$, long. $72^{\circ} 25^{\prime}$-observed at in 1852 -is situated on a small hill, about a mile W. of the large and well known town of Sánand, and about 4.5 feet $\mathbf{E}$. of a large temple called Hazari Máta. The hill is formed by the ruins of some old buildings: taluka Sánand, district Ahmedabad.

The station consists of a tower 12 feet in height, enclosing a pillar of masonry in which three mark-stones have been fixed. The tower is towards the N.E. corner of the temple, and the mark is $49 \cdot 2$ feet from the S. E. corner and $45 \cdot 9$ feet from the N. E. coruer, measured at the height of the top of the tower, equivalent to a height of 9.9 feet measured on the corner of the temple.
XXIII. Hajipur Hill Station, lat. $23^{\circ} 9^{\prime}$, long. $72^{\circ} 26^{\prime}$-observed at in 1852 -is situated on a hill, about $1 \frac{1}{8}$ miles $S$. W. of the village from which the station takes its name, and the same distance N. N. E. of the village of Thol: taluka Kadi of the Gaek war's territory.

The station consists of a platform about 5 feet in height, the lower mark is engraved on a large stone embedded in masonry.
XXIV. Khoraj Tower Station, lat. $23^{\circ} 2^{\prime}$, long. $72^{\circ} 17^{\prime}$-observed at in 1852 -stands on a mound on the northern edge of a small tank, about $1 \frac{1}{2}$ miles E. of the village of Khoraj Nándoda, and $2 \frac{1}{2}$ miles W. by S. of the Railway Station of Chárori on the B.B. and C.I. Line: Gaekwar's territory.

The station consists of a tower of sun-dried bricks and mud cement, faced with burnt bricks, 18 feet in height, enclosing a central pillar of burnt bricks and mortar. When again visited in $1875-76$ by Captain Baird the station was found tolerably perfect, but the upper mark-stone had disappeared : the upper course of masonry was imperfect, but one portion of it appeared to be about the level of the upper mark-stone. The directions and distances of the circumjacent villages are:-Kalána E.S.E., mile 1; Shiawára S., miles 24 ; Chárori E.N.E., miles 2; and Sutárki N., miles $2 \frac{1}{2}$.
XXV. Wádrora Tower Station, lat. $23^{\circ} 11^{\prime}$, long. $72^{\circ} 15^{\prime}$-observed at in 1852 -stands on a mound some 12 feet in height, at the N. E. corner of a small tank, about $\frac{3}{4}$ of a mile E. by S. of Wárora village: and $2 \frac{1}{4}$ miles E. of Kádipur : Kadi taluka of the Gaekwar's territory.

The station consists of a tower 12 feet in height, enclosing a pillar of masonry, the upper 5 feet of which is isolated. The directions and distances of the circumjacent villages are :-Melaj S. W. by W., miles $2 \frac{8}{4}$; and Warkharia S. by W., miles $1 \frac{3}{4}$.
XXVI. Hasalpur Tower Station, lat. $23^{\circ} 5^{\prime}$, long. $72^{\circ} 7^{\prime}$-observed at in 1852 -stands on the northwestern of two mounds which are on the N. E. margin of a large tank, the other mound having a ruined temple on it, It is about 3 miles S. E. by S. of the town of Viramgám : taluka Viramgám, district Ahmedabad.

[^45]XXVII. Thuleta Tower Station, lat. $22^{\circ} 57^{\prime}$, long. $72^{\circ} 9^{\prime}$-observed at in 1852 -stands on the eastern bank of a large tank which lies immediately N. of the village of Thuleta, and about 250 yards $\mathbf{S}$. W. of the south-western bank of Hir tank : taluka Viramgám, district Alımedabad.

The station consists of a tower of sun-dried bricks and mud cement, 16 feet in height, enclosing a central pillar of masonry. The directions and distances of the circumjacent villages are:-Wása N., miles 2; Wásan E. N. E., miles 24 ; Asalgám, miles 3 ; and Jetapur S. S. E., miles $3 \frac{3}{4}$.
XXVIII. Kárigángar or Khárigángard Tower Station, lat. $22^{\circ} 58^{\prime}$, long. $72^{\circ} 1^{\prime}$-observed at in 1852stands on a mound some 12 feet high on the S . E. corner of a tank, about a mile N. of Khárigangard village and 2 miles S. of that of Vitalgarh or Wátu : taluka Vithalgarh, district Jhalawad.

The station consists of a tower of sun-dried bricks and mud cement, faced with burnt bricks, 12 feet in height, enclosing a central pillar of burnt bricks and mortar, with marks at every 5 feet of height. The directions and distances of the circumjacent villages are :-Kalánpura N. E., miles $2 \frac{3}{4}$; Kamijla S. E. by E., miles 34 ; and Wardla S. S. E., miles 3.
XXIX. Por or Porda Tower Station, lat. $23^{\circ} 7^{\prime}$, long. $71^{\circ} 55^{\prime}$-observed at in 18.52 -stands on a mound on the S. E. corner of the tank, about 200 yards S. of Porda village, and $\frac{13}{4}$ miles S.W. by W. of the Railway Station of Jhúnd on the B. B. and C. I., Railway: taluka Bajána, district Jhalawad.

The station consists of a tower $13 \cdot 2$ feet in height. The directions and distances of the circumjacent villages are :-Charáda E. S. E., miles $1 \frac{1}{2}$; Khákharla or Jorawárapura N. N. W., miles 2; and Shedla W. N. W., miles $2 \frac{3}{4}$.
XXX. Ingrori or Ingrodi Tower Station, lat. $22^{\circ} 57^{\prime}$, long. $71^{\circ} 51^{\prime}$-observed at in 1852 -stands on the western bank of a tank, about $1 \frac{1}{4}$ miles S. by E. of Ingrori village, and $3 \frac{1}{4}$ miles W. of the Railway Station of Lilápur on the B. B. and C. I. Line : taluka Lakhtar, district Jhalawad.

The station, a tower of sun-dried bricks and mud cement, faced with burnt bricks, enclosing a central pillar of burnt bricks, was 16 feet in height in March 1852. In August of the sume year it appears to have been raised 8 feet 5 inches and again in December a further addition of 10 feet was made; it has marks at the top, bottom and intermediately. The directions and distances of the circumjacent villages are :-Kesaria S.S.W., miles 2 ; Shaulána W. by N., miles 2 ; aud Kárela N.E., miles 2 â.
XXXI. Degám Tower Station, lat. $23^{\circ} 5^{\prime}$, long. $71^{\circ} 42^{\prime}$-observed at in 1852 and 1853 -stands on the bank of a small tank in the plain south of the village of Degám, about 8 miles W . by S . of the town of Bajána and $3 \frac{1}{2}$ miles W.N.W. of Pipli village: taluka Bajána, district Jhalawad.


#### Abstract

The station consists of a tower enclosing a central pillar 40 feet in height. "The upper mark which was used for the signals for the Por observation of season 1851-52 and all the connecting stations of 1852-53 was 12 feet lower than the present one. Outer marks had been fixed, the intersection of which defined the position of the old one, but the mark from which the final angles were observed was found to differ $1 \cdot 27$ inches N. W. from that, or in a line forming an azimuth of $126 \frac{1}{2}^{\circ}$ less than Por." The size of pillar did not admit of a new mark being made which would agree with the old, and it has been necessary to apply to the angles observed at the surrounding stations, corrections to reduce them to the present upper mark. The directions and distances of the circumjacent villages are:-Degam N., miles 2 ; Bharáda W.S.W., miles 44 ; and Dhrumat S. by W., miles 34.


XXXII. Charári Tower Station, lat. $22^{\circ} 55^{\prime}$, long. $71^{\circ} 38^{\prime}$ —observed at in 1852 -stands on the eastern bank of a small dry tank on the rising ground about 2 miles W.S.W. of the village of Charari, and $3 \frac{3}{4}$ miles N. by E. of the town of Sitha on metalled road from Dhrángadra: taluka Dhrángadra, district Jhalawad.


#### Abstract

The station cousists of a tower half solid and half hollow, built of stones and mud cement, 13 feet square and 30 feet in height, having a pillar of stone and mortar in its centre. The station as built in the previous season was only 22 feet in height and consisted of a solid tower of loose stones, enclosing a central pillar of stone and mortar. The directions and distances of the circumjacent villages are:-Bharad S. by E., miles $2 \frac{1}{8}$; Hámpur S.W. by W., miles $1 \frac{8}{4}$; and Lawána N.W. by N., miles 3.


XXXIII. Dhrángadra Tower Station, lat. $23^{\circ} 1^{\prime}$, long. $71^{\circ} 31^{\prime}$-observed at in 1852 -stands on a rocky table-land, about 2 miles N. of the town of Dhrángadra: taluka Dhrángadra, district Jhalawad.

The station consists of a tower of loose stones 16 feet in height, enclosing a central pillar of stone and mortar. The directions and distances of the circumjacent villages are:-Isadara (on the right bank of the Phulka river) E.N.E., miles 2 $2 \frac{1}{\frac{2}{2}}$; Haripur E.S.E., miles $3 \frac{1}{4}$; Rájpur W. by S., miles $3 \frac{1}{2}$; and Sathapur N.W. by N., miles 4.
XXXIV. Nárechána or Nárisána Tower Station, lat. $22^{\circ} 53^{\prime}$, long. $71^{\circ} 25^{\prime}$-observed at in 1853 stands on a small rocky hill near intersection of roads, and about $\frac{1}{4}$ of a mile N . of the country road connecting the villages of Nárechána and Kodh : taluka Sáyla, district Jhalawad.

The station consists of a tower of loose stones with a broad base, 22 feet in height, enclosing a central pillar of stone and mortar. The directions and distances of the circumjacent villages are :-Nárechána E.S.E., miles $2 \frac{1}{8}$; Gájanwáo N.E. by N., miles $2 \frac{3}{4}$; Kodh W. by N., miles $4 \frac{1}{8}$; and Rauliawadar S. by E., miles $3 \frac{1}{8}$.
XXXV. Kuária or Kowaria Tower Station, lat. $23^{\circ} 1^{\prime}$, long. $71^{\circ} 20^{\prime}$-observed at in 1852 -stands on the rising ground about $1 \frac{1}{2}$ miles $\mathbf{N}$. by E. of the small village of Kuária, and 7 miles E. of the town of Halwad: taluka Dhrángadra, district Jhalawad.

The station consists of a tower of loose stones 16 feet in height, enclosing a central pillar of stone masonry, the upper 5 feet of which is isolated. The directions and distances of the circumjacent villages are:-Pandhara W.N.W., miles 2; Pipalia E.N.E., miles 24 ; Chúli E. by S., miles $3 \frac{3}{4}$; and Butora N.N.W., miles 3.
XVIII.-( Of the Kattywar Meridional Series ). Chalarwa or Charádwa Tower Station, lat. $22^{\circ} 57^{\prime}$, long. $71^{\circ} 6^{\prime}$-observed at in 1852, 1854 and 1856 -stands on the bank of a small dry tank near junction of roads from Kariana, Suswáo and Chalarwa, and about $2 \frac{3}{4}$ miles N.E. of the town of Chalarwa: taluka Dhrángadra, district Jhalawad.

The station consists of a tower of stones set in mud cement, 11 feet square and 16 feet in height, enclosing a pillar of stone and mortar. Four pillars are built outside the tower, and the intersection of the lines engraved on them indicated the position of the upper mark on which the theodolite was centered; the mark at the ground level is 0.65 of an inch to E. of the upper one. When again visited in 1856, the upper mark-stone was found displaced by 0.95 of an inch to N.E., but no statement of any alteration in the construction of the station is forthcoming. The directions and distances of the circumjacent villages are :-Suswáo N.E. by N., miles $3 \frac{1}{4}$; and Kariana S.E. by S., miles $2 \frac{1}{8}$.
XXI.—(Of the Kattywar Meridional Series). Sápakra Tower Station, lat. $22^{\circ} 52^{\prime}$, long. $71^{\circ} 17^{\prime}$ observed at in 1853-stands on the rising ground south of the village of Sápakra: taluka Dhrángadra, district Jhalawad.

The station consists of a tower of loose stones with a broad base, 26 feet in height, enclosing a pillar of stone and lime cement. The directions and distances of the circumjacent villages are:-Bhalgámda N.W., miles 34; Digaria W. by S., miles 3 ; Katewalia E.S.E., miles 2t ; and Chitrori (on the right bank of the Bámbhan river) S. by W., miles $2 \lambda$.

## GUZERAT LONGITUDINAL SERIES.

PRINCIPAL TRIANGULATION. OBSERVED ANGLES.

## At IX (Karsod)

February 1862; observed by Lieutenant C. T. Haig, R.E., with Troughton and Simms' 18-inch Theodolite No. 2.

| Angle between | $303^{\circ} 21^{\prime} 123^{\circ} 21^{\prime}$ | $13^{\circ} 32^{\prime}$ | $\begin{aligned} & \text { Circle r } \\ & 193^{\circ} 32^{\prime} \end{aligned}$ | readings, $83^{\circ} 43^{\prime}$ | telesco <br> $263^{\circ} 43^{\prime}$ | pe being $153^{\circ} 48^{\prime}$ | $\begin{gathered} 5 \text { sst on } \\ 333^{\circ} 48^{\prime} \end{gathered}$ | $\begin{aligned} & \text { XIII } \\ & 223^{\circ} 59^{\circ} \end{aligned}$ |  | $294{ }^{\circ} 10^{\prime}$ | $114^{\circ} 10^{\prime}$ | $M=$ Mean of Groups <br> $w_{0}=$ Relative Weight <br> C = Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| XIII \& I | " " | " | " | " | " | " | " | " | " | " | " | $\begin{aligned} & M=45^{\prime \prime} \cdot 88 \\ & w=1 \cdot 3 \mathbf{I} \\ & \frac{1}{w}=0 \cdot 76 \\ & C=5^{\circ} 39^{\prime} 45^{\prime \prime} \cdot 88 \end{aligned}$ |
|  | $\begin{array}{ll} h_{45} \cdot 40 & h_{48} \cdot 17 \\ h_{45} .87 & h_{48} \cdot 33 \end{array}$ | $\begin{aligned} & h_{44} \cdot 80 \\ & h_{45} 73 \end{aligned}$ | $\begin{aligned} & h_{47} \cdot 20 \\ & h_{46} \cdot 37 \end{aligned}$ | $\begin{aligned} & h 42 \cdot 37 \\ & h 41.60 \end{aligned}$ | $\begin{array}{r} l 50 \cdot 90 \\ l \\ 75 \cdot 77 \end{array}$ | $\begin{aligned} & l \\ & 50.20 l \\ & l \\ & 51.60 \end{aligned}$ | $\begin{aligned} & l 44 \cdot 17 \\ & l \\ & l 3.80 \\ & l \end{aligned}$ | $\begin{aligned} & l 43.40 \\ & l \\ & l 443 \end{aligned}$ | $\begin{aligned} & l \\ & l \\ & l \\ & l \mathbf{4 2} \cdot 60 \end{aligned}$ | $\begin{aligned} & l 46 \cdot 47 \\ & l \\ & \hline 45.14 \end{aligned}$ | $\begin{aligned} & l \\ & 45^{\circ} \circ 0 \\ & l \end{aligned}$ |  |
|  | $45.64 \quad 48.25$ | $45 \cdot 26$ | $46 \cdot 79$ | 41*98 | 51•34 | $50 \cdot 90$ | 43.98 | 43.87 | 42.25 | $45 \cdot 80$ | 44.54 |  |

## At XIII (Indráwan)

February 1862 ; observed by Lieutenant C. T. Haig, R.E., with Troughton and Simms' 18-inch Theodolite No. 2.

| Angle between | Circlc readings, telescope being set on II |  |  |  |  |  |  |  |  |  |  |  | $M=$ Mean of Groups <br> ${ }^{2}=$ Relative Weight <br> C $=$ Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $0^{\circ} 1^{\prime}$ | $180^{\circ} 1^{\prime}$ | $70^{\circ} 11^{\prime}$ | $250^{\circ} 12^{\prime}$ | $140^{\circ} 22^{\prime}$ | $320^{\circ} 22^{\prime}$ | $210^{\circ} 28^{\prime}$ | $30^{\circ} 28^{\prime}$ | $280^{\circ} 39^{\prime}$ | $100^{\circ} 39^{\prime}$ | $350^{\circ} 50^{\prime}$ | $170^{\circ} 50^{\prime}$ |  |
| II \& I |  <br>  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =66^{\prime \prime} \cdot 23 \\ w & =0 \cdot 8 \mathrm{I} \\ \frac{1}{w} & =1 \cdot 23 \\ C & =77^{\circ} \quad 9^{\prime} \end{aligned} 6^{\prime \prime} \cdot 23 \$ 10$ |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | $\begin{array}{lll}66.53 & 65.42 & 64.09\end{array}$ |  |  | 68.95 | 64.56 | 59.66 | $66 \cdot 38$ | 62.00 | 71.80 | 73.52 | $66 \cdot 37$ | 65.48 |  |

Nors.-Stations IX and XIII appertain to the Khanpisura Meridional Series.



## At II (Tharkheri)-(Continued).



## At III (Kuwása)

February 1862 ; observed by Lieutenant C. T. Haig, R.E., with Troughton and Simms' 18-inch Theodolite No. 2.


Note. -Station XIII appertains to the Khánpisura Meridional Series.

| At XIII (Indráwan)-(Continued). |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Angle between | Circle readings, telescope being set on II <br> $0^{\circ} 1^{\prime} \quad 180^{\circ} 1^{\prime} \quad 70^{\circ} 11^{\prime} \quad 250^{\circ} 12^{\prime} \quad 140^{\circ} 22^{\prime} \quad 320^{\circ} 22^{\prime} \quad 210^{\circ} 28^{\prime} \quad 30^{\circ} 28^{\prime} 280^{\circ} 39^{\prime} \quad 100^{\circ} 39^{\prime} 350^{\circ} 50^{\prime} 170^{\circ} 50^{\prime}$ |  |  |  |  |  |  |  |  |  |  | $M=$ Mean of Groups <br> ${ }^{20}=$ Relative Weight <br> $C=$ Concluded Angle |
| I \& IX |  <br>  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =57^{\prime \prime} \cdot 35 \\ w & =0 \cdot 93 \\ \frac{1}{w} & =1 \cdot 07 \\ C & =39^{\circ} 39^{\prime} 57^{\prime \prime} \cdot 35 \end{aligned}$ |
|  | $58 \cdot 47$ | $56 \cdot 49$ | 59.61 | $60 \cdot 24 \quad 62 \cdot 65$ | 57.66 | $58 \cdot 70$ | 59\%97 | 50.00 | $5^{17} 71$ | $56 \cdot 14$ | 56.52 |  |

## At I (Kaula-ka-Máta)

February 1862; observed by Lieutenant C. T. Haig, R.E., with Troughton and Simms' 18-inch T'heodolite No. 2.

| $\begin{gathered} \text { Angle } \\ \text { hetween } \end{gathered}$ between | $0^{\circ} 1^{\prime}$ | $180^{\circ} 1^{\prime}$ | $70^{\circ} 11^{\prime}$ | Circle <br> $250^{\circ} 11^{\prime}$ | reading <br> $140^{\circ} 22^{\prime}$ | s , telesc <br> $320^{\circ} 23^{\prime}$ | ope bein $210^{\circ} 28^{\prime}$ | get on <br> $30^{\circ} 28^{\prime}$ | $\begin{aligned} & \text { n IX } \\ & 280^{\circ} 39^{\prime} \end{aligned}$ |  | $350^{\circ} 50^{\prime}$ |  | $M=$ Mean of Groups <br> $v=$ Relative Weight <br> $C=$ Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IX \& XIII | " | " | * | " | " | " | " | " | " | " | " | " | $\begin{aligned} & M=18^{\prime \prime} \cdot 25 \\ & w=1 \cdot 17 \\ & \frac{1}{w}=0 \cdot 85 \\ & C=83^{\circ} 40^{\prime} 188^{\prime \prime} \cdot 25 \end{aligned}$ |
|  | h15.70 $h 15.80$ | $\begin{aligned} & h 13.90 \\ & l 13.43 \end{aligned}$ | $\begin{array}{lll} l & 18 \cdot 10 \\ l \\ l & 7 \times 03 \end{array}$ | $\begin{aligned} & l \pm 5.34 \\ & l \pm 6.67 \end{aligned}$ | $\begin{aligned} & h 18.20 \\ & h 18.97 \end{aligned}$ | $\begin{aligned} & h 13.27 \\ & h \pm 3.24 \end{aligned}$ | $\begin{aligned} & h 20 \cdot 40 \\ & h 21 \cdot 13 \end{aligned}$ | $\begin{aligned} & h 21 \cdot 13 \\ & h 21 \cdot 73 \end{aligned}$ | $\begin{aligned} & l 1780 \\ & l 18.40 \end{aligned}$ | $\begin{aligned} & l 23.80 \\ & l 23.86 \end{aligned}$ | l 19.94 $l$ 20.60 | $\begin{array}{ll} l & 20 \cdot 10 \\ l & 19 \cdot 43 \end{array}$ |  |
|  | 15.75 | 13.67 | 17.56 | 16.01 | 18.58 | 13.26 | 20.76 | 21*43 | 18.10 | 23.83 | $20 \cdot 27$ | 19.77 |  |
| XIII \& II |  <br>  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =29^{\prime \prime} \cdot 94 \\ w & =1 \cdot 66 \\ \frac{1}{w} & =0 \cdot 60 \\ \boldsymbol{C} & =5^{\circ} 36^{\prime} 29^{\prime \prime} \cdot 94 \end{aligned}$ |
|  | 28.22 | 34.72 | 3435 | 29.85 | 27.82 | 30'18 | 28.07 | 26.47 | $30 \cdot 07$ | 28.20 | 28.61 | 32'72 |  |
| II \& III |  <br>  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=21^{\prime \prime} \cdot 5^{8} \\ & w=1 \cdot 5^{8} \\ & \frac{1}{w}=0 \cdot 63 \\ & C=40^{\circ} 39^{\prime} 21^{\prime \prime} \cdot 58 \end{aligned}$ |
|  | $22^{\circ} \mathrm{O} 5$ | 1765 | 21.64 | 24.93 | 24.58 | 22.12 | 19.58 | 24.79 | 23.95 | $16 \cdot 70$ | $20 \cdot 10$ | 20.87 |  |

## At II (Tharkheri)

February 1862; observed by Lieutenant C. T. Haig, R.E., with Troughton and Simms' 18-inch Theodolite No. 2.

| Angle between | Circle readings, telescope being set on V |  |  |  |  |  |  |  |  |  |  |  | $M=$ Mean of Groups <br> $w=$ Relative Weight <br> $C=$ Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $0^{\circ} 1^{\prime}$ | $180^{\circ} 1^{\prime}$ | $70^{\circ} 11^{\prime}$ | $250^{\circ} 12^{\prime}$ | $140^{\circ} 22^{\prime}$ | $320^{\circ} 23^{\prime}$ | $210^{\circ} 28^{\prime}$ | $30^{\circ} 28^{\prime}$ | $280^{\circ} 39^{\prime}$ | $100^{\circ} 39^{\prime}$ | $350^{\circ} 50^{\prime}$ | $170^{\circ} 50^{\prime}$ |  |
| V \& IV | " | " | " | " | " | " | " | " | " | " | " | " | $\begin{aligned} & M=3^{\prime \prime \cdot} \cdot 13 \\ & w=0 \cdot 99 \\ & \frac{1}{w}=1 \cdot 01 \\ & C=82^{\circ} 39^{\prime} 38^{\prime \prime} \cdot 13 \end{aligned}$ |
|  | $\begin{aligned} & h 37^{\prime} 90 \\ & h \\ & h 9^{\circ} 00 \end{aligned}$ | $\begin{aligned} & h 32 \cdot 63 \\ & h 33 . \\ & \hline \end{aligned}$ | $\begin{aligned} & l 38.73 \\ & l \\ & l 9.60 \end{aligned}$ | $\begin{aligned} & h 36 \cdot 20 \\ & h 35 \cdot 13 \end{aligned}$ | $\begin{array}{r} l 36 \cdot 60 \\ l \\ 36 \cdot 20 \end{array}$ | $\begin{aligned} & l 35 \cdot 63 \\ & l \\ & 33^{\prime} 76 \end{aligned}$ | $\begin{array}{r} l 40 \cdot 07 \\ h 40 \cdot 27 \end{array}$ | $\begin{aligned} & l 38 \cdot 96 \\ & l \\ & 40 \cdot 36 \end{aligned}$ | $\begin{aligned} & l 42.50 \\ & l 41.20 \end{aligned}$ | $\begin{aligned} & l 45 \cdot 67 \\ & l 44^{\cdot 23} \end{aligned}$ | $\begin{aligned} & l 33.46 \\ & l \\ & 34.94 \end{aligned}$ | $\begin{aligned} & l 33 \cdot 60 \\ & l \\ & l \\ & 39^{\circ} \circ \end{aligned}$ |  |
|  | 38.45 | 33.07 | 39.16 | $35 \cdot 67$ | $36 \cdot 40$ | $34 \cdot 69$ | 40'17 | 39.66 | 41.85 | 44.95 | 34.20 | 39.34 |  |

Nore.—Stations IX and XIII appertain to the Khánpisura Meridional Series.

## At II (Tharkheri)-(Continued).



## At III (Kuwása)

February 1862 ; observed by Lieutenant C. T. Haig, R.E., with Troughton and Simms' 18-inch Theodolite No. 2.


Note.-Station XIII appertains to the Khánpisura Meridional Series.

| At XIII (Indráwan)-(Continued). |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Angle between |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $I$ \& IX |  <br>  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =57^{\prime \prime} \cdot 35 \\ w & =0 \cdot 93 \\ \frac{1}{w} & =1 \cdot 07 \\ C & =39^{\circ} 39^{\prime} 57^{\prime \prime} \cdot 35 \end{aligned}$ |
|  | 58.47 | 56.49 | 59.61 | $60 \cdot 24$ | $62 \cdot 65$ | $57 \cdot 66$ | 58.70 | $59 \% 7$ | 50.00 | 51`71 | 56:14 | 56.52 |  |
| Februaı' 1862; observed by Lieutenant C. T. Haig, R.E., with Troughton and Simms' 18-inch Theodolite No. 2. |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\underset{\text { between }}{\text { Angle }}$ | $0^{\circ} 1^{\prime}$ | Circle readings, telescope being set on IX |  |  |  |  |  |  |  | $100^{\circ} 39^{\prime}$ | $350^{\circ} 50^{\prime}$ | $170^{\circ} 50^{\prime}$ | $M=$ Mean of Groups <br> $v=$ Relative Weight <br> $C=$ Concluded Angle |
| IX \& XIII |  <br>  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=18^{\prime \prime} \cdot 25 \\ & w=1 \cdot 17 \\ & \frac{1}{w}=0 \cdot 85 \\ & C=83^{\circ} 40^{\prime} 18^{\prime \prime} \cdot 25 \end{aligned}$ |
|  | 1575 | 13.67 | 17.56 | 16.01 | 18.58 | $13 \cdot 26$ | $20 \cdot 76$ | 21.43 | $18 \cdot 10$ | 23.83 | 20.27 | 19.77 |  |
| XIII \& II |  <br>  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =29^{\prime \prime} \cdot 94 \\ w & =1 \cdot 66 \\ \frac{1}{w} & =0 \cdot 60 \\ C & =5^{\circ} 3^{6^{\prime}} 29^{\prime \prime} \cdot 94 \end{aligned}$ |
|  | 28.22 | $34^{\prime 72}$ | 34.35 | 29.85 | 27.82 | 30.18 | 28.07 | 26.47 | $30 \cdot 07$ | 28.20 | 28.61 | $32 \cdot 72$ |  |
| II \& III |  <br>  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=21^{\prime \prime} \cdot 5^{8} \\ & w=1 \cdot 5^{8} \\ & \frac{1}{w}=0 \cdot 63 \\ & C=40^{\circ} 39^{\prime} 21^{\prime \prime} \cdot 5^{8} \end{aligned}$ |
|  | 22.05 | 17.65 | 21.64 | 24*93 | 24.58 | 22.12 | 19.58 | $24 * 79$ | 23.95 | 16.70 | 20'10 | $20 \cdot 87$ |  |
| February 1862 ; observed by Lieutenant C. T. Haig, R.E., with Troughton and Simms' 18-inch Theodolite No. 2. |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Angle between | $0^{\circ} 1^{\prime}$ | Circle readings, telescope being set on $\nabla$ |  |  |  |  |  |  |  |  |  |  | $M=$ Mean of Groups <br> vo - Relative Weight <br> $C=$ Concluded Angle |
| V \& IV |  <br>  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=38^{\prime \prime} \cdot 13 \\ & w=0 \cdot 99 \\ & \frac{1}{w}=1 \cdot 01 \\ & C=82^{\circ} 39^{\prime} 38^{\prime \prime \cdot 1} 3 \end{aligned}$ |
|  | 38.45 | 33.07 | 39'16 | $35 \cdot 67$ | $36 \cdot 40$ | 34.69 | 40'17 | 39.66 | 41.85 | 44.95 | 34.20 | 39.34 |  |

Nors.-Stations IX and XIII appertain to the Khánpisura Meridional Serics.

## At II (Tharkheri)-(Continued).



## At III (Kuwása)

February 1862 ; observed by Lieutenant C. T. Haig, R.E., with Troughton and Simms' 18-inch Theodolite No. 2.


Note.-Station XIII appertains to the Khánpisura Meridional Series.

## At III (Kuwása)-(Continued).

| $\underset{\text { Angle }}{\text { Angen }}$ | $205^{\circ} 45$ | Circle readings, telescope being set on I |  |  |  |  |  |  |  |  |  |  | $\boldsymbol{M}=$ Mean of Groups <br> $w_{0}=$ Relative Weight <br> C = Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $25^{\circ} 43^{\prime}$ | $275{ }^{\circ} 53^{\circ}$ | $95^{\circ} 53^{\circ}$ | $346^{\circ} 19$ | 166 ${ }^{\prime}{ }^{\prime}$ | $56^{\circ} 10^{\prime}$ | $236^{\circ} 10^{\prime}$ | $126^{\circ} 21^{\prime}$ | $306^{\circ} 21^{\prime}$ | $196^{\circ} 32^{\prime}$ | $16^{\circ} 32^{\prime}$ |  |
| IV \& VII | - | - | - | - | " | * | " | - | - | " | " |  | $\begin{aligned} M & =39^{\prime \prime} \cdot 5^{6} \\ w & =1 \cdot 5^{2} \\ \frac{\mathbf{I}}{w} & =0 \cdot 66 \\ C & =53^{c} 48^{\prime} 39^{\prime \prime} \cdot 5^{\prime} \end{aligned}$ |
|  | $\begin{aligned} & h+0 \cdot 97 \\ & h_{40 \cdot 47} \end{aligned}$ | $\begin{array}{ll} h_{41} \cdot 87 \\ 4_{4} \cdot 3+ \end{array}$ | $\begin{aligned} & h_{40.07} \\ & h_{42} \cdot 03 \end{aligned}$ | $\begin{aligned} & h+3 \cdot 20 \\ & h+2 \cdot 20 \end{aligned}$ | $\begin{array}{lll} l & 39.90 & l \\ l & 30.90 & l \end{array}$ | $\begin{aligned} & 44.93 l \\ & 44^{\circ}+1 \end{aligned}$ | $\begin{aligned} & 40 \cdot 17 \\ & 39 \cdot 36 \end{aligned}$ | $\begin{aligned} & l \\ & l \\ & l \\ & 38.80 \end{aligned}$ | $\begin{aligned} & h 3777 \\ & h 37.27 \end{aligned}$ | $\begin{aligned} & h 35 \cdot 37 \\ & h 35.40 \end{aligned}$ | $\begin{aligned} & h 36 \cdot 46 \\ & h 37 \cdot 57 \end{aligned}$ | $\begin{aligned} & h_{3} 37.06 \\ & h_{36} 50 \end{aligned}$ |  |
|  | $40^{\prime 72}$ | 4211 | $41^{\circ} 05$ | 4270 | 3940 | $4+66$ | 3977 | 3760 | $37 \times 52$ | $35 \cdot 38$ | $37 \times 02$ | 3678 |  |

## At IV (Mehrása)

February 1862; observed by Lieutenant C. T. Haig, R.E., with Troughton and Simms' 18-inch Theodolite No. 2.


## At V (Pípliabán)

February 1862; observed by Lieutenant C. T. Haig, R.E., with Troughton and Simms' 18-inch Theodolite Na. 2.


## At VI (Samohi)

January 1862; observed by Lieutenant C. T. Haig, R.E., with Troughton and Simms' 18-inch Theodolite No. 2.



## At IV (Mehwása)

February 1862; observed by Lieutenant C. T. Haig, R.E., with Troughton and Simms' 18-inch Theodolite No. 2.

| Angle between | $0^{\circ} 1^{\prime}$ | $180^{\circ} 1^{\prime}$ | $70^{\circ} 11^{\prime}$ | $\begin{aligned} & \text { Circle } \\ & 250^{\circ} 12^{\prime} \end{aligned}$ | reading <br> $140^{\circ} 22^{\prime}$ | $3{ }^{\text {a }}$ telesc | ope bein <br> $210^{\circ} 28^{\prime}$ | g set on $30^{\circ} 28^{\prime}$ | $\begin{aligned} & \text { III } \\ & 280^{\circ} 39^{\prime} \end{aligned}$ | $100^{\circ} 39^{\prime}$ | $350^{\circ} 50^{\prime}$ | $170^{\circ} 50^{\prime}$ | $\boldsymbol{M}=$ Mean of Groups <br> $w^{2}=$ Relative Weight <br> $C=$ Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| III \& II | " | " | " | " | " | " | " | " | " | " | " | " | $\begin{aligned} & M=32^{\prime \prime} \cdot 03 \\ & w=1 \cdot 29 \\ & \frac{1}{w}=0 \cdot 78 \\ & C=92^{\circ} 4^{\prime} 32^{\prime \prime \cdot} \cdot 03 \end{aligned}$ |
|  | $\begin{aligned} & h 29.57 \\ & h 28.40 \end{aligned}$ | $\begin{aligned} & h 30 \cdot 36 \\ & h 29 \\ & h 20 \end{aligned}$ | $\begin{aligned} & h 34.27 \\ & h 32 \cdot 63 \end{aligned}$ | $\begin{aligned} & h 31 \cdot 00 \\ & h 30 \cdot 67 \end{aligned}$ | $\begin{aligned} & l 34.57 \\ & l 33.23 \end{aligned}$ | $\begin{aligned} & l 25 \cdot 83 \\ & l 25 \cdot 33 \end{aligned}$ | $\begin{aligned} & l \\ & l \\ & l \\ & l \\ & 35^{\prime} \cdot 44 \\ & \hline 10 \end{aligned}$ | $\begin{aligned} & l \\ & l \\ & l 3 \cdot 73 \\ & l 2 \cdot 46 \end{aligned}$ | $\begin{aligned} & l \\ & h 35 \cdot 66 \\ & h 35 \cdot 96 \end{aligned}$ | $\begin{aligned} & h 32 \cdot 47 \\ & h 32 \cdot 46 \end{aligned}$ | $\begin{aligned} & h 33.37 \\ & h 33.73 \end{aligned}$ | $\begin{aligned} & h 31 \cdot 23 \\ & h 29.87 \end{aligned}$ |  |
|  | 28.99 | 29.88 | 33.45 | $30 \cdot 83$ | 33.90 | 25.58 | $36 \cdot 27$ | $33^{\prime} 10$ | 35 ${ }^{1} 1$ | 32.46 | 33.55 | $30 \cdot 55$ |  |
| II \& V |  <br>  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =43^{\prime \prime} \cdot 02 \\ w & =1 \cdot 1 \mathbf{1} \\ \frac{\mathbf{I}}{w} & =0 \cdot 90 \\ C & =42^{\circ} 19^{\prime} 43^{\prime \prime} \cdot 02 \end{aligned}$ |
|  | $47 \cdot 87$ | 46•80 | $45 \cdot 82$ | 4151 | 39770 | $43 \cdot 27$ | $38 \cdot 89$ | 42.25 | $38 \cdot 86$ | $45 \cdot 43$ | 39.94 | 45.85 |  |
| VI \& VII | Circle readings, telescope being set on VI |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =64^{\prime \prime} \cdot 46 \\ w & =1 \cdot 62 \\ \frac{1}{w} & =0 \cdot 62 \\ C & =92^{\circ} 6^{\prime} 4^{\prime \prime \prime} \cdot 4^{6} \end{aligned}$ |
|  |  <br>  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 65.09 | $66 \cdot 59$ | 66.29 | 67.8I | 65.99 | 67:20 | 66.29 | 63.31 | 62.57 | $59^{\circ} 50$ | 61.73 | 61/15 |  |
| VII \& III |  <br>  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=21^{\prime \prime} \cdot 5^{8} \\ & w=2 \cdot 04 \\ & \frac{\mathbf{I}}{w}=0 \cdot 49 \\ & C=64^{\circ} 34^{\prime} 21^{\prime \prime} \cdot 58 \end{aligned}$ |
|  | 1740 | 2「97 | 19.04 | 19.68 | 20'93 | 25.54 | 21'70 | $20^{\circ} 02$ | 21.25 | 23.54 | 22.83 | $25^{\circ} 00$ |  |

## At $V$ (Pípliabán)

February 1862; observed by Lieutenant C. T. Haig, R.E., with Troughton and Simms' 18-inch Theodolite Na. 2.


## At VI (Samohi)

January 1862 ; observed by Lieutenant C. T. Haig, R.E., with Troughton and Simms' 18-inch Theodolite No. 2.



## At IV (Mehwása)

February 1862; observed by Lieutenant C. T. Haig, R.E., with Troughton and Simms' 18-inch Theodolite No. 2.

| $\underset{\text { Anglie }}{\text { bet }}$ | $0^{\circ} 1^{\prime} \quad 1801^{\prime} 1^{\prime} \quad 70^{\circ} 11^{\prime} \quad 20$ | $\begin{array}{r} \text { Circle } \mathrm{r} \\ 250^{\circ} 12^{\prime} \end{array}$ | readings $140^{\circ} 22^{\prime}$ | , telesco $320^{\circ} 22^{\prime}$ | pe being <br> $210^{\circ} 28^{\prime}$ | g set on $30^{\circ} 28^{\prime}$ | III $280^{\circ} 39^{\prime}$ |  |  |  | $M=$ Mean of Groups <br> ${ }_{c}^{w}=\begin{gathered}\text { Relative Weight } \\ \text { Concluded } A n g l e\end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| III \& II | $h 29.57 h 30.36$ h 34.27 h $28.40 h 29^{\prime} 40 h 32.63$ | $h_{3} 3 \cdot \circ 0$ $h_{30.67}$ |  | $\begin{aligned} & l_{258}^{258} 9 \\ & l 25.33 \\ & l \end{aligned}$ | $\begin{aligned} & 37.44 l \\ & 35^{\prime} 10 l \end{aligned}$ | $\begin{aligned} & l \\ & l \\ & 3^{2} \cdot 73 \\ & \hline \end{aligned}$ | $\begin{aligned} & l_{h 3: 66}^{35} \\ & h_{35} .96 \end{aligned}$ |  | $\begin{aligned} & h 33 \cdot 37 \\ & h 337 \\ & h 33 \end{aligned}$ | $\begin{aligned} & h 31 \cdot 23 \\ & h 29.87 \end{aligned}$ | $\begin{aligned} & M=32^{\prime \prime} \cdot 03 \\ & w=1 \cdot 29 \\ & \frac{1}{w}=0 \cdot 78 \\ & C=92^{\circ} 4^{\prime} 32^{\prime \prime} \cdot 03 \end{aligned}$ |
|  | 28.99 $\quad 29.88 \quad 33.45$ | $30 \cdot 83$ | 33'90 | 25.58 | $36 \cdot 27$ | 33'10 | 35•8! | 32:46 | 33.55 | 30.55 |  |
| II \& V |  <br>  |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =43^{\prime \prime} \cdot 02 \\ w & =1 \cdot 1 \mathbf{1} \\ \frac{1}{w} & =0 \cdot 90 \\ C & =42^{\circ} 19^{\prime} 43^{\prime \prime} \cdot 02 \end{aligned}$ |
|  | $\begin{array}{llll}47 \cdot 87 & 46 \cdot 80 & 45 \cdot 82\end{array}$ | 4151 | 39\%70 | $43^{27}$ | 38.89 | 42.25 | 38.86 | 4543 | 39.94 | 45.85 |  |
| VI \& VII | $203^{\circ} 20^{\prime} \quad 23^{\circ} 20^{\prime} \quad 273^{\circ} 31^{\prime}$ | Circle $93^{\circ} 31^{\prime}$ | reading <br> $343^{\circ} 42^{\prime}$ | s, telesco <br> $163^{\circ} 42^{\prime}$ | pe bein $53^{\circ} 47^{\prime}$ | gg set on $233^{\circ} 48^{\prime}$ | $\begin{aligned} & \mathrm{n} \text { VI } \\ & 123^{\circ} 59^{\prime} \end{aligned}$ | $303^{\circ} 59^{\prime}$ | $194^{\circ} 9^{\prime}$ | $14^{\circ} 10^{\prime}$ | $\begin{aligned} & M=64^{\prime \prime} \cdot 46 \\ & w=1 \cdot 62 \\ & \frac{1}{w}=0 \cdot 62 \\ & C=92^{\circ} 6^{\prime} 4^{\prime \prime} \cdot 46 \end{aligned}$ |
|  | $h 64.67 \quad h 67.36 \quad h 66 \cdot 20$ $h 65^{\circ} 50 h 65^{\circ} 83 \quad h 66 \cdot 37$ | h 68 •10 h $67 \times 53$ | $\begin{gathered} " \\ l 65 \cdot 82 \\ l 66 \cdot 16 \end{gathered}$ |  | $\begin{aligned} & 26 \cdot 67 \\ & 265^{\circ} 90 \end{aligned}$ |  | $\begin{aligned} & l 62.47 \\ & h 62 \cdot 66 \end{aligned}$ |  | $\begin{aligned} & h 61 \cdot 23 \\ & h 62 \cdot 24 \\ & h \end{aligned}$ | $\begin{gathered} \prime \prime \\ h 61 \cdot 10 \\ h 6 \mathrm{I}_{1} \cdot 20 \end{gathered}$ |  |
|  | $65^{\circ} 09 \quad 66 \cdot 59 \quad 66 \cdot 29$ | 6781 | 65.99 | 67.20 | 66:29 | 63:31 | 62.57 | 59.50 | 6r'73 | 6r15 |  |
| VII \& III |  <br>  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=21^{\prime \prime} \cdot 5^{8} \\ & w=2 \cdot 04 \\ & \frac{\mathbf{I}}{w}=0 \cdot 49 \\ & C=64^{\circ} 34^{\prime} 21^{\prime \prime} \cdot 58 \end{aligned}$ |
|  |  | 19.68 | $20 \cdot 93$ | $25 \cdot 54$ | 2170 | 20.02 | 21.25 | 23.54 | 22:83 | $25^{\circ} 00$ |  |

## At V (Pípliabán)

February 1862 ; observed by Lieutenant C. T. Haig, R.E., with Troughton and Simms' 18-inch Theodolite Na. 2.


## At VI (Samohi)

January 1862; observed by Lieutenant C. T. Haig, R.E., with Troughton and Simms' 18-inch Theodolite No. 2.



## At VIII (Kápri)-(Continued).



## At IX (Punákot)

January 1862 ; observed by Lieutenant C. T. Haig, R.E., with Troughton and Simms' 18-inch Theodolite No. 2.


Notre-Stations XIII and XVII appertain to the Singi Meridional Serien.

## At XIII (Patángri)

* January 1861; † December 1861, and January 1862; observed by Lieutenant C..T. Haig, R.E., with Troughton and Simms' 18-inch Theodolite No. 2.


Notz.-Stations XII, XIII, XIV, XVII and XVIII appertain to the Singi Meridional Series. B.M. denotea Referring Mark.


[^46]| At XIV (Kágarol)-(Continued). |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { Angle } \\ \text { betweon } \end{gathered}$ | Circle readings, telescope being set on XIII <br> $71^{\circ} 52^{\prime} \quad 251^{\circ} 52^{\prime} \quad 82^{\circ} 3^{\prime} \quad 262^{\circ} 3^{\prime} \quad 92^{\circ} 14^{\prime} \quad 272^{\circ} 14^{\prime} \quad 102^{\circ} 20^{\prime} \quad 282^{\circ} 20^{\prime} \quad 112^{\circ} 30^{\prime} \quad 292^{\circ} 30^{\prime} 122^{\circ} 41^{\prime} \quad 302^{\circ} 41^{\prime}$ |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & \mathcal{M}=\text { Mean of Groups } \\ & w=\text { Relative Woight } \\ & C=\text { Concluded Angle } \end{aligned}$ |
| XVIII \& XVI |  <br>  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=13^{\prime \prime} \cdot 37 \\ & w=0 \cdot 83 \\ & \frac{1}{w}=1 \cdot 20 \\ & C=76^{\circ} 1^{\prime} 13^{\prime \prime} \cdot 37 \end{aligned}$ |
|  |  | 12'70 1 | 12.08 | 938 | 16.94 | $9 \cdot 12$ | $9 \cdot 90$ | 943 | 12:88 | 1273 | 1790 |  |
| XVI \& XV |  <br>  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=49^{\prime \prime} \cdot 33 \\ & w=1 \cdot 24 \\ & \frac{1}{w}=0 \cdot 80 \\ & C=53^{\circ} 22^{\prime} 49^{\prime \prime} \cdot 33 \end{aligned}$ |
|  | $\begin{array}{llll}48.06 & 48.43\end{array}$ | 51.04 | 48.43 | 55:83 | 4774 | 5160 | 51.68 | 50:28 | 48.55 | 4711 | 43.25 |  |
| XV \& XII |  <br>  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=59^{\prime \prime} \cdot 93 \\ & w=1 \cdot 6 \mathbf{1} \\ & \frac{1}{w}=0 \cdot 6 \mathbf{2} \\ & \boldsymbol{C}=47^{\circ} 51^{\prime} 59^{\prime \prime} \cdot 93 \end{aligned}$ |
|  | $59.54 \quad 57 \times 13$ | 58.95 | 59.65 | $55^{\circ} 9$ | 60.42 | 58.71. | 62.77 | 5731 | 64:19 | 59.96 | 64.53 |  |
| XII \& R.M. |  <br>  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=11^{\prime \prime} \cdot 76 \\ & w=1 \cdot 68 \\ & \frac{1}{w}=0 \cdot 60 \\ & C=15^{\circ} 4^{\prime} 11^{\prime \prime} \cdot 76 \end{aligned}$ |
|  | 113551593 | 12*44 1 | 13.15 | 10.40 | 12'71 | 779 | $6 \cdot 70$ | $12 \cdot 69$ | $10 \cdot 13$ | 13.08 | 1475 |  |
| At XVIII (Rencha) <br> * December 1860; and $\dagger$ January 1861; observed by Lieutenant C. T. Haig, R.E., with Troughton and Simms' 18-inch Theodolite No. 2. |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\underset{\text { between }}{\text { Angle }}$ | Circle readings, telescope being set on XVI <br>  |  |  |  |  |  |  |  |  |  |  | $M=$ Moan of Groups <br> ${ }^{*}=\begin{aligned} & \text { Relative Weight } \\ & \text { Concluded } A \text { ngle }\end{aligned}$ |
| XVI \& XIV |  <br>  227.23 |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=31^{\prime \prime} \cdot 67 \\ & w=1 \cdot 14 \\ & \frac{1}{w}=0 \cdot 88 \\ & C=64^{\circ} \cdot 44^{\prime} 31^{\prime \prime} \cdot 67 \end{aligned}$ |
|  | $36 \cdot 02 \quad 32 \cdot 26 \quad 27$ | 27.54 | 3491 | $26 \cdot 59$ | 34:16 | 27.87 | 29.91 | $32 \cdot 40$ | $31^{2} 3$ | 3147 | 35.72 |  |
| XIV\& XVII |  <br>  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=49^{\prime \prime} \cdot 69 \\ & w=0 \cdot 92 \\ & \frac{1}{w}=1 \cdot 09 \\ & C=92^{\circ} 33^{\prime} 49^{\prime \prime} \cdot 69 \end{aligned}$ |
|  | $\begin{array}{llllllllllll}45 \cdot 97 & 46 \cdot 36 & 46 \cdot 22 & 45 \cdot 98 & 49 \cdot 55 & 44 \cdot 93 & 52 \cdot 22 & 54.82 & 52 \cdot 36 & 52 \cdot 93 & 51 \cdot 10 & 53 \cdot 80\end{array}$ |  |  |  |  |  |  |  |  |  |  |  |

Nots.-R.M. denotes Referring Mark. Slatiote XII, XIV, XV, XVI, XVII and XVIII appertain to the Singi Meridional Series.

## At XVIII (Rencha)-(Continued).

| Angle between | $0^{\circ} 1^{\prime}$ | $180{ }^{\circ} 1^{\prime}$ | $10^{\circ} 11^{\prime}$ | Circle $190^{\circ} 11^{\prime}$ | readings $20{ }^{\circ} 22^{\circ}$ | , telesco | pe bein | g'set on $210^{\circ} 28^{\prime}$ | $\begin{aligned} & \text { XIV } \\ & 40^{\circ} 39^{\prime} \end{aligned}$ |  | $50^{\circ} 50^{\circ}$ | $230^{\circ} 50^{\prime}$ | $M=$ Mean of Groups <br> ${ }^{\infty}=$ Relative Weight <br> C = Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\text { XIV } \stackrel{\dagger}{\&} \text { XIII }$ |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=54^{\prime \prime \cdot} \cdot 90 \\ & w=2 \cdot 40 \\ & \frac{\mathbf{I}}{w}=0 \cdot 42 \\ & C=46^{\circ} 13^{\prime} 54^{\prime \prime} \cdot 90 \end{aligned}$ |
|  |  <br>  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 51994 | 51*50 | $53 \cdot 73$ | 55'17 | $55^{\prime} 40$ | 55'15 | $57 \cdot 66$ | 56.57 | 58.41 | 55'17 | 56.06 | 52.07 |  |

## At XII (Játhrábhor)

$\ddagger$ December 1860; and §January 1861 ; observed by Lieutenant C. T. Haig, R.E., with Troughton and Simms' 18-inch Theodolite No. 2.


## At XVI (Ghoráráo)

Janvary 1859 ; observed by Captain D.J. Nasmyth, R.E., with Troughton and Simms' 18-inch Theodolite No. 2.


Norm.-Stations XII, XIII, XIV, XV, XVI and XVIII appertain to the Singi Meridional Series.


Elorz.-Stations XII, XIV, XV, XVI and XVIII appertain to the Singi Meridional Serieo.

## At XV (Wardhari)-(Continued).

| Angle between | $\mathbf{3 2 8}{ }^{\circ} \mathbf{8 7}$ | $148^{\circ} 87^{\prime}$ | $338^{\circ} 87^{\prime}$ | Circle $158^{\circ} 37^{\prime}$ | reading $348^{\circ} 58^{\prime}$ | s , telesc $168^{\circ} 58^{\prime}$ | ope bein $359^{\circ} 4^{\prime}$ | get on <br> $179^{\circ} 4^{\prime}$ | $\begin{aligned} & \text { XII } \\ & 9^{\circ} 15^{\prime} \end{aligned}$ | $189^{\circ} 15^{\prime}$ | $19^{\circ} 26^{\prime}$ | $199^{\circ} 6^{\prime}$ | $M=$ Mean of Groups <br> ${ }^{25}$ - Relative Weight <br> $C=$ Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| XVI \& X | " | " | " | " | " | " | " | " | " | " | " | " | $\begin{aligned} & M=43^{\prime \prime} \cdot 29 \\ & w=0 \cdot 70 \\ & \frac{1}{w}=1 \cdot 43 \\ & C=43^{\circ} 8^{\prime} 43^{\prime \prime} \cdot 29 \end{aligned}$ |
|  | $\begin{aligned} & h 34.94 \\ & h 36.04 \end{aligned}$ | $\begin{aligned} & h 43 \cdot 17 \\ & h 44 \cdot 43 \end{aligned}$ | $\begin{array}{ll} l & 42.74 l \\ l 42.67 & l \end{array}$ | $\begin{aligned} & l 46 \cdot 00 \\ & l 46.77 \end{aligned}$ | $\begin{aligned} & l \\ & l \\ & l \\ & 46.50 \\ & \hline \end{aligned}$ | $\begin{aligned} & l 48.23 \\ & l \\ & 46.74 \end{aligned}$ | $\begin{aligned} & h 44^{\circ} 00 \\ & h 46 \cdot 30 \end{aligned}$ | $\begin{aligned} & h_{51} 5 \cdot 04 \\ & h_{49} \cdot 30 \end{aligned}$ | $\begin{aligned} & h_{43} \cdot 80 \\ & h_{41} \cdot 87 \end{aligned}$ | $\begin{aligned} & h_{41} \times 50 \\ & h_{39} \cdot 94 \end{aligned}$ | $\begin{aligned} & h 40 \cdot 26 \\ & h 37.54 \end{aligned}$ | $\begin{aligned} & h 40 \cdot 53 \\ & h 39^{\circ} 14 \end{aligned}$ |  |
|  | $35^{*} 49$ | $43 \cdot 80$ | 42.7! | $46 \cdot 38$ | $46 \cdot 02$ | $47 \cdot 48$ | 45.15 | $50 \cdot 17$ | 42:84 | 40.72. | 38.90 | 39.83 |  |

## At X (Jhiria)

January 1859; observed by Captain D.J. Nasmyth, R.E., with Troughton and Simms' 18-inch Theodolite No. 2.

| Angle betweon | $0^{\circ}{ }^{\prime}$ | $180^{\circ} 0^{\prime}$ | $10^{\circ} 11^{\prime}$ | $\begin{gathered} \text { Circle } \\ 190^{\circ} 11^{\prime} \end{gathered}$ | reading <br> $20^{\circ} 22^{\prime}$ | s , telesc $200^{\circ} 22^{\prime}$ | pe bein $30^{\circ} 28^{\prime}$ | g set on $210^{\circ} 28^{\prime}$ | XV $40^{\circ} 39^{\prime}$ | $220^{\circ} 39^{\prime}$ | $50^{\circ} 50^{\prime}$ | $230^{\circ} 50^{\prime}$ | $M=$ Mean of Groups <br> $w_{0}=$ Relative Weight <br> C = Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| XV \& XVI |  |  | " | " | " |  | " |  |  | , |  |  | $\begin{aligned} M & =51^{\prime \prime} \cdot 93 \\ w & =0 \cdot 86 \\ \frac{1}{w} & =1 \cdot 16 \\ C & =82^{\circ} \cdot 30^{\prime} 51^{\prime \prime} \cdot 93 \end{aligned}$ |
|  | $\begin{aligned} & l 52.70 \\ & l 50.34 \\ & l 51.40 \end{aligned}$ |  | $\begin{aligned} & 48 \cdot 00 \\ & 48 \cdot 63 \end{aligned}$ | $\begin{aligned} & l 48 \cdot 17 \\ & l \\ & l 8 \cdot 90 \end{aligned}$ | $\begin{aligned} & 49 \cdot 66 \\ & l \\ & 70.03 \end{aligned}$ | $\begin{aligned} & l 47 \cdot 13 \\ & l \\ & 45 \cdot 26 \end{aligned}$ | $\begin{aligned} & h 55 \cdot 60 \\ & h 55.30 \end{aligned}$ | $\begin{aligned} & l \\ & l \\ & l \\ & l \\ & 56 \cdot 93 \\ & \hline .94 \end{aligned}$ | $h 54 \times 56$ $h 4.83$ | $h 55 \cdot 26$ | h $54 \times 10$ | $h 54.30$ $h 4444$ |  |
|  | 51.48 | $47 \cdot 44$ | $48 \cdot 32$ | $48 \cdot 53$ | 49.85 | $46 \cdot 19$ | $55^{\circ} 45$ | 56.94 | 54.69 | 5507 | 54778 | 5437 |  |
| XVI \& XI | $\begin{aligned} & l 28.06 \\ & l \\ & l \\ & l \\ & l \end{aligned} 2 \cdot 8.30$ |  | $\begin{aligned} & 33.33 \\ & l \\ & l \\ & 33.47 \end{aligned}$ | $\begin{array}{ll} l & 3 \mathrm{r} \cdot 0 \\ l & 32 \cdot 46 \end{array}$ | $\begin{aligned} & l \\ & 36 \cdot 27 \\ & l \\ & 35 \cdot 17 \end{aligned}$ | $\begin{aligned} & l 32 \cdot 63 \\ & l \\ & l \\ & 34^{\circ} \circ 4 \end{aligned}$ | 29.07 30.50 | 31.57 32.16 | $\begin{aligned} & \hbar 33 \cdot 94 \\ & h 344^{\circ} 57 \end{aligned}$ | $\begin{aligned} & h_{32} 3 \cdot \dot{74} \\ & h_{2} \cdot 33 \end{aligned}$ | $\begin{aligned} & h 35 \cdot 40 \\ & 334.27 \end{aligned}$ | $\begin{aligned} & h 3 \mathrm{r} \cdot 80 \\ & h 33.46 \end{aligned}$ | $\begin{aligned} M & =33^{\prime \prime} \cdot 38 \\ w & =1 \cdot 25 \\ \frac{1}{w} & =0 \cdot 80 \\ C & =57^{\circ} 4^{\prime} 33^{\prime \prime} \cdot 39 \end{aligned}$ |
|  | 29.39 | $41^{\circ 09}$ | $33 \cdot 40$ | 31'73 | 3572 | 33.34 | 29.78 | 31.87 | 34.25 | 32.54 | 34.83 | 32.63 |  |
| XI \& XII | $l 20.37$ <br> $l 18.03$ <br> $l 18.84$ | $\begin{array}{ll} l & 5.04 \\ l & 6.34 \\ h & 7.63 \\ h & 6.37 \end{array}$ | $\begin{aligned} & l 15.93 \\ & l 15.63 \end{aligned}$ | $\begin{aligned} & l 15.50 \\ & l \pm 4.77 \end{aligned}$ | $\begin{aligned} & l \mathbf{1 2 . 7 3} \\ & l 14.37 \end{aligned}$ | $\begin{aligned} & l 12 \cdot 37 \\ & l 11 \cdot 70 \end{aligned}$ | h14:43 $h 1507$ | $l$ 1 13.10 13.20 | $\begin{array}{r} h 15 \cdot 63 \\ h 14.53 \end{array}$ | $\begin{aligned} & h_{16} 1676 \\ & h_{15} \cdot 97 \end{aligned}$ | $\begin{aligned} & h_{13} 07, \\ & h_{14} .26 . \end{aligned}$ | $h 15 \cdot 86$ $h 14 \times 54$ | $\begin{aligned} & M=14^{\prime \prime \prime} \cdot 18 \\ & w=1 \cdot 27 \\ & \frac{1}{w}=0 \cdot 79 \\ & C=58^{\circ} 34^{\prime} 14^{\prime \prime} \cdot 18 \end{aligned}$ |
|  | 19.08 | 6.35 | 15.78 | $15 \cdot 13$ | 13.55 | 12.04 | 14.75 | 13.15 | 15.08 | 16.36 | 13.67 | 15.20 |  |

## At XI (Poera)

January 1859; observed by Captain D. J. Nasmyth, R.E., with Troughton and Simms' 18-inch Theodolite No. 2.

| Angle between | $228{ }^{\circ} 28^{\prime}$ | $48^{\circ} 23^{\prime}$ | $238^{\circ} 34^{\prime}$ | Circle <br> $58^{\circ} 34^{\prime}$ | readings <br> $248^{\circ} 45^{\prime}$ | s, telesc <br> $68^{\circ} 45^{\prime}$ | $258^{\circ} 51^{\prime}$ | $78^{\circ} 51^{\prime}$ | $\begin{aligned} & \text { XIIII } \\ & 269^{\circ} 2^{\prime} \end{aligned}$ |  | $279^{\circ} 12^{\prime}$ | $99^{\circ} 12^{\prime}$ | $M=$ Mean of Groups <br> w = Relative Weight <br> C = Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| XIII \& XII | -" | " | " | " | " | " | , | " | " | " | " |  | $\begin{aligned} M & =14^{\prime \prime} \cdot 92 \\ w & =2 \cdot 88 \\ \frac{I}{w} & =0 \cdot 35 \\ C & =62^{\circ} 5^{\prime} 14^{\prime \prime} \cdot 92 \end{aligned}$ |
|  | $\begin{array}{ll} l \\ l & 16.33 \\ 16.37 \end{array}$ | $l 16.07$ <br> $l 14.06$ <br> $l 1406$ | $l 16 \cdot 00$ $l 16 \cdot 16$ <br> $l 14.96$ | $l$ 13.20 13.70 | $l 16.23$ $l 15$ 15 | $l 17.10$ 11540 | $l 17.67$ $l 18.30$ | $l$ | $l$ 1 $l$ 12 12 | $\begin{aligned} & l 14.00 \\ & l 11.63 \\ & l 11.97 \end{aligned}$ | $l 16.00$ $l 15.80$ | $\begin{array}{cc}l & 15 \% 87 \\ l & 17 \%\end{array}$ |  |
|  | 16.35 | 1473 | 1571 | 13.45 | 1570 | 16.25 | $17 \times 9$ | 1127 | 12.76 | 12.53 | 15.90 | 16.45 |  |

Nots.-Stations XV and XVI appertain to the Singi Meridional Sories.


EOTz.-Stations XII, XIV, XV, XVI and XVIII appertain to the Singi Moridional Series.

## At XV (Wardhari)-(Continued).

| Angle between | $328^{\circ} 37{ }^{\prime}$ | $148^{\circ} 87{ }^{\prime}$ | $388^{\circ} \mathbf{3 7}$ | Circle <br> $158^{\circ} 37^{\prime}$ | reading <br> $348^{\circ} 58^{\prime}$ | $168^{\circ} 58^{\prime}$ | pe bein <br> $359^{\circ} 4^{\prime}$ | g set on <br> $179^{\circ} 4^{\prime}$ | $\begin{aligned} & \text { XII } \\ & 9^{\circ} 15^{\prime} \end{aligned}$ | $189^{\circ} 15^{\prime}$ | $19^{\circ} 26^{\prime}$ | $199^{\circ} 26^{\prime}$ | $M=$ Mean of Groups <br> 20 - Relative Weight <br> $C=$ Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| XVI \& X | " | " | " | " | * | " | " | " |  | " | " | " | $\begin{aligned} & M=43^{\prime \prime} \cdot 29 \\ & w=0 \cdot 70 \\ & \frac{1}{w}=1 \cdot 43 \\ & C=43^{\circ} 8^{\prime} 43^{\prime \prime} \cdot 29 \end{aligned}$ |
|  | $\begin{aligned} & h 34.94 \\ & h 36 \cdot 04 \end{aligned}$ | $\begin{aligned} & h 43 \cdot 17 \\ & h_{44 \cdot 43} \end{aligned}$ | $\begin{aligned} & l 42.74 \\ & l \\ & l 2 \end{aligned}$ | $\begin{aligned} & l 46 \cdot 00 \\ & l 46 \cdot 77 \end{aligned}$ | $\begin{aligned} & l 46 \cdot 50 \\ & l 45.53 \end{aligned}$ | $\begin{aligned} & 48 \cdot 23 \\ & 46 \cdot 74 \end{aligned}$ | $\begin{aligned} & \hbar 44^{\circ} \circ 0 \\ & h 4_{6} \cdot 30 \end{aligned}$ | $\begin{aligned} & h_{51} \cdot 04 \\ & h_{49} \cdot 30 \end{aligned}$ | $\hbar_{43} h_{41} \cdot 80$ | $\begin{aligned} & h_{41} \cdot 50 \\ & h_{39} 94 \end{aligned}$ | $\begin{aligned} & h 40 \cdot 26 \\ & h 37.54 \end{aligned}$ | $\begin{aligned} & h 40 \cdot 53 \\ & h 39 \cdot 14 \end{aligned}$ |  |
|  | $35 * 49$ | $43 \cdot 80$ | 427! | $46 \cdot 38$ | $46 \cdot 02$ | 47*48 | $45^{\prime} 15$ | $50 \cdot 17$ | $42 \cdot 84$ | $40 \cdot 72$ | $38 \cdot 90$ | $39 * 3$ |  |

## At X (Jhiria)

January 1859; observed by Captain D.J. Nasmyth, R.E., with Troughton and Simms' 18-inch Theodolite No. 2.

| Angle between | $\sim^{\circ}{ }^{\circ}$ | $180^{\circ} 0^{\prime}$ | $10^{\circ} 11^{\prime}$ | $\begin{gathered} \text { Circle } \\ 190^{\circ} 11^{\prime} \end{gathered}$ | reading $20^{\circ} 22^{\prime}$ | s, telesc $200^{\circ} 22^{\prime}$ | ope bein <br> $30^{\circ} 28^{\prime}$ | $210^{\circ} 28^{\prime}$ | $\begin{aligned} & \text { XV } \\ & 40^{\circ} 39^{\prime} \end{aligned}$ | $222^{\circ} 39^{\prime}$ | $50^{\circ} 50^{\prime}$ | $230^{\circ} 50^{\prime}$ | $M=$ Mean of Groups <br> $v_{0}=$ Relative Weight <br> C = Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| XV \& XVI | " | " | " | " | " | " | " | " |  |  |  |  | $\begin{aligned} & M=51^{\prime \prime} \cdot 93 \\ & w=0 \cdot 86 \\ & \frac{1}{w}=1 \cdot 16 \\ & C=82^{\circ} \cdot 30^{\prime} 51^{\prime \prime} \cdot 93 \end{aligned}$ |
|  | $l 52.70$ | 47727 | 48.00 | $l 48.17$ | $l 49.66$ | $l{ }^{7} 4713$ | h55:60 | l 56.93 | h 54.56 | $h 55.26$ | 54.10 $h$ | 54.30 |  |
|  | $\begin{aligned} & l 5034 \\ & l 51: 40 \end{aligned}$ | $\begin{aligned} & l \\ & l \\ & h \\ & 47.80 \\ & \hline \end{aligned}$ | $l 48.63$ | 488 | 25003 | $45^{\circ} 26$ | h 55.30 | 56.94 | 54:83 | h 54.87 | $55^{\circ} 47$ h | 54.44 |  |
|  | 5148 | 47'44 | $48 \cdot 32$ | 48.53 | 49.85 | 46'19 | $55^{\circ} 45$ | 56.94 | 54.69 | $55 \% 7$ | 54.78 | 54.37 |  |
| XVI \& XI |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =33^{\prime \prime} \cdot 38 \\ w & =1 \cdot 25 \\ \frac{1}{w} & =0 \cdot 80 \\ C & =57^{\circ} 46^{\prime} 33^{\prime \prime} \cdot 39 \end{aligned}$ |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 29.39 | 41.09 | $33^{\prime} 40$ | 31*73 | $35^{72}$ | 33.34 | 29:78 | 31.87 | 34.25 | 32.54 | 34.83 | 32.63 |  |
| XI \& XII | ```l 18.84 h 7.63 h 6.37``` |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =14^{\prime \prime \prime} \cdot 18 \\ w & =1 \cdot 27 \\ \frac{1}{w} & =0 \cdot 79 \\ C & =58^{\circ} 34^{\prime} 14^{\prime \prime} \cdot 18 \end{aligned}$ |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | $19^{\circ} 08$ | $6 \cdot 35$ | 15.78 | 15•13 | 1355 | 12.04 | 14.75 | 13.15 | 15.08 | $16 \cdot 36$ | $13 \cdot 67$ | 15.20 |  |

## At XI (Poera)

January 1859; observed by Captain D.J. Nasmyth, R.E., with Troughton and Simms' 18-inch Theodolite No. 2.

| Angle between | $228^{\circ} 23^{\prime}$ | $48^{\circ} 23^{\prime}$ | $238^{\circ} 34^{\prime}$ | $\begin{aligned} & \text { Circle } \\ & 58^{\circ} 34^{\prime} \end{aligned}$ | reading <br> $248^{\circ} 45^{\prime}$ | s, telesc $68^{\circ} 45^{\prime}$ | ope bein <br> $258^{\circ} 51^{\prime}$ | $78^{\circ} 51^{\prime}$ | $\begin{aligned} & \text { XIIII } \\ & 269^{\circ} 2^{\prime} \end{aligned}$ |  | $279^{\circ} 12^{\prime}$ | $99^{\circ} 12^{\prime}$ | $M=$ Mean of Groups <br> wo Relative Weight <br> C = Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| XIII \& XII | ' " | " | " | " | * | " | " |  | " | " | " |  | $\begin{aligned} M & =14^{\prime \prime} \cdot 92 \\ w & =2 \cdot 88 \\ \frac{1}{w} & =0 \cdot 35 \\ C & =62^{\circ} 5^{\prime} 14^{N} \cdot 92 \end{aligned}$ |
|  | $l 16.33$ | $l 16.07$ | $l 16.00$ | $l 13.20$ | $l 16.23$ | $l 17$ 10' | $l 1767$ | $l 11 \cdot 80$ | $l 13.36$ | $l 14.00$ | $l 16.00$ | $l_{15.87}$ |  |
|  | $l 16.37$ | $\begin{aligned} & l 14.06 \\ & l 1406 \end{aligned}$ | $\begin{aligned} & l 16 \cdot 16 \\ & l 14: 96 \end{aligned}$ | $l 13.70$ | $l 1517$ | $l 1540$ | $l 18.30$ | $l 10 \cdot 74$ | $l 12 \cdot 16$ | $\begin{aligned} & l 11.63 \\ & l 11.97 \end{aligned}$ | $l 15.80$ | 71703 |  |
|  | 16.35 | 1473 | 1571 | 13.45 | 1570 | 16.25 | 1799 | 11.27 | 12.76 | 12.53 | $15 \% 90$ | 16.45 |  |

Nots.-Stations XV and XVI appertain to the Singi Meridional Sories.

| At XI (Poera)-(Continued). |  |  |
| :---: | :---: | :---: |
| $\begin{gathered} \text { Angle } \\ \text { betweon } \end{gathered}$ | Circle readings, telescope being set on XIII <br> $228^{\circ} 23^{\prime} 48^{\circ} 23^{\prime} \quad 238^{\circ} 34^{\prime} \quad 58^{\circ} 34^{\prime} \quad 248^{\circ} 45^{\prime} \quad 68^{\circ} 45^{\prime} \quad 258^{\circ} 51^{\prime} \quad 78^{\circ} 51^{\prime} \quad 269^{\circ} 2^{\prime} \quad 89^{\circ} 2^{\prime} \quad 279^{\circ} 12^{\prime} \quad 99^{\circ} 12^{\prime}$ | $\begin{aligned} & M=\text { Mean of Groupp } \\ & w=\text { Relative Woight } \\ & C=\text { Concluded Angle } \end{aligned}$ |
| XII \& X |  | $\begin{aligned} & M=62^{\prime \prime} \cdot 27 \\ & w=1 \cdot 09 \\ & \frac{1}{w}=0 \cdot 92 \\ & C^{-}=68^{\circ} 46^{\prime} 2^{\prime \prime} \cdot 27 \end{aligned}$ |
|  | $\begin{array}{lllllllllllll}64.79 & 67 \cdot 41 & 61.73 & 65 \cdot 15 & 58.61 & 64.53 & 56.05 & 58.92 & 61.01 & 62 \cdot 27 & 61.92 & 64.85\end{array}$ |  |
| X \& XVI |  <br>  | $\begin{array}{\|l\|} M=64^{\prime \prime} \cdot 30 \\ w=0 \cdot 83 \\ \frac{1}{w}=1 \cdot 20 \\ C=82^{\circ} 40^{\prime} 4^{\prime \prime} \cdot 30 \end{array}$ |
|  | $\begin{array}{lllllllllllll}64 \cdot 12 & 59.688 & 59.92 & 61.40 & 62 \cdot 46 & 58.80 & 69.40 & 67 \cdot 31 & 69.19 & 67.60 & 65 \cdot 48 & 66 \cdot 22\end{array}$ |  |
| January 1859; observed by Captain D. J. Nasmyth, R.E., with Troughton and Simms' 18-inch Theodolite No. 2. |  |  |
|  |  |  |  |
| Angle between | Circle readings, telescope being set on $\mathbf{X}$ <br>  |  <br>  |
| X\& XI |  <br>  | $\begin{aligned} & M=45^{\prime \prime} \cdot 00 \\ & w=\circ \cdot 95 \\ & \frac{1}{w}=1 \cdot 05 \\ & C=52^{\circ} 39^{\prime} 45^{\prime \prime} \cdot \circ 0 \end{aligned}$ |
|  |  |  |
| XI \& XIII |  <br>  | $\begin{aligned} & M=53^{\prime \prime} \cdot 77 \\ & w=\circ \cdot 94 \\ & \frac{1}{w}=1 \cdot 06 \\ & C=64^{\circ} 58^{\prime} 53^{\prime \prime} \cdot 77 \end{aligned}$ |
|  |  |  |
| XIII \& XIV |  <br>  | $\begin{aligned} & M=18^{\prime \prime} \cdot 93 \\ & w=1 \cdot 84 \\ & \frac{\mathbf{I}}{w}=\circ \cdot 54 \\ & C=63^{\circ} 3^{\prime} 18^{\prime \prime} \cdot 93 \end{aligned}$ |
|  | $\begin{array}{lllllllllllll}17.59 & 16.24 & 18.56 & 19.19 & 22.67 & 14.33 & 19.17 & 18.77 & 17.82 & 19.43 & 23.83 & 19.51\end{array}$ |  |

Note.-Station XVI appertains to the Singi Moridional Series.

## At XIII (Gohilia)

January 1859; observed by Captain D.J. Nasmyth, R.E., with Troughton and Simms' 18-inch Theodolite No. 2.


## At XIV (Bhagwánji)

December 1858; observed by Captain D.J. Nasmyth, R.E., with Troughton and Simms' 18-inch Theodolite No. 2.



## At XVI (Mirzápur)-(Continued).

$\dagger$ February 1852; observed by Lieutenant H. Rivers with Troughton and Sinms' 18-inch Theodolite No. 2. * December 1858; observed by Captain D. J. Nasmyth, R.E., with I'roughton and Sinims' 18-inch Theodolite No. 2.

| $\begin{gathered} \text { Angle } \\ \text { belween } \end{gathered}$ | $231^{\circ} 46^{\prime}$ | $51^{\circ} 46^{\prime}$ | $241^{\circ} 57^{\prime}$ | Circle $61^{\circ} 57^{\prime}$ | reading $252^{\circ} 8^{\prime}$ | telesco $72^{\circ} 8^{\prime}$ | pe bein <br> $262^{\prime} 14^{\prime}$ | $g$ set on $82^{2} 14^{\prime}$ | XIV <br> $272^{\circ} 25^{\prime}$ | $92^{\circ} 24^{\prime}$ | $282{ }^{\circ} 36^{\prime}$ | $102^{\circ} 35^{\prime}$ | $M=$ Mean of Groups <br> $10=$ Relative Weight <br> $C=$ Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| XV \& XVII | " | " | " | " | " | " | " | " | " | " | " | " | $\begin{aligned} & M=25^{\prime \prime} \cdot 55 \\ & w=1 \cdot 23 \\ & \frac{1}{w}=0 \cdot 81 \\ & C=68^{\circ} 7^{\prime} 25^{\prime \prime} \cdot 55 \end{aligned}$ |
|  |  <br>  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 2774 | 27.63 | 23.27 | 26.02 | 22.60 | 31*97 | $20 \cdot 48$ | 22.27 | 25.97 | 24.87 | 26.08 | $27 \cdot 67$ |  |
| XVII \& XVIII |  <br>  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=57^{\prime \prime} \cdot 54 \\ & w=2 \cdot 6 \mathbf{1} \\ & \frac{\mathbf{1}}{w}=0 \cdot 3^{8} \\ & C=56^{\circ} 29^{\prime} 57^{\prime \prime} \cdot 54 \end{aligned}$ |
|  | $55^{\circ} 10$ | $57 \cdot 27$ | 56•18 | 57.05 | 59.33 | 53.85 | 59.78 | 60'96 | 58.52 | 59.37 | 56.76 | 56.25 |  |
| $X_{X V I I I}^{\dagger} \& ~ X I X$ | Circle readings, telescope being set on XVIII |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=20^{\prime \prime} \cdot 96 \\ & w=2 \cdot 16 \\ & \frac{1}{w}=0 \cdot 46 \\ & C=63^{\circ} 32^{\prime} 20^{\prime \prime} \cdot 96 \end{aligned}$ |
|  | $0^{\circ} 2^{\prime}$ | $180^{\circ} 1^{\prime}$ | $10^{\circ} 13^{\prime}$ | $190^{\circ} 12^{\prime}$ | $20^{\circ} 20^{\prime}$ | $200^{\circ} 20^{\prime}$ | $30^{\circ} 30^{\prime}$ | $210^{\circ} 29^{\prime}$ | $40^{\circ} 38^{\prime}$ | $220^{\circ} 38^{\prime}$ | $50^{\circ} 50^{\prime}$ | $230^{\circ} 50^{\prime}$ |  |
|  | " |  |  |  |  |  |  |  |  |  |  |  |  |
|  | $h 18.00 \mathrm{~h}$ | h 18.56 | h 19.40 | 21.30 | $h 23.64$ | $h_{17} \cdot 67$ | h21.16 | $h 24 \cdot 20$ | $\begin{aligned} & h 22 \cdot 83 \\ & h 21 \cdot 83 \end{aligned}$ | $h 20 \cdot 13$ | $l 25 \cdot 10$ | $\begin{aligned} & l 23.57 \\ & l 24.30 \end{aligned}$ |  |
|  | 17.52 | 18.51 | 19.73 | 21.05 | 22.77 | 18.25 | $20 \cdot 96$ | 24.32 | 21.53 | 19.83 | 24.35 | 22.69 |  |

## At XVII (Jhinjhar)

December 1858; observed by Captain D. J. Nasmyth, R.E., with Troughton and Simms' 18-inch Theodolite No. 2.

| Angle between | $238{ }^{\circ} 55^{\prime} \quad 58^{\circ} 55^{\prime}$ | $249^{\circ} 6^{\prime}$ | Circle <br> $69^{\circ} 6^{\prime}$ | reading <br> $259^{\circ} 17^{\prime}$ | s, telesc <br> $79^{\circ} 17^{\prime}$ | ope bein <br> $269^{\circ} 23^{\prime}$ |  | $\begin{aligned} & \mathrm{n} X X \\ & 279^{\circ} 33^{\prime} \end{aligned}$ |  | $289^{\circ} 44^{\prime}$ | $109^{\circ} 44^{\prime}$ | $M=$ Mean of Groups <br> $v 0=$ Relative Weight <br> C = Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| XX \& XVIII | " " | " | " | " | " | " | " | " | " | " | " | $\begin{aligned} M & =5^{\prime \prime} \cdot 34 \\ w & =1 \cdot 41 \\ \frac{1}{w} & =0 \cdot 7 \mathbf{1} \\ C & =47^{\circ} \cdot 6^{\prime} \quad 5^{\prime \prime} \cdot 34 \end{aligned}$ |
|  | $\begin{array}{llll}h & 0.70 & h & 1.20\end{array}$ | $l 5.60$ | 2 4.60 | $l 5.56$ | $l 3.13$ | h 10. 26 | h $6 \cdot 96$ | h 8.77 | $l 8.06$ | $l 5.40$ | $l 5.14$ |  |
|  | $h 0.23 \mathrm{~h} 123$ | $l 3.84$ | $l 5.07$ | $l 6.00$ | $l \pm 77$ | h 9.20 | h 6'17 | h 9.86 | $l 7 \times 04$ | $l 7 \times 0$ | $l 5 \cdot 33$ |  |
|  | 0'47 1-21 | 4772 | $4 \cdot 84$ | 5788 | 2.45 | 973 | $6 \cdot 56$ | $9 \cdot 32$ | $7 \times 55$ | $6 \cdot 20$ | 523 |  |
| XVIII \& XVI |  <br>  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=24^{\prime \prime} \cdot 75 \\ & w=0 \cdot 68 \\ & \frac{1}{w}=1 \cdot 47 \\ & C=73^{\circ} 19^{\prime} 24^{\prime \prime} \cdot 75 \end{aligned}$ |
|  | 29'95 30'97 | 24.33 | 25.63 | 23.88 | 29.24 | 18.68 | 20•16 | 21.31 | $21^{\circ} \mathrm{O} 3$ | 22.90 | 28.88 |  |



| At XVIII (Wastrál)-(Continued). |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\underset{\substack{\text { Angle } \\ \text { botween }}}{ }$ |  |  |  |  |  |  |  |  |  |
| XX \& XIX |  |  |  |  |  |  |  |  | $\begin{aligned} & M=6^{\prime \prime} \cdot 56 \\ & w=1 \cdot 70 \\ & \frac{1}{w}=0 \cdot 59 \\ & C=89^{\circ} \cdot 2^{\prime} 6^{\prime \prime} \cdot 5^{6} \end{aligned} .$ |
|  | $\begin{array}{llll}6.95 & 9.93 & 6.05 & 8.59\end{array}$ | $7 \times 53$ 1091 | 4.18 | 402 | 2.81 | 4.42 | 4.64 | 870 |  |
| $\mathrm{XIX} \stackrel{*}{\&} \mathrm{XVI}$ |  <br>  |  |  |  |  |  |  |  | $\begin{aligned} & M=61^{\prime \prime} \cdot 87 \\ & w=2 \cdot 29 \\ & \frac{1}{w}=0 \cdot 44 \\ & C=56^{\circ} 19^{\prime} \mathbf{1}^{\prime \prime} \cdot 86 \end{aligned}$ |
|  | $\begin{array}{lllllllllllll}60 \cdot 10 & 59.15 & 64 \cdot 25 & 62 \cdot 72 & 65 \cdot 00 & 60 \cdot 35 & 64 \cdot 27 & 64 \cdot 66 & 61.41 & 60 \cdot 02 & 60 \cdot 93 & 59 & 62\end{array}$ |  |  |  |  |  |  |  |  |
| At XIX (Sanoda) <br> February 1852; observed by Lieutenant H. Rivers with Troughton and Simms' 18-inch Theodolite No. 2. |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
| $\underset{\substack{\text { Angle } \\ \text { between }}}{\text { a }}$ | Circle readings, telescope being set on XVI <br> $154^{\circ} 7^{\prime}, 834^{\circ} 7^{\prime} \quad 164^{\circ} 17^{\prime} \quad 344^{\circ} 17^{\prime} \quad 174^{\circ} 25^{\prime} \quad 354^{\circ} 25^{\prime} \quad 184^{\circ} 34^{\prime} \quad 4^{\circ} 34^{\prime} \quad 194^{\circ} 43^{\prime} \quad 14^{\circ} 43^{\prime} \quad 204^{\circ} 55^{\prime} \quad 24^{\circ} 55^{\prime}$ |  |  |  |  |  |  |  | $M=$ Mean of Groups $w=$ Relative Weightit <br> ${ }^{20}=\begin{gathered}\text { Ex } \\ C=\text { Rentive Weight } \\ \text { Concluded Angle }\end{gathered}$ |
| XVI \& XVIII |  <br>  |  |  |  |  |  |  |  | $\begin{aligned} & M=3^{\prime \prime \prime} \cdot 68 \\ & w=0^{\prime} \cdot 78 \\ & \frac{1}{w}=1 \cdot \cdot 28 \\ & C=60^{\circ} \quad 8^{\prime} 3^{\prime \prime \prime} \cdot 68 \end{aligned}$ |
|  | $\begin{array}{llllllllllllll}39.25 & 39.37 & 40.00 & 40.50 & 42.25 & 38.73 & 34.81 & 39.04 & 39.46 & 44^{\prime} \cdot 43 & 28.82 & 37.50\end{array}$ |  |  |  |  |  |  |  |  |
| XVIII \& XXI |  <br>  |  |  |  |  |  |  |  | $\begin{array}{\|l\|} \hline M=59^{\prime \prime} \cdot 95 \\ w=0 \cdot 5^{\mathrm{I}} \\ \frac{1}{w}=1 \cdot 98 \\ C=46^{\circ} 43^{\prime} 59^{\prime \prime} \cdot 95 \end{array}$ |
|  | $\begin{array}{lllllllllllll}58.90 & 68.95 & 56 \cdot 15 & 57.42 & 59.94 & 57.90 & 68.72 & 59.00 & 58 \cdot 98 & 57.45 & 63.39 & 52.64\end{array}$ |  |  |  |  |  |  |  |  |
| At XX (Pálri) <br> $\\|$ March 1852; observed by Lieutenant H. Rivers with Troughton and Simms' 18-inch Theodolite No. 2. §December 1858; observed by Capt. D. J. Nasmyth, R.E., with Troughton and Simms' 18-inch T'heodolite No. 2. |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
| $\underset{\substack{\text { Angle } \\ \text { between }}}{\text { and }}$ | Circle readings, telescope being set on XXII <br>  |  |  |  |  |  |  |  | $w=\begin{gathered}\text { Mean of Groups } \\ w=\text { Kelatire Weight }\end{gathered}$ $w_{0}$ <br> ${ }_{c}^{w}=$ Concluded Angle |
| $\text { XXII }{ }^{\\|} X X I$ |  <br>  h 6.50 |  |  |  |  |  |  |  | $\begin{aligned} & M=6^{\prime \prime} \cdot 19 \\ & w=1 \cdot 35 \\ & \frac{1}{w}=0 \cdot 74 \\ & C=56^{\circ} 33^{\prime} 6^{\prime \prime} \cdot 19 \end{aligned}$ |
|  | $\begin{array}{lllll}513 & 12.37 & 570 & 9.22\end{array}$ | $1.14 \quad 9.32$ | 4.17 | $6 \cdot 00$ | 5.67 | 533 | 401 | 6.21 |  |


| At XX (Pálri)-(Continued). |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { Angle } \\ \text { between } \end{gathered}$ | Circle readings, telescope being set on XXII <br>  |  |  |  |  |  |  |  |  | $\begin{aligned} M & \left.=\begin{array}{l}\text { Mean of Groups } \\ \text { Relative }\end{array}\right) \text { Weight }\end{aligned}$ <br> ${ }^{w} \mathbf{C}=$ Koncluded Angle |
| $\text { XXI \& }{ }^{\prime \prime} \text { XIII }$ |  <br>  h $26 \cdot 87$ <br> $l 2667$ l 26.03 <br> h 23 20 h 22.80 |  |  |  |  |  |  |  |  | $\begin{aligned} & M=25^{\prime \prime} \cdot 24 \\ & w=1 \cdot 37 \\ & \frac{1}{w}=0 \cdot 73 \\ & C=5^{\circ} 5^{\prime} 25^{\prime \prime} \cdot 24 \end{aligned}$ |
|  | $\begin{array}{llll}25 \cdot 67 & 24.19 & 25.84\end{array}$ | $2{ }^{21777} 30 \cdot 70$ | 24.64 | 27:71 | 29.93 | ${ }^{22 \cdot 62}$ | $23 \cdot 55$ | 22.69 | 23.53 |  |
| $\underset{\text { XVII }}{\text { xvíIII \& }}$ | Circle readings, telescope being set on XVIII <br>  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=25^{\prime \prime} \cdot 83 \\ & w=0 \cdot 99 \\ & \frac{1}{w}=1 \cdot 01 \\ & C=3^{\circ} \quad 5^{\prime} 25^{\prime \prime} \cdot 83 \end{aligned}$ |
|  |  <br>  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  | $\begin{array}{lllllllllllll}21.48 & 26.80 & 20.85 & 23.99 & 26.74 & 21.55 & 28.38 & .29 .60 & 31.03 & 25.52 & 29.52 & 24.49\end{array}$ |  |  |  |  |  |  |  |  |  |

## At XXI (Sola)

March 1852; observed by Lieutenant H. Rivers with Troughton and Simms' 18-inch Theodolite No. 2.



| At XXIII (Hájipur)-(Continued). |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Angle between |  | Circle readings, telescope being set on XXI |  |  |  |  |  |  |  | $220{ }^{\circ} 39^{\prime}$ | $50^{\circ} 50^{\circ}$ | $230^{\circ} 50^{\prime}$ | $M=$ Mean of Groups <br> w - Relative Weight <br> C = Concluded Angle |
| $\underset{\text { XXIV \& }}{\text { XXII }}$ |  <br>  h 30.27 $131^{\circ} 00$ |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =3^{\prime \prime \prime} \cdot 41 \\ w & =1 \cdot 93 \\ \frac{1}{w} & =0 \cdot 5^{2} \\ C & =42^{\circ} 18^{\prime} 32^{\prime \prime \prime} \cdot 41 \end{aligned}$ |
|  | 31.19 | $31 \times 95$ | 29.08 | 34.64 | 31'37 | $33 \cdot 88$ | $3{ }^{1 / 29}$ | 3778 | $34 * 45$ | 32.71 | $3{ }^{\circ} \mathrm{O}$ | 29.45 |  |
| $\underset{\mathbf{X X V}}{\text { XXIV }}$ |  <br>  $l 18$.20 |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=18^{\prime \prime} \cdot 96 \\ & w=1 \cdot 04 \\ & \frac{1}{w}=0 \cdot 96 \\ & C=49^{\circ} 56^{\prime} 18^{\prime \prime} \cdot 96 \end{aligned}$ |
|  | 18.89 | 17.25 | 16.08 | 18.61 | 18.90 | 14.10 | $15>47$ | 16.95 | 23.05 | 25.23 | 20.60 | $22 \cdot 38$ |  |
| March 1852; observed by Lieutenant H. Rivers with Troughton and Simms' 18-inch Theodolite No. 2. |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Angle between |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\underset{\text { XXVI }}{\text { XXVII \& }}$ |  <br>  h $2 \mathrm{I} \cdot 87$ $l$ 15.86 l15.13 |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =16^{\prime \prime} \cdot 56 \\ w & =0 \cdot 99 \\ \frac{1}{w} & =1 \cdot \mathrm{cI} \\ C & =55^{\circ} 48^{\prime} 16^{\prime \prime} \cdot 56 \end{aligned}$ |
|  | 19.95 | 22.02 | 9.41 | 17.95 | 14.11 | 20.55 | 18.00 | 16.52 | 15.54 | $14^{\circ} 97^{\circ}$ | 14.07 | 15.65 |  |
| $\underset{\mathbf{X X V}}{\text { XXVI \& }}$ |  <br>  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =58^{\prime \prime} \cdot 66 \\ w & =1 \cdot 05 \\ \frac{1}{w} & =0 \cdot 95 \\ C & =59^{\circ} 22^{\prime} 58^{\prime \prime} \cdot 66 \end{aligned}$ |
|  | 56.35 | 54.07 | 53.25 | 58.65 | 62.50 | 54.53 | 62.33 | 6131 | 58.94 | 6r95 | 59:78 | 60.23 |  |
| $\underset{\mathbf{X X I I I}}{\underset{X X V}{\&}}$ |  <br>  h. 46.07 h 39 - 53 |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=44^{\mu \cdot 19} \\ & w=2 \cdot 20 \\ & \frac{1}{w}=0 \cdot 45 \\ & C=60^{\circ} 52^{\prime} 44^{\prime \prime} \cdot 19 \end{aligned}$ |
|  | 4434 | 4596 | 42.65 | $44 * 47$ | 4197 | 48.50 | $42 \cdot 17$ | 40'19 | $45 \cdot 56$ | 43.52 | $46 \cdot 46$ | 44.50 |  |

## At XXIV (Khoraj)-(Continued).

| Anglebetween | $188^{\circ} 58^{\prime}$ | Circle readings, telescope being set on XXVII |  |  |  |  |  |  |  |  |  |  | $M=$ Mean of Grotups <br> ${ }^{20}=$ Relative Weight <br> $\boldsymbol{C}=$ Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $8^{\circ} 57^{\prime}$ | $194{ }^{\circ} 9^{\prime}$ | $14^{\circ} 8^{\prime}$ | $204{ }^{\circ} 16^{\prime}$ | $24^{\circ} 16^{\prime}$ | $214^{\circ} 25^{\prime}$ | $34^{\circ} 25^{\prime}$ | $224^{\text {c }} 35^{\prime}$ | $44^{\circ} 84^{\prime}$ | $234^{\circ} 47^{\prime}$ | $54^{\circ} 46^{\prime}$ |  |
| $\underset{\text { XXIII \& }}{\text { XXI }}$ |  <br>  <br>  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =42^{\prime \prime} \cdot 23 \\ w & =2 \cdot 15 \\ \frac{1}{w} & =0 \cdot 46 \\ C & =59^{\circ} 20^{\prime} 42^{N} \cdot 23 \end{aligned}$ |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 41'38 | 41 36 | $42 \cdot 45$ | $42 \cdot 46$ | $46 \cdot 64$ | 39:88 | 43.24 | 4601 | 42.37 | 42'II | 39'96 | $38 \cdot 87$ |  |

## At XXV (Wádrora)

March 1852 ; observed by Lieutenant H. Rivers with Troughton and Simms' 18-inch Theodolite No. 2.


## At XXVI (Hasalpur)

May 1852; observed by Lieutenarit H. Rivers with I'roughton and Simms' 18-inch Theodolite No. 2.

| Angle between | $0^{\circ} 1^{\prime}$ | $180^{\circ} 1^{\prime}$ | $10^{\circ} 12^{\prime}$ | Circle <br> $190^{\circ} 12^{\prime}$ | readings <br> $20^{\circ} 20^{\prime}$ | , telesco <br> $200^{\circ} 20^{\prime}$ | pe bein <br> $30^{\circ} 29^{\prime}$ | set on $210^{\circ} 29^{\prime}$ | $\begin{aligned} & \text { XXV } \\ & 40^{\circ} 38^{\prime} \end{aligned}$ | $220^{\circ} 38^{\prime}$ | $50^{\circ} 51^{\prime}$ | $230{ }^{\circ} 50^{\prime}$ | $M=$ Mean of Groups <br> $v o$ - Relative Weight <br> $C=$ Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { XXV \& } \\ \text { XXIV } \end{gathered}$ | " | " | " | " | " | " |  | " |  |  |  | $"$ | $\begin{aligned} & M=48^{\prime \prime} \cdot 93 \\ & w=1 \cdot 64 \\ & \frac{1}{w}=0 \cdot 61 \\ & C=59^{\circ} 46^{\prime} 48^{\prime \prime} \cdot 93 \end{aligned}$ |
|  | $h 48.04$ h $50^{\circ} 44$ h 47.90 | $h 43.47$ | $\begin{aligned} & l \\ & l \\ & l \\ & 46.57 \\ & l \\ & 46.53 \end{aligned}$ | $\begin{aligned} & l 52.37 \\ & l 49.40 \\ & l 48.10 \end{aligned}$ | $\begin{aligned} & l \\ & l \\ & l \\ & 52 \cdot 53 \end{aligned}$ | $\begin{aligned} & l \\ & l \\ & l \\ & 48 \cdot 87 \\ & 4800 \end{aligned}$ | $l$ $l$ 48.13 48 | $l$ 71 727 52 | $48 \cdot 57$ $46 \cdot 10$ | $h 49 \cdot 66$ $h 48.47$ | $49 \cdot 63$ $46 \cdot 93$ | $h 51 \cdot 27$ 50.63 |  |
|  | 48.79 | 43.39 | $47 \times 48$ | 49.96 | 5359 | $47 \times 44$ | $48 \cdot 88$ | 52.03 | 47'34 | 49*06 | 48•28 | 50'95 |  |
| $\underset{\text { XXVII }}{\text { XXIV }}$ |  |  | $\begin{aligned} & l 34 \cdot 53 \\ & l 37 \cdot 17 \\ & l \\ & l \end{aligned}$ | $l 35.66$$l$37.74 | $\begin{aligned} & l 30 \cdot 40 \\ & l 30 \cdot 60 \end{aligned}$ | $\begin{aligned} & l 34.56 \\ & l \\ & l \end{aligned}$ | 34.27359 | $\begin{aligned} & l 32.63 \\ & l 30 \cdot 67 \end{aligned}$ | $\begin{aligned} & l \\ & l \\ & l \\ & l 6 \cdot 30 \\ & \hline 6.46 \end{aligned}$ | h 38.40 h $38 \cdot 13$ h 39.50 | $\begin{array}{llll}h & 36 \cdot 80 & h & 36 \cdot 53 \\ l & 33.47 & l & 34.77\end{array}$ |  | $\begin{aligned} & M=35^{\prime \prime} \cdot 5 \mathrm{I} \\ & w=1 \cdot 60 \\ & \frac{1}{w}=0 \cdot 63 \\ & C=60^{\circ} 21^{\prime} 35^{\prime \prime} \cdot 5^{2} \end{aligned}$ |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 34:62 | $40^{\prime} 40$ | 36.02 | 36.70 | $30 \cdot 50$ | 35:28 | $35^{\circ} 10$ | 31.65 | 36.38 | 38.68 | $35^{11} 3$ | 35.65 |  |



## At XXVIII (Kárigángar)

March 1852 ; observed by Lieutenants H. Rivers and D. J. Nasmyth R.E., with Troughton and Simms' 18 -inch I'heodolite No. 2.

*This value should be $\downarrow 3 \cdot J 3$ : the error wus not detected until after completion of the calculations.

## At XXVIII (Kárigángar)—(Continued).



## At XXIX (Por)

April 1852; observed by Lieutenant H. Rivers with Troughton and Simms' 18-inch Theodolite No. 2.

| Angle between | $263^{\circ} 35^{\prime} \quad 83^{\circ} 35^{\prime}$ | $273^{\circ} \pm 6^{\prime}$ |  | readings <br> $283^{\circ} 54^{\prime}$ | , telesco <br> $103^{\circ} 54^{\prime}$ | pe being $294^{\circ} \mathbf{3}^{\prime}$ | set on <br> $114^{\circ} 3^{\prime}$ | $\begin{aligned} & \text { XXVI } \\ & \mathbf{3 0 4 4 ^ { \circ } 1 2 ^ { \circ }} \end{aligned}$ | $124^{\circ} 12^{\prime}$ | $314^{\circ} 24^{\prime}$ | $134^{\circ} 24^{\prime}$ | M - Mean of Groups <br> ${ }^{20}$ = Relative Weight <br> C = Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { XXVI \& } \\ & \text { XXVIII } \end{aligned}$ | $\begin{array}{cccc} & \prime \prime & \prime \prime \\ l & 13.93 & l & 4.53 \\ l & 13.57 & l & 9.77 \\ & & l & 500\end{array}$ | " $l$ 13.30 $l 2$ $12.20 l$ | $\cdots$ | $$ | $\begin{array}{cc}  & " \\ l & 9.90 \\ l & 10 \cdot 13 \end{array}$ |  | $\begin{array}{cc}  \\ l & \\ l & 6.76 \\ l & \\ 4.93 & h \end{array}$ |  | $$ | $\begin{gathered} \prime \prime \\ h \cdot 6 \cdot 16 \\ h \cdot \\ 7 \cdot 34 \end{gathered}$ | $\begin{array}{ll}  & \prime \prime \\ h & 8.97 \\ l & 8 \cdot 90 \end{array}$ | $\begin{aligned} & M=8^{\prime \prime \cdot} \cdot 73 \\ & w=1 \cdot 63 \\ & \frac{1}{w}=0 \cdot 61 \\ & C=8^{\circ} 18^{\prime} 8^{\prime \prime} \cdot 73 \end{aligned}$ |
|  | $13.75 \quad 6.43$ | 12.75 | $5 \cdot 85$ | 9.59 | 10.01 | $7 \cdot 21$ | $5 \cdot 84$ | 787 | 973 | 6.75 | $8 \cdot 93$ |  |
| $\underset{\mathbf{X X X}}{\underset{\text { XXVIII }}{\&}}$ |  <br>  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =16^{\prime \prime} \cdot 78 \\ w & =1 \cdot 45 \\ \frac{1}{w} & =0 \cdot 69 \\ C & =4^{\circ} 8^{\prime} 16^{\prime \prime} \cdot 79 \end{aligned}$ |
|  | $18.27 \quad 19.97$ | 15.33 | 18.30 | 18.35 | 19.69 | 1770 | 12.08 | 1190 | 16.01 | 18.91 | 14.87 |  |
| $\underset{\mathbf{X X X I}}{\mathbf{X X X}}$ |  <br>  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=39^{\prime \prime} \cdot 11 \\ & w=2 \cdot 30 \\ & \frac{1}{w}=0 \cdot 44 \\ & C=\left\{\begin{aligned} 61^{\circ} & 5^{\prime} 39^{\prime \prime} \cdot 13 \\ *+0 & \cdot 24 \end{aligned}\right. \end{aligned}$ |
|  | $37 \cdot 37 \quad 35 \cdot 87$ | $39^{\circ} 42$ | $40^{\circ} 43$ | $44^{\circ} 24$ | $37 \times 05$ | $38 \cdot 84$ | 40'00 | 38.21 | 37.82 | $39^{\circ} 06$ | $40^{\circ} 97$ |  |

- Correction.to reduce to position of present station mark; see description of station XXXI.



## At XXXI (Degám)

January 1853; observed by Lieutenant H. Rivers with Troughton and Simms' 18-inch Theodolite No. 2.

| Angle between | $0^{\circ} 1^{\prime}$ | $180^{\circ} 2^{\prime}$ | $10^{\circ} 12^{\prime}$ | $\begin{gathered} \text { Circle r } \\ 190^{\circ} 13^{\prime} \end{gathered}$ | readings <br> $20^{\circ} 21^{\prime}$ | , telesco <br> $200^{\circ} 21^{\prime}$ | pe bein $30^{\circ} 29^{\prime}$ | get on $210^{\circ} 29^{\prime}$ | $\begin{aligned} & \text { XXIX } \\ & 40^{\circ} 38^{\prime} \end{aligned}$ |  | $50^{\circ} 50^{\prime}$ | $230^{\circ} 50^{\prime}$ | $M=$ Mepn of Groups <br> $v 0=$ Relative Weight <br> $C=$ Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\underset{\mathbf{X X X}}{\text { XXIX }}$ | " | " | $"$ | " | " | " | " | " | " | " | " | " | $\begin{aligned} M & =28^{\prime \prime} \cdot 85 \\ w & =1 \cdot 56 \\ \frac{1}{w} & =0 \cdot 64 \\ C & =54^{\circ} 53^{\prime} 28^{\prime \prime} \cdot 86 \end{aligned}$ |
|  | $l 26.20$ | $l 3410 l$ | $l 30 \cdot 13$ | $l 2747$ | $l 33.60$ | $l 23.80$ | $l 31.63$ | $l 28.96$ | $l 29.60$ | $l 27.47$ | $l 27 \times 57$ | $l 25.00$ |  |
|  | $l 26.73$ | $\begin{aligned} & l 31 \cdot 80 \\ & l 33.17 \end{aligned}$ | $l 29.33$ | $l 29.63$ | $l 33.06$ | $l 24.20$ | $\begin{aligned} & l 28.60 \\ & l 31.80 \end{aligned}$ | $l 29 \cdot 10$ | $l 28 \cdot 10$ | $\begin{array}{r} l 3050 \\ l 2590 \end{array}$ | l29-24 | $l 27.33$ |  |
|  | 26.47 | 33.02 | 29.73 | 28.55 | 33.33 | 24*00 | $30 \cdot 68$ | 29.03 | 28.85 | 27.96 | 28.40 | $26 \cdot 17$ |  |

Note.-R.M. denotes Reforring Mark. $\quad$ * Correction to reduce to position of present station mark; see description of station XXXI.

## At XXXI (Degám)—(Continued).



## At XXXII (Charári)

December 1852; observed by Lieutenant H. Rivers with Troughton and Simms' 18-inch Theodolite No. 2.

. ${ }^{\text {. }}$ Correction to reduce to position of present station mark ; see description of station XXXI.

## At XXXIII (Dhrángadra)

December 1852; observed by Lieutenant H. Rivers with Troughton and Simms' 18-inch Theodolite No. 2.

| Angle between | $0^{\circ} 2$ | $180{ }^{\circ}{ }^{\prime}$ | $10^{\circ} 12^{\prime}$ | Circle r <br> $190^{\circ} 11^{\prime}$ | eadings, <br> $20^{\circ} 20^{\prime}$ | telescop $200^{\circ} 20^{\prime}$ | e being <br> $30^{\circ} 29^{\prime}$ | $\begin{aligned} & \text { set on } X \\ & 210^{\circ} 29^{\prime} \end{aligned}$ | $\begin{aligned} & X X X I \\ & 40^{\circ} 38^{\prime} \end{aligned}$ | $220{ }^{\circ} 38^{\prime}$ | $50^{\circ} 50^{\prime}$ | $230^{\circ} 50^{\prime}$ | $M=$ Mean of Groups <br> ${ }^{2} 0$ - Relative Weight <br> C = Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\underset{\text { XXXI \& }}{\underset{\text { XXI }}{ }}$ | $\begin{gathered} \prime \prime \prime \\ h_{58} \cdot 7 \\ h_{56 \cdot 2} \end{gathered}$ | $\begin{aligned} & h 53.97 h \\ & h 53.73 h \end{aligned}$ | h $59 \times 16$ <br> 57.60 <br> $h$ | h $56 \cdot 77$ <br> l60.67 <br> 258.87 <br> ${ }^{2} 59.60$ | $\begin{gathered} " \\ l 62 \cdot 66 l \\ l 64 \cdot 43 l \\ h 63 \cdot 3^{6} \end{gathered}$ | $\begin{aligned} & l \\ & l \\ & l 3.27 \\ & 54.40 \end{aligned}$ | $\begin{aligned} & 57.24 \\ & 58.04 \end{aligned}$ | $\begin{gathered} " \\ l \\ l 62 \cdot 37 \\ l 62.70 \end{gathered}$ | $\begin{aligned} & l 55: 93 \\ & l \\ & 54: 73 \end{aligned}$ | $\begin{aligned} & l 60 \cdot 90 \\ & l 60 \cdot 13 \end{aligned}$ | $\begin{gathered} \prime \prime \\ l \\ l \\ l 8 \cdot 27 \\ l 9^{\circ} 30 \end{gathered}$ | $\begin{gathered} " \\ h \\ h \\ 58 \cdot 20 \\ 59.50 \end{gathered}$ | $\begin{aligned} M & =5^{\prime \prime \prime} \cdot 3 \mathbf{I} \\ w & =1 \cdot 27 \\ \frac{1}{w} & =0 \cdot 79 \\ C & =\left\{\begin{array}{rl} 63^{\circ} & 32^{\prime} \\ & 58^{\prime \prime} \cdot 32 \\ *+0 & 32 \end{array}\right. \end{aligned}$ |
|  | 57\% | 53.85 | $58 \cdot 38$ | $58 \cdot 98$ | 63.48 | 53.83 | 57.64 | 62.54 | $55^{\prime} 33$ | 60.51 | 58.79 | 58.85 |  |
| $\boldsymbol{1}_{\text {XXXII }}^{\text {XX }}$ |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =7^{\prime \prime} \cdot 20 \\ w & =1 \cdot 13 \\ \frac{1}{w} & =0 \cdot 88 \\ C & =79^{\circ} \quad 3^{\prime} \quad 7^{\prime \prime} \cdot 20 \end{aligned}$ |
|  |  | 11.14 | 330 | 3.04 | $2 \cdot 32$ | $5 \cdot 33$ | 8.00 | 943 | 9.69 | $9 \% 90$ | 8.43 | $10 \cdot 56$ |  |
| $\underset{\mathbf{X X X V}}{\text { XXXIV \& }}$ |  <br>  162.67 |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=58^{\prime \prime} \cdot 73 \\ & w=0 \cdot 91 \\ & \frac{1}{w}=1 \cdot 10 \\ & C=54^{\circ} 14^{\prime} 58^{\prime \prime} \cdot 73 \end{aligned}$ |
|  |  | $61 \cdot 42$ | 64.44 | 61.51 | 59.65 | 58.80 | 54.98 | 5732 | 59.51 | 56.75 | 54.69 | 52.61 |  |

## At XXXIV (Nárechána)

January 1853; observed by Lieutenant H. Rivers with Troughton and Simms' 18-inch Theodolite No. 2.


Notr.-Stution XXI appertuins to the Kattywar Meridional Series. Correction to reduce to poaition of present station mark ; see description of station XXXI.

## At XXXIV (Nárechána)-(Continued).

| At XXXIV (Nárechána)-( Continued). |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Angle between | Circle readings, telescope being set on XXI |  |  |  |  |  |  |  |  |  |  |  | $M=$ Mean of Groups <br> $w$ = Relative Weight <br> C = Concluded Angle |
| $\underset{\text { XXXIII }}{\text { XXXII }}$ |  $h_{15}{ }^{4} 40 h_{15} .60 h_{15} 70$ |  |  | $\begin{array}{ccccc} \hline " & " & " \prime \\ h_{17} 7.00 & l & 25.86 & l & 16.97 \\ h_{15} 20 & l 26.03 & l & 19.37 \\ h_{15} 03 \end{array}$ |  |  | $\begin{aligned} & l 23.66 \\ & l 20.77 \\ & l 24.37 \end{aligned}$ | $l \begin{gathered} \prime \prime \\ l \\ l \\ 19.40 \\ \hline \end{gathered}$ | $\begin{array}{r} l 23.43 \\ l 24.03 \end{array}$ | $\begin{gathered} \prime \prime \\ l \begin{array}{c} 16.67 \\ l \\ 15 \cdot 13 \end{array} \end{gathered}$ | $h_{14.73} h_{14.26}$ <br> $h 13.50 h 13.90$ <br> $h 16 \% 3$ |  | $\begin{aligned} M & =18^{\prime \prime} \cdot 18 \\ w & =0 \cdot 76 \\ \frac{1}{w} & =1 \cdot 31 \\ C & =45^{\circ} 41^{\prime} 18^{\prime \prime} \cdot 18 \end{aligned}$ |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 15.43 | 16.05 | 16.53 | 15.74 | 25.95 | $18 \cdot 17$ | 22.93 | 18.95 | 23.73 | 1590 | 14.75 | 14.08 |  |

## At XXXV (Kuária)

December 1852; observed by Lieutenant H. Rivers with Troughton and Simms' 18-inch Theodolite No. 2.


## At XXI (Sápakra)

January 1853; observed by Lieutenant H. Rivers with Troughton and Simms' 18-inch Theodolite No. 2.

| Angle between | $94^{\circ} 28^{\prime}$ | $274^{\circ} 8^{\prime}$ | $104^{\circ} 39^{\prime}$ | Circle <br> $284^{\circ} 39^{\prime}$ | readings, <br> $114^{\circ} 47^{\prime}$ | telesco <br> $294^{\circ} 47^{\prime}$ | pe being <br> $124^{\circ} 56^{\prime}$ | get on $304^{\circ} 56^{\prime}$ | $\begin{aligned} & \text { XVIIII } \\ & 135^{\circ} 5^{\prime} \end{aligned}$ | $315^{\circ} 5^{\prime}$ | $145^{\circ} 17^{\prime}$ | $325^{\circ} 17^{\prime}$ | $M=$ Mean of Groups <br> $w=$ Relative Weight <br> C = Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\underset{\mathbf{X X X V}}{\text { XVIII }}$ | " | " | " | " | " | " | " | " | " | " | " |  | $\begin{aligned} M & =57^{\prime \prime} \cdot 14 \\ w & =1 \cdot 24 \\ \frac{1}{w} & =0 \cdot 8 \mathrm{r} \\ C & =81^{\circ} 34^{\prime} 57^{\prime \prime} \cdot 15 \end{aligned}$ |
|  | $h_{58} 5 \cdot 10$ | h $57 \times 43$ | $h_{56} 83$ | $l 52.00$ | $l 59 \cdot 10$ | $l$ 58.70 | $l 63.37$ | $l$ 52.10 | h 58.90 | $h 55^{4} 40$ | h 52.53 | h 56.30 |  |
|  | h 58.70 h | h 59.50 | $\begin{aligned} & h 60.53 \\ & l 61.60 \end{aligned}$ | $\begin{aligned} & l 51.40 \\ & l 55.73 \end{aligned}$ | $l 57.83$ | $l 59.80$ | $l 60 \cdot 70$ <br> $l 60.90$ | $l 51.83$ | h 57.50 | $\begin{aligned} & h 58 \cdot 80 \\ & h \\ & \hline 58 \cdot 14 \end{aligned}$ | $h 53.40$ | $h 56 \cdot 03$ |  |
|  | 58.40 | 58.47 | 59.65 | 53.04 | 58.46 | 59.25 | $6 \mathrm{r} \cdot 66$ | 5197 | 58.20 | 5745 | 52.96 | $56 \cdot 17$ |  |

NOTs.-Stations XVIII and XXI appertain to the Kattywar Meridional Series.

| At XXI (Sápakra)-(Continued). |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Angle between |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\begin{gathered} \text { XXXV \& } \\ \text { XXXIV } \end{gathered}$ |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=11^{\prime \prime} \cdot 14 \\ & w=0 \cdot 88 \\ & \frac{1}{w}=1 \cdot 14 \\ & C=68^{\circ} 32^{\prime} 11^{\prime \prime} \cdot 13 \end{aligned}$ |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 12.87 | 13.87 | $10 \cdot 48$ | 1745 | 542 | 12.85 | 735 | 939 | 8.56 | 7'91 | 15.72 | 11'75 |  |

## At XVIII (Chalarwa)

December 1852; observed by Lieutenant H. Rivers with Troughton and Simms' 18-inch Theodolite No: 2.


Nore.-Stations XVIII and XXI appertain to the Kattywar Meridional Seriea.
Soptomber 1879.
J. B. N. HENNESSEY,

In charge of Computing Office.

GUZERAT LONGITUDINAL SERIES.

PRINCIPAL TRIANGULATION. SUMS OF SQUARES OF APPARENT ERRORS.

Sums of Squares of Apparent Errors of Single Observations, and of Apparent Errors of Single Zeros.


Norr.-Stations IX and XIII appertain to the Khánpisura Meridional Seried.

| Station of Observation | Obserred Angle | Number of Observations | Sum of Squares of Errors of Single Observations | $\begin{gathered} \text { Number of } \\ \text { Zeros } \end{gathered}$ | Sum of Squares of Errors of Single Zeros | Rimaris |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| V | IV \& II | 24 | 6.18 | 12 | $50 \cdot 81$ |  |
| VI | IX \& VIII | 24 | 5.35 | 12 | 78.62 |  |
| " | VIII \& VII | 24 | $2 \cdot 63$ | 12 | 102.49 |  |
| " | VII \& IV | 24 | $2 \cdot 65$ | 12 | $148 \cdot 10$ |  |
| " | IV \& V | 24 | 3.15 | 12 | 107.18 |  |
| VII | III \& IV | 24 | $4 \cdot 87$ | 12 | $115 \cdot 39$ |  |
| " | IV \& VI | 24 | 4.43 | 12 | 70•46 |  |
| " | VI \& VIII | 25 | $5 \cdot 83$ | 12 | 119.95 |  |
| TIII | VII \& VI | 26 | 3.00 | 12 | $75 \cdot 31$ |  |
| " | VI \& IX | 24 | $2 \cdot 41$ | 12 | $104 \cdot 38$ |  |
| " | IX \& XIII | 24 | 4.16 | 12 | $83 \cdot 68$ |  |
| IX | XVII \& XIII | 24 | $3 \cdot 39$ | 12 | 139.75 |  |
| " | XIII \& VIII | 24 | $2 \cdot 60$ | 12 | 60. 27 |  |
| " | VIII \& VI | 24 | 3.46 | 12 | 76•14 |  |
| XIII | R. M. \& VIII | 24 | 1. 66 | 12 | $75 \cdot 51$ |  |
| " | VIII \& IX | 24 | $6 \cdot 87$ | 12 | 48•18 |  |
| " | IX \& XVII | 24 | 0.88 | 12 | $80 \cdot 28$ |  |
| " | XVII \& XVIII | 24 | 4.21 | 12 | $220 \cdot 44$ |  |
| " | XVIII \& XIV | 24 | 5*04 | 12 | $205 \cdot 52$ |  |
| " | XIV \& XII | 24 | $3 \cdot 15$ | 12 | 145.14 |  |
| XVII | XVIII \& XIV | 24 | 7.25 | 12 | 61.28 | Theodulite No. 2. |
| " | XIV \& XIII | 24 | 4.54 | 12 | 119.53 |  |
| " | XIII \& IX | 24 | 3*09 | 12 | $68 \cdot 39$ |  |
| XIV | XIII \& XVIII | 24 | 5*95 | 12 | 137.91 |  |
| " | XVII \& XVIII | 24 | 5.40 | 12 | $180 \cdot 29$ |  |
| " | XVIII \& XVI | 24 | 3.91 | 12 | $157 \cdot 78$ |  |
| " | XVI \& XV | 24 | $4 \cdot 84$ | 12 | 105.01 |  |
| " | XV \& XII | 24 | 5.29 | 12 | $80 \cdot 60$ |  |
| " | XII \& R. M. | 24 | 3.26 | 12 | 78.26 |  |
| XVIII | XVI \& XIV | 26 | $10 \cdot 13$ | 12 | 113.54 |  |
| " | XIV \& XVII | 24 | $6 \cdot 71$ | 12 | $142 \cdot 64$ |  |
| " | XIV \& XIII | 24 | 2.87 | 12 | 54.23 |  |
| XII | XIII \& XIV | 24 | $1 \cdot 52$ | 12 | 42.11 |  |
| " | XIV \& XV | 24 | 1-90 | 12 | $173 \cdot 36$ |  |
| XV | XII \& XIV | 24 | 6.84 | 12 | 127.85 |  |
| " | XIV \& XVI | 24 | 5.22 | 12 | 83.58 |  |
| " | XVI \& X | 24 | 15.18 | 12 | 184.83 |  |
| XVI | XI \& X | 24 | $6 \cdot 07$ | 12 | 88.40 |  |
| " | X \& XV | 25 | $6 \cdot 37$ | 12 | $77 \cdot 57$ |  |
| " | XV \& XIV | 24 | 5*03 | 12 | $57 \cdot 60$ |  |
| " | XIV \& XVIII | 24 | 5*71 | 12 | 101. 87 |  |

PRINCIPAL TRIANGULATION. SUMS OF SQUARES OF`APPARENT ERRORS.
41-

| Station of Observation | Obserred Angle | Number of Observations | Sum of Squares of Errors of single Observations | $\underset{\text { Zeros }}{\substack{\text { Number of }}}$ | Sum of Squares of Errors of single Zeros | Remarixs |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| X | XV* \& XVI* | 26 | $\cdots 6.43$ | 12 | 151.27 | 7 |
| " | XVI* \& XI | 27 | $\because 15.55$ | 12 | 102.93 |  |
| " | XI \& XII | 27 | $10 \cdot 76$ | 12 | $102 \cdot 00$ |  |
| XI | XIII \& XII | 27 | 11.12 | 12 | $43 \cdot 66$ | . |
| " | XII \& X | 27 | 13.48 | 12 | -118.14 |  |
| " | X\& XVI* | 24 | 5.77 | 12 | $157 \cdot 55$ |  |
| XII | X \& XI | 24 | $8 \cdot 10$ | 12 | 137.06 | : |
| $"$ | XI \& XIII | 25 | 12.73 | 12 | 136.86 |  |
| " | XIII \& XIV | 24 | $6 \cdot 46$ | 12 | 70.32 | . |
| XIII | XV \& XIV | 26 | 13.33 | 12 | 112.11 |  |
| " | XIV \& XII | 25 | 11.02 | 12 | $38 \cdot 98$ |  |
| " | XII \& XI | 26 | - 13.66 | 12 | - $60 \cdot 68$ |  |
| XIV | XII \& XIII | 26 | - $5 \cdot 56$ | 12 | 113.90 | .. |
| " | XIII \& XV | 28 | $\therefore 15.80$ | 12 | 117.37 | . |
| " | XV \& XVI | 27 | 9.05 | 12 | 128.20 | . |
| XV | XVII \& XVI | 25 | - 3.37 | 12 | - $95 \cdot 81$ |  |
| " | XVI \& XIV | 27 | . $10 \cdot 13$ | - 12 | $57 \cdot 22$ | : |
| " | XIV \& XIII | 28 | 17.41 | 12 | - $49 \times 36$ |  |
| XVI | XIV \& XV | 25 | $6 \cdot 07$ | 12 | $55^{\circ} 47$ | - |
| " | XV \& XVII | 24 | 3.54 | 12 | 106.34 |  |
| " | XVII \& XVIII | 26 | - 10.88 | 12 | $48 \cdot 23$ | Troughton and Simms' 18-inch Theodolite No. 2. |
| " | XVIII \& XIX | 26 | - 18.28 | 12 | $57 \cdot 34$ | .. |
| XVII | XX \& XVIII | 24 | - 6.06 | 12 | - $92 \cdot 18$ | .. |
| " | XVIII \& XVI | 24 | 11.79 | 12 | 191.66 |  |
| " | XVI \& XV | 24 | $8 \cdot 13$ | 12 | 85.51 | . |
| XVIII | XVI \& XVII | 29 | $10 \cdot 42$ | 12 | 47-06 | . |
| " | XVI \& XVII | 24 | $5 \cdot 88$ | 12 | 112.74 |  |
| " | XVII \& XX | 25 | 11.86 | 12 | 216.54 |  |
| " | XX \& XXI | 30 | 17.44 | 12 | 48.28 | . |
| " | XXI \& XIX | 30 | 17.41 | 12 | $74 \cdot 77$ |  |
| " | XIX \& XVI | 28 | $30 \cdot 87$ | 12 | 52.13 |  |
| XIX | XVI \& XVIII | 24 | 12.22 | 12 | $165 \cdot 98$ |  |
| " | XVIII \& XXI | 24 | 14.91 | 12 | 257.41 | - . |
| $\mathbf{X X}$ | XXII \& XXI | 29 | 22.71 | 12 | 93.91 |  |
| " | XXI \& XVIII | 29 | $30 \cdot 84$ | 12 | 91-09 | : |
| " | XVIII \& XVII | 25 | $10 \cdot 24$ | 12 | $130 \cdot 47$ |  |
| XXI | XIX \& XVIII | 31 | $62 \cdot 02$ | 12 | 179'19 |  |
| " | XVIII \& XX | 29 | 38-10 | 12 | 73.79 , | . |
| " | XX \& XXII | 26 | 21.46 | 12 | 104.80 | . |
| " | XXII \& XXIII | 26 | 27.98 | 12 | 110.09 |  |
| XXII | XXIV \& XXIII | 29 | 27.73 | 12 | 112.01 | $)$. |

Nots.-Stations XV* and XVI* appertain to the Singi Meridional Series.

| Station of Observation | Observed Angle | Number of Obserrations | Sum of Squares of Errors of single Observations | $\underset{\text { Zoros }}{\substack{\text { Number of }}}$ | Sum of Squares of Errors of single Zaros | Remaris |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| XXII | XXIII \& XXI | 26 | $10 \cdot 54$ | 12 | $92 \cdot 64$ |  |
| " | XXI \& XX | 25 | 20.75 | 12 | 23.25 |  |
| XXIII | XXI \& XXII | 25 | 12.04 | 12 | 36.10 |  |
| " | XXII \& XXIV | 26 | 12.40 | 12 | 65.87 |  |
| " | XXIV \& XXV | 25 | 23.61 | 12 | 121.60 |  |
| XXIV | XXVII \& XXVI | 27 | 20.77 | 12 | 128.94 |  |
| " | XXVI \& XXV | 24 | 10.71 | 12 | 122.59 |  |
| " | XXV \& XXIII | 26 | 15.61 | 12 | 56.77 |  |
| " | XXIII \& XXII | 27 | 15.15 | 12 | 58.33 |  |
| XXV | XXIII \& XXIV | 28 | $29 \cdot 87$ | 12 | $72 \cdot 73$ |  |
| " | XXIV \& XXVI | 26 | $22 \cdot 72$ | 12 | 144.18 |  |
| XXVI | XXV \& XXIV | 27 | 30'41 | 12 | 74.47 |  |
| " | XXIV \& XXVII | 27 | $26 \cdot 47$ | 12 | $77 \cdot 57$ |  |
| " | XXVII \& XXVIII | 26 | 23.09 | 12 | 143.86 |  |
| " | XXVIII \& XXIX | 26 | 27.17 | 12 | 256.41 |  |
| XXVII | XXVIII \& XXVI | 30 | 22.36 | 12 | $67 \cdot 32$ |  |
| " | XXVI \& XXIV | 28 | $22 \cdot 64$ | 12 | $55 \cdot 00$ |  |
| XXVIII | XXX \& XXIX | 26 | $26 \cdot 20$ | 12 | $105 \cdot 32$ |  |
| " | XXIX \& XXVI | 27 | 18.37 | 12 | $105 \cdot 64$ |  |
| " | XXVI \& XXVII | 28 | $27 \cdot 44$ | 12 | 44.53 |  |
| XXIX | XXVI \& XXVIII | 27 | 38.30 | 12 | 73.68 | Troughton and Simms' 18 -inch Theodolite No. 2. |
| " | XXVIII \& XXX | 29 | $45 \cdot 76$ | 12 | $83 \cdot 27$ |  |
| " | XXX \& XXXI | 27 | 24.42 | 12 | 52.72 |  |
| $\mathbf{X X X}$ | XXXII \& XXXI | 26 | 12.09 | 12 | $130 \cdot 64$ |  |
| " | XXXI \& R.M. | 29 | $46 \cdot 95$ | 12 | 145.91 |  |
| " | R.M. \& XXIX | 31 | 59.23 | 12 | 127.67 |  |
| " | XXIX \& XXVIII | 30 | 25.93 | 12 | 129.43 |  |
| XXXI | XXIX \& XXX | 27 | $28 \cdot 35$ | 12 | $79^{\circ} 05$ |  |
| " | XXX \& XXXII | 27 | 29.83 | 12 | 107.51 |  |
| " | XXXII \& XXXIII | 26 | 27.44 | 12 | $141 \cdot 82$ |  |
| XXXII | XXXIV \& XXXIII | 25 | 21.80 | 12 | $76 \cdot 23$ |  |
| " | XXXIII \& XXXI | 27 | 17.89 | 12 | $72 \cdot 69$ |  |
| " | XXXI \& XXX | 26 | 22.25 | 12 | $85 \cdot 75$ |  |
| XXXIII | XXXI \& XXXII | 27 | 17.29 | 12 | 100.39 |  |
| " | XXXII \& XXXIV | 29 | 33.64 | 12 | 110.86 |  |
| " | XXXIV \& XXXV | 25 | 16.59 | 12 | $141 \cdot 69$ |  |
| XXXIV | XXI* \& XXXV | 25 | 14.65 | 12 | 64.04 |  |
| " | XXXV \& XXXIII | 26 | 9•17 | 12 | 93.85 |  |
| " | XXXIII \& XXXII | 27 | 19.55 | 12 | 168.86 |  |
| XXXV | XXXIII \& XXXIV | 28 | 38.77 | 12 | 21.61 |  |
| " | XXXIV \& XXI* | 27 | 17.53 | 12 | 162.90 | J |

Notr.-R. M. denotes Referring Mark. Station XXI* apportains to the Kattywar Meridional Series.

PRINCIPAL TRIANGULATION. SUMS OF SQUARES OF APPARENT ERRORS.


Norb.-Stations XVIII and XXI appertain to the Kattywar Meridional Series.

From the preceding data of the sums of the squares of the apparent errors, in the measurement of each angle, we may ascertain the e.m.s. (error of mean square) of observation of a single measure of an angle, and the e.m s. of graduation and observation of the mean of the measures on a single zero, for each group of angles measured with the same instrument, by the same observer, and under similar circumstances.

The instrument employed was Troughton and Simms' 18 -inch Theodolite No. 2, having 3 microscopes to read the aximuthal circle; observations were taken on 6 pairs of zeros (face left and face right), giving circle readings at $10^{\circ}$ apart.

The e.m.s. of observation of a single measure of an angle

$$
=\sqrt{\frac{\text { Sum of squares of apparent errors of observations. }}{\text { No. of observatious }- \text { No. of angles } \times \text { No. of changes of zero. }}}
$$

$\left.\begin{array}{l}\text { The e.m } \mathrm{s} \text {. of graduation and observation of the mean of the } \\ \text { measures on a single zero }\end{array}\right\}=\sqrt{\frac{\text { Sum of squares of apparent errors of zero. }}{\text { No. of angles } \times \text { (No. of changes of zero }-1) .}}$

| Group | Instrument andObserver |  |  | Number of |  |  |  | c. $\boldsymbol{m}$. s. of observation of a single measure | e. m. s. of graduation and observation of a single zero |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | $\underset{\text { zero (average) }}{\substack{\text { Measures on each } \\ \text { zen }}}$ | $\begin{aligned} & \text { 䯧 } \\ & \frac{0}{4} \end{aligned}$ |  |  |  |  |
| I | $\left\{\begin{array}{l} \text { Troughton and Simms' 18-inch } \\ \text { Theodolite No. 2; Lieutenant } \\ \text { C. T. Haig, R.E. } \end{array}\right\}$ | Hills, | $\begin{array}{rr} \circ \\ 10 & 0 \end{array}$ | 2.01 | 57 | 1375 | 684 | $\left\{\frac{271 \cdot 41}{1375-684}\right\}^{\frac{1}{3}}= \pm{ }^{\prime \prime}$ '627 | $\left\{\frac{6950.09}{684-57}\right\}^{\frac{1}{2}}= \pm 3.081$ |
| II | $\left\{\begin{array}{l} \text { Troughton and Simms'18-inch } \\ \text { Theodolite No. 2; Captain D. } \\ \text { J. Nasmyth. } \end{array}\right\}$ | " | 100 | $2 \cdot 10$ | 8 | 202 | 96 | $\left\{\frac{73.46}{202-96}\right\}^{\frac{1}{3}}= \pm 0.832$ | $\left\{\frac{907 \cdot 59}{96-8}\right\}^{\frac{1}{3}}= \pm 3.211$ |
| III | Ditto. | Plains, | 100 | $2 \cdot 14$ | 22 | 566 | 264 | $\left\{\frac{218.58}{566-264}\right\}^{\frac{3}{3}}= \pm 0.841$ | $\left\{\frac{2138 \cdot 0 \theta}{264-22}\right\}^{\frac{1}{2}}= \pm 2972$ |
| IV | $\left\{\begin{array}{l} \text { Troughton and Simms' 18-inch } \\ \text { Theodolite No. 2; Lieutenant } \\ \text { H. Rivers. } \end{array}\right\}$ | " |  | $2 \cdot 25$ | 58 | 1569 | 696 | $\left\{\frac{1446 \cdot 84}{1569-696}\right\}^{\frac{1}{2}}= \pm 1 \cdot 287$ | $\left\{\frac{5978 \cdot 50}{696-58}\right\}^{\frac{1}{2}}= \pm 8.060$ |

## Septomber 1879.

J. B. N. HENNESSEY,

In charge of Computing Office.

## GUZERAT LONGITUDINAL SERIES.

 PRINCIPAL TRIANGULATION. REDUCTION OF FIGURES.Figure No. 26.


* In the tables of the equations between the factors the co-efficients of the terms below the diagonal are omitted for convenience, the co-efficient of the $p$ th term in the $q$ th line being always the same as the co-cfficient of the $q$ th term in the $p$ th line.

Figure No. 10 of the Singi Meridional Series.


Figure No. 2\%.

J. B. N. HENNESSEY,

In charge of Computing Office.

## GUZERAT LONGITUDINAL SERIES.

PRINCIPAL TRIANGULATION. TRIANGLES.


Notrs-1. The values of the sides are given in the same lines with the opposite angles.
2. Stations IX (Karsod) and XIII (Indráwan) appertain to the Khánpisura Meridional Series.

| No. of Triangle |  | Number and Name of Station |  | Corrections to Observed Angle |  |  |  | $\begin{gathered} \text { Corrected Plane } \\ \text { Angle } \end{gathered}$ | Distance |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Cirouit | Noncircuit |  |  | Figure | Circuit | Noncircuit | Total |  | Log. feet | Feet | Miles |
| 36 |  | IV (Mehwása) <br> VII (Kukinda) <br> VI (Samohi) | $\begin{array}{r} \cdot 6.5 \\ -65 \\ -64 \\ \hline \end{array}$ | $\begin{array}{r}\prime \prime \\ -\quad .17 \\ +\quad .21 \\ -\quad 28 \\ \hline\end{array}$ | 4 <br> $-\quad .18$ <br> -22 <br> $+\quad .40$ | " | $\begin{array}{r}\text { - } \quad 35 \\ \hline .01 \\ +\quad .12 \\ \hline\end{array}$ | $\begin{array}{ccc} \circ & 1 & 4 \\ 92 & 6 & 3 \cdot 46 \\ 56 & 18 & 57 \cdot 39 \\ 31 & 34 & 59 \cdot 15 \\ \hline \end{array}$ | $5.1364930,9$ $5^{\circ} \cdot 5596650,9$ $4.8589664,5$ | $136928 \cdot 26$ $114015 \cdot 82$ $71762 \cdot 32$ | $\begin{aligned} & 25.933 \\ & 21.594 \\ & 13.59 \mathrm{I} \end{aligned}$ |
|  |  |  | I•94 |  |  |  | -. 24 | 180 |  |  |  |
|  | 252 | II (Tharkheri) <br> IV (Mehwása) <br> V (Yípliabán) | $\begin{array}{r} 39 \\ -38 \\ -38 \\ \hline \end{array}$ | $\begin{array}{r}\text { - } 62 \\ -\quad 95 \\ -16 \\ \hline\end{array}$ |  | $\begin{array}{r}\text { - } .53 \\ +\quad .05 \\ +\quad .48 \\ \hline\end{array}$ | -115 <br> +.90 <br> $+\quad 32$ | $\begin{array}{rrrr} 82 & 39 & 36 \cdot 59 \\ 42 & 19 & 41 \cdot 74 \\ 55 & 0 & 41 \cdot 67 \\ \hline \end{array}$ | 4.9706777,1 <br> 4.8025094,3 <br> $4 \cdot 8876769,7$ | $\begin{aligned} & 9347 \mathrm{I} \cdot 18 \\ & 6346 \mathrm{I} \cdot 37 \\ & 77210 \cdot 60 \end{aligned}$ | $\begin{aligned} & 17.703 \\ & 12.019 \\ & 14.623 \end{aligned}$ |
|  |  |  | 1.15 |  |  |  | -1.73 | 180 |  |  |  |
|  | 253 | $\begin{array}{\|l} \text { V (Pípliabán) } \\ \text { IV (Mehwása) } \\ \text { VI (Samohi) } \end{array}$ | $\begin{array}{r} 78 \\ 79 \\ \cdot 78 \\ \hline \end{array}$ | $\begin{array}{r} +17 \\ +\quad 61 \\ \hline \end{array}$ |  | $\begin{array}{r}\text { - } 91 \\ +\quad .09 \\ +\quad .82 \\ \hline\end{array}$ | $\begin{array}{r}-74 \\ +1.43 \\ \hline\end{array}$ | 63 44 55.31 <br> 68 55 $20 \cdot 81$ <br> 47 19 $43 \cdot 88$ | $5 \cdot 0569650,8$ $5 \cdot 0741647,9$ $4^{*} 9706777, \mathrm{I}$ | $114015 \cdot 82$ 118621.88 93471.18 | $\begin{aligned} & 21 \cdot 594 \\ & 22 \cdot 466 \\ & 17 \cdot 703 \end{aligned}$ |
|  |  |  | $2 \cdot 35$ |  |  |  |  | $180 \quad 0 \quad 0.00$ |  |  |  |
| 37 |  | VII (Kukinda) VI (Samohi) VIII (Kápri) | $\begin{array}{r} \cdot 98 \\ \cdot 98 \\ \cdot 98 \\ \hline \end{array}$ | $\left\|\begin{array}{rr} + & 12 \\ + & 10 \\ + & 07 \end{array}\right\|$ | $\left.\begin{array}{\|} -\quad .04 \\ +\quad 0 \\ +\quad 04 \end{array} \right\rvert\,$ |  | $\begin{array}{r} +\quad 08 \\ +\quad 10 \\ +\quad 11 \\ \hline \end{array}$ | $\begin{array}{rrr} 64 & 54 & 6 \cdot 85 \\ 43 & 49 & 50 \cdot 87 \\ 71 & 16 & 2 \cdot 28 \\ \hline \end{array}$ | $\begin{aligned} & 5 \cdot 1170589,4 \\ & 5 \cdot 0005699,0 \\ & 5^{\circ} 1364930,9 \end{aligned}$ | $\begin{aligned} & 130935 \cdot 96 \\ & 100131 \cdot 31 \\ & 136928 \cdot 26 \end{aligned}$ | $\begin{aligned} & 24 \cdot 798 \\ & 18 \cdot 964 \\ & 25 \cdot 933 \end{aligned}$ |
|  |  |  | $2 \cdot 94$ |  |  |  | + 29 | $180 \quad 0 \quad 0.00$ |  |  |  |
| 38 |  | VI (Samohi) <br> VIII (Kápri) <br> IX (Punákot) | $\begin{array}{r} 8 \mathbf{r I} \\ \cdot 80 \\ \cdot 8 \mathbf{r a n} \end{array}$ | -.32 <br> $-\quad 42$ <br> $-\quad 30$ | $-\quad .09$ <br> -.96 <br> $+\quad 15$ |  | $\begin{array}{r}\text { - } 41 \\ =-48 \\ -\quad .15 \\ \hline\end{array}$ | 56 6 $42 \cdot 48$  <br> 44 53 29 70 <br> 78 59 47 82 | $5 \cdot 0442618,8$ $4 \cdot 9737789,8$ $5 \cdot 1170589,4$ | $110729^{\circ} 13$ $94141^{\circ} \mathrm{O}$ $130935^{\circ} 96$ | $\begin{aligned} & 20.971 \\ & 17.830 \\ & 24.798 \end{aligned}$ |
|  |  |  | 2.42 |  |  |  | -1.04 | $180 \quad 0 \quad 0.00$ |  |  |  |
| 39 |  | VIII (Kápri) <br> IX (Punákot) <br> XIII (Patángri) | $\begin{array}{r} .83 \\ .82 \\ .83 \\ \hline \end{array}$ | -.81 <br> $-\quad .59$ <br> $-\quad .48$ | [ $\begin{array}{r}\text { - } 09 \\ +\quad 10 \\ -\quad 01\end{array}$ |  | $\begin{array}{r}\text { - } \quad .90 \\ \text { 二 } \\ \hline\end{array}$ | $\begin{array}{lll} 76 & 11 & 52 \cdot 85 \\ 47 & 13 & 48 \cdot 61 \\ 56 & 34 & 18 \cdot 54 \\ \hline \end{array}$ | $\begin{aligned} & 5 \cdot 1100710,9 \\ & 4 \cdot 9885433,4 \\ & 5 \cdot 0442618,8 \end{aligned}$ | $\begin{array}{r} 128846 \cdot 05 \\ 97396 \cdot 50 \\ 110729 \cdot 13 \end{array}$ | $\begin{aligned} & 24.403 \\ & 18 \cdot 446 \\ & 20 \cdot 97 \mathrm{I} \end{aligned}$ |
|  |  |  | $2 \cdot 48$ |  |  |  | - 1.88 | $180 \quad 0 \quad 0.00$ |  |  |  |
| 40 |  | $\begin{aligned} & \text { IX (Punákot) } \\ & \text { XIII (Patángri) } \\ & \text { XVII (Bhor) } \end{aligned}$ | $\begin{array}{r} 71 \\ .72 \\ .72 \\ \hline \end{array}$ | $\begin{array}{r} +\quad 41 \\ +\quad 23 \\ +\quad .20 \\ \hline \end{array}$ | $\begin{array}{r} -12 \\ -\quad 13 \\ +\quad .25 \\ \hline \end{array}$ |  | $\begin{array}{r} +\quad 29 \\ +\quad 10 \\ +\quad 45 \\ \hline \end{array}$ | 38 1 $58 \cdot 04$ <br> 61 18 $57 \cdot 13$ <br> 80 39 4.83 | $\begin{aligned} & 4 \cdot 9055378,7 \\ & 5 \cdot 0590158,0 \\ & 5^{\prime} 1100710,9 \end{aligned}$ | $\begin{array}{r} 80452 \cdot 20 \\ 114555.46 \\ 128846.05 \end{array}$ | $\begin{aligned} & 15 \cdot 237 \\ & 21 \cdot 696 \\ & 24 \cdot 403 \end{aligned}$ |
|  |  |  | $2 \cdot 15$ |  |  |  | +84 <br> $+\quad 8$ | $180 \quad 0 \quad 0.00$ |  |  |  |
| 55 |  | XVII (Bhor) <br> XIII (Patángri) <br> XIV (Kágarol) | $\begin{array}{r}.50 \\ .50 \\ .50 \\ \hline\end{array}$ | - 33 $-\quad 13$ $+\quad 35$ | $+\quad .54$ <br> $-\quad 29$ <br> $-\quad 25$ |  | $\begin{array}{r} +\quad .21 \\ -\quad 42 \\ +\quad .10 \\ \hline \end{array}$ | $\begin{array}{rrrr}50 & 58 & 14.37 \\ 78 & 2 & 9 & 18 \\ 50 & 59 & 36\end{array}$ | $\begin{aligned} & 4 \cdot 9053978,3 \\ & 5 \cdot 0055374,9 \\ & 4^{\cdot} 9055378,7 \end{aligned}$ | $\begin{array}{r} 80426 \cdot 25 \\ 101283.22 \\ 80452.20 \end{array}$ | $\begin{aligned} & 15.232 \\ & 19.182 \\ & 15.237 \end{aligned}$ |
|  |  |  | 1.50 |  |  |  | - III | $180 \quad 0 \quad 0.00$ |  |  |  |
| 56 |  | XIV (Kágarol) <br> XVII (Bhor) <br> XVIII.(Rencha) | $\begin{array}{r} 39 \\ \cdot 38 \\ \cdot 39 \\ \hline \end{array}$ | $\begin{aligned} & +\quad .55 \\ & +\quad .01 \\ & +\quad 29 \end{aligned}$ | $\left.\begin{array}{\|} \hline-59 \\ + & 57 \\ +.02 \end{array} \right\rvert\,$ |  | $\begin{array}{r} -.04 \\ +\quad .58 \\ +\quad .31 \\ \hline \end{array}$ | $\begin{array}{lll} 44 & 10 & 25^{\prime} \cdot 17 \\ 43 & 15 & 45^{\prime} 22 \\ 9^{2} & 33 & 49.61 \\ \hline \end{array}$ | $\begin{aligned} & 4 \cdot 8491027,1 \\ & 4 \cdot 8418802,3 \\ & 5 \cdot 0055374,9 \end{aligned}$ | $70648 \cdot 46$ $69483 \cdot 26$ 101283.22 | $\begin{aligned} & 13 \cdot 380 \\ & 13 \cdot 160 \\ & 19 \cdot 182 \end{aligned}$ |
|  |  |  | 1•16 |  |  |  | + 85 | $\begin{array}{lll}180 & 0 & 0.00\end{array}$ | : |  |  |
| 54 |  | XIII (Patángri) <br> XIV (Kágarol) <br> XII (Játhrábhor) | $\begin{array}{r} 32 \\ \cdot 33 \\ \cdot 33 \\ \hline \end{array}$ | $\begin{array}{r} +\quad 51 \\ +\quad .07 \\ \hline \end{array}$ | $+\quad 29$ <br> -17 <br> $-\quad 12$ |  | +.80 <br> -.05 | $\begin{array}{rrr} 33 & 23 & 2.25 \\ 87 & 33 & 54 \cdot 10 \\ 59 & 3 & 3.65 \\ \hline \end{array}$ | $\begin{aligned} & 4 \cdot 7126578,5 \\ & 4 \cdot 9717078,6 \\ & 4 \cdot 9053978,3 \end{aligned}$ | $\begin{aligned} & 51600 \cdot 97 \\ & 93693 \cdot 16 \\ & 80426 \cdot 25 \end{aligned}$ | $\begin{array}{r} 9 \cdot 773 \\ 17 \cdot 745 \\ 15 \cdot 232 \end{array}$ |
|  |  |  | $\cdot 98$ |  |  |  |  | 180 |  |  |  |
| 76 |  | XII (Játhrábhor) <br> XIV (Kágarol) <br> XV (Wardhari) | $\begin{array}{r}\cdot 30 \\ \cdot 29 \\ \cdot 29 \\ \hline\end{array}$ | $+\quad .05$ <br> $-\quad .15$ <br> $-\quad 13$ | $+\quad 16$ <br> $-\quad .66$ <br> - |  | $\begin{array}{r}+\quad .21 \\ \hline .21 \\ -\quad .23 \\ \hline\end{array}$ | $\begin{array}{rrr} 100 & 43 & 59.45 \\ 47 & 51 & 59 \\ -43 \\ -24 & 24 & 12 \\ \hline \end{array}$ | $\begin{aligned} & 4 \cdot 9881430,5 \\ & 4 \cdot 8659684,5 \\ & 4.7126578,5 \end{aligned}$ | $\begin{aligned} & 97306 \cdot 77 \\ & 73446 \cdot 06 \\ & 51600 \cdot 97 \end{aligned}$ | 18.429 $\begin{array}{r}18.910 \\ \hline 9.773\end{array}$ 9•773 |
|  |  | XIV (Kágarol) <br> XV (Wardhari) <br> XVI (Ghoráráo) | $\cdot 88$ |  |  |  | $-.23$ | $180 \quad 0 \quad 0.00$ |  |  |  |
| 77 |  |  | $\begin{array}{r} \cdot 61 \\ .62 \\ .61 \\ \hline 61 \end{array}$ | $\left\|\begin{array}{r} -1.02 \\ -\quad .59 \\ -\quad .47 \end{array}\right\|$ | ( 1010 |  | $\begin{array}{r} -1.12 \\ -\quad 37 \\ -\quad .59 \\ \hline \end{array}$ | $\begin{array}{rrr} 53 & 22 & 47 \cdot 60 \\ 64 & 29 & 32 \cdot 74 \\ 62 & 7 & 39 \cdot 66 \\ \hline \end{array}$ | $\begin{aligned} & 4.9461984,8 \\ & 4.9971557,6 \\ & 4.9881430,5 \end{aligned}$ | $\begin{aligned} & 88348 \cdot 37 \\ & 99347 \cdot 23 \\ & 97306 \cdot 77 \end{aligned}$ | $\begin{aligned} & 16.733 \\ & 18.816 \\ & 18.429 \end{aligned}$ |
|  |  |  | I.84 |  |  |  | -2.08 | $180 \quad 0 \quad 0.00$ |  |  |  |

Note.-Stations XII (Játhrábhor), XIII (Patángri), XIV (Kágarol), XV (Wardhari), XVI (Ghoráráo), XVII (Bhor) and XVIII (Rencha) appertain to the Singi Meridional Series.


Note.—Slations XIII (Patángri), XIV (Kágarol), XV (Wardhari), XVI (Ghoraráo) and XVIII (Rencha) appertain to the Singi Meridional Series.



Norr.—Stations XVIII (Chalarwa) and XXI (Sápakra) appertain to the Kattywar Meridional Series.

May, 1890.
W. H. COLE,

In charge of Computing Office.

GUZERAT LONGITUDINAL SERIES.

PRINCIPAL TRIANGULATION. LATITUDES, LONGITUDES AND AZIMUTHS.

| Station A |  |  |  | Side A B |  |  | Station B |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Cirouit No. | Number and Name of Station | Latitude North | Longitude East of Greenwich | Azimuth at A | Log. Feet | Azimuth at B | Number and Name of Station |
|  |  | - ' " | - , | - , " |  | - , |  |
| 5 | IX (Karsod) | $23646 \cdot 48$ | $75 \quad 2812 \cdot 70$ | 372448.90 | 5•1363074,8 | 217192 210 | XIII (Indráwan) |
| " | " $\quad$ " |  | " | $\begin{array}{llllll}94 & 4 & 35\end{array}$ | 4.9439919,4 | $2735826 \cdot 16$ | I (Kaula-ka-Máta) |
| 6 | XIII (Indráwan) | $224848 \cdot 54$ | 751323.78 | $17739 \quad 4.65$ | 5.0608817,1 | $3573^{8} 44.93$ | " $\quad$ " |
| " | " " | " | " | 1002958.52 | 5.0631044,2 | 28022649 | II (Tharkheri) |
| 15 | I (Kaula-ka-Máta) | $23 \quad 747 \cdot 62$ | 751233.27 | $491515 \cdot 17$ | 5'1578967,9 | 22973979 | " " |
| " | " ${ }^{\prime}$ | " | " | $895436 \cdot 85$ | 5.2310782,3 | $2694240 \cdot 34$ | III (Kuwása) |
|  | II (Tharkheri) | 225216.07 | $7453 \quad 783$ | 1464018.50 | 5.0487763,3 | $32636 \quad 1 \times 15$ | " " |
|  | " " | " | " | 1022051.33 | 4.8876769,7 | 282153744 | IV (Mehwása) |
|  | " " | " | " | 194114.35 | 4.8025094,3 | $1993945{ }^{\prime} 90$ | V (Pípliabán) |
| 16 | III (Kuwása) | $23 \quad 742 \cdot 04$ | $744^{2} \quad 9{ }^{17}$ | 1012441 | 4.8933619,5 | 190116.44 | IV (Mehwása) |
| " | " $\quad$ |  | " | $64 \quad 04379$ | .4.9047338,5 | $2435540 \cdot 82$ | VII (Kukinda) |
|  | IV (Mehwása) | $225459 \times 11$ | $743940 \cdot 96$ | 3243519.56 | 4.9706777, 1 | 144393.85 | V (Pípliabán) |
|  |  | " | " | $333041 \cdot 16$ | 5-0569650,9 | 2132620.87 | VI (Samohi) |
|  |  | " | " | 1253645.27 | 4.8558964,5 | 3053241.47 | VII (Kukinda) |
|  | V (Pípliabán) | 224223.92 | 744919.47 | $8054 \quad 776$ | 5-0741647,9 | $26046 \quad 5 \cdot 53$ | VI (Samohi) |
|  | VI (Samohi) | $223916 \cdot 70$ | $742828 \cdot 85$ | 1815121.08 | 5•1364930,9 | $15^{1} 39.51$ | VII (Kukinda) |
|  | " | " | " | 1381129.23 | 5-1170589,4 | 3175526.36 | VIII (Kápri) |
|  | " ${ }^{\prime}$ |  | " | 81 5445.94 | 4.9737789,8 | 261 4823 -01 | IX (Punákot) |
| 17 | VII (Kukinda) | $23 \quad 152.85$ | $742916 \cdot 32$ | 66454734 | 5.0005699,0 | $2463923 \cdot 10$ | VIII (Kápri) |
| 18 | VIII (Kápri) | $225520 \cdot 54$ | $741252 \cdot 0$ | 24856.86 | 5*0442618,8 | 1824834.38 | IX (Punákot) |

Notr.-Stations IX (Karsod) and XIII (Indrawan) appertain to the Khanpisura Meridional Series.


Norr.-Stations XII (Játhrábhor), XIII (Patángri), XIV (Kágarol), XV (Wardhari), XVI (Ghorárá), XVII (Bhor) and XVIII (Rencha) appertain to the Singi Meridional Series.


Norr.-Stations XVIII (Chalarwa) and XXI (Bápakra) appertain to the Kattywar Meridional Series.
may, 1890.
W. H. COLE, In charge of Computing Office.

## GUZERAT LONGITUDINAL SERIES.

## PRINCIPAL TRIANGULATION. HEIGHTS ABOVE MEAN SEA LEVEL.

The following table gives, first, the usual data of the observed vertical angles and the heights of the signal and instrument, \&c., in pairs of horizontal lines, the first line of which gives the data for the lst or the fixed station, and the second line the data for the 2nd or the deduced station. This is followed by the arc contained between the two stations, and then by the terrestrial refraction and the height of the 2nd station above or below the lst, as computed from the vertical angles in the usual manner. This difference of height applied to the given height above mean sea level of the fixed station, gives that of the deduced station. Usually there are two or three independent values of the height of the deduced station; the details are so arranged as to show these consecutively and their mean in the columns of "Trigonometrical Results." The mean results thus obtained are however liable to receive corrections for the errors generated in the trigonometrical operations, which are shown up by the spirit levelling operations, wherever a junction between the two has been effected. The spirit levelled determinations are always accepted as final, and the trigonometrical heights of stations lying betwieen those fixed by the levelling operations are adjusted by simple proportion to accord with the latter. In the table the spirit levelled values are printed thus, 309.77, \&c., to distinguish them from the adjusted trigonometrical values. The column in which the mean trigonometrical heights are given is barred across where necessary, as after deduction of Stn. XI from Stn. X, page 60_ , to indicate that one set of adjustments ends and another begins. The trigonometrical heights always refer to the upper mark or to the upper surface of the pillar or structure on which the theodolite stood. Descriptions follow this table, exactly indicating the surfaces on which the levelling staff stood during the determinations of the spirit levelled heights.

When the pillar of the station is perforated, the height given in the last column is that between the upper surface of pillar and the ground level mark-stone in the floor of the passage; otherwise, it is the approximate height of the structure above the ground at the base of the station.

The heights of the fixed stations above Mean Sea Level are as follows:-



[^47]| Astronomical Date |  | Number and Name of Station | Observed Vertical Angle |  | Height in feet |  |  | Terrestrial Refraction |  |  | Height in feet of 2nd Station above Mean Sea Level |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1862 | Mean of Times of obser－ vation |  |  |  | ］ | 若 |  | 若 |  |  | $\begin{gathered} \text { Trigono } \\ \text { Res } \end{gathered}$ | metrical ults |  |  |
|  |  |  |  |  |  | 点 |  | $\begin{aligned} & \check{む} \\ & \stackrel{y}{\leftrightarrows} \end{aligned}$ | － |  | $\begin{aligned} & \text { By each } \\ & \text { deduc－}\end{aligned}$ tion | Mean | Final Result |  |
|  | $h m$ |  | －＇＂ |  |  |  | ＂ |  |  |  |  |  |  | feet |
| Feb．12，14，15， 17 | 242 | XIII（Indráwan） | D $01136 \cdot 7$ |  |  | $2 \cdot 5$ |  |  |  | 91•8 | $1742^{\prime} 1$ |  |  |  |
| ＂ 8 | 319 | II（Tharkheri） | Do 6190 | 4 | ＊ $0 \cdot 1$ | $5^{\circ} 1$ | 1140 | 37 | 032 | －918 | 1742 I |  |  |  |
| ＂20，21 | 245 | I（Kaula－ka－Máta） | D 01515.4 | 8 | 2.6 | 5＇1 |  |  |  |  |  | 74 | 1742 | 8 |
| ＂ 8 | 225 | II（Tharkheri） | D 0.60 .7 | 4 | $2 \cdot 6$ | $5 \cdot 1$ | 1421 | 76 | －053 | －193．5 | $1742 \cdot 5$ |  |  |  |
| ＂20，21 | 234 | I（Kaula－ka－Máta） | D $01852^{2} 2$ | 8 | $2 \cdot 6$ | 5＇1 |  |  |  |  |  |  |  |  |
| ＂3，4 | 249 | III（Kuwása） | Do 5 59．0 | 8 | $2 \cdot 6$ | $5 \cdot 1$ | 1677 | 96 | －057 | $-319^{\circ} 1$ | 1616＊7 |  |  |  |
| ＂ 8 | 234 | II（Tharkheri） | D ○ 1158.6 | 4 | $2 \cdot 7$ | 5＊1 |  |  |  |  |  | $1618 \cdot 9$ | 1618 | 5 |
| ＂3，4 | 241 | III（Kuwása） | Do 43 I 5 | 8 | $2 \cdot 6$ | 5•1 | 1107 | 63 | $\cdot 057$ | －121．3 | 1621. |  |  |  |
| ＂ 8 | 247 | II（Tharkheri） | D $02147^{\circ} 4$ | 4 | $2 \cdot 8$ | 5＇1 | 761 |  |  |  |  |  |  |  |
| ＂ 6 | 220 | IV（Mehwása） | E 0108.5 | 4 | $2 \cdot 6$ | $5 \cdot 2$ | 761 | 38 | － 049 | $-358 \cdot 7$ | $1383 \cdot 6$ |  |  |  |
| ＂3，4 | 231 | III（Kuwása） | D 01614.7 | 8 | $2 \cdot 6$ | 5＇1 |  |  |  |  |  | 1383.0 | 1382 | 24 |
| 5 | 30 | IV（Mehwása） | EO $433 \cdot 1$ | 4 | $2 \cdot 7$ | $5 \cdot 2$ | 775 | 43 | －056 | $-236 \cdot 6$ | $1382 \cdot 3$ |  |  |  |
| ＂7，8 | 254 | II（Tharkheri） | Do $249^{\circ} \mathrm{I}$ | 8 | $2 \cdot 6$ | $5 \cdot 2$ | 628 |  |  |  |  |  |  |  |
| ＂ 10 | 223 | V（Pípliabán） | Do 732＇3 | 4 | $2 \cdot 6$ | $5 \cdot 1$ | 628 | 12 | －19 | $+43 \cdot 6$ | $85 \cdot 9$ |  |  |  |
| ＂ 6 | 31 | IV（Mehwása） | E $0740 \cdot 6$ | 4 | $2 \cdot 6$ |  |  |  |  |  |  | 1784.5 | 1784 | 5 |
| ＂ 10 | 234 | $\nabla$（Pípliabán） | D 02144.6 | 4 | $2 \cdot 8$ | $5 \cdot 2$ | 924 | 46 | －050 | ＋400＇1 | $1783 \cdot 1$ |  |  |  |
| ＂ 6 | 241 | IV（Mehwása） | E $0233 \cdot 1$ | 4 | $2 \cdot 5$ | $5 \cdot 2$ |  |  |  |  |  |  |  |  |
| Jan．27，28 | 249 | VI（Samohi） | D 01914.7 | 8 | $2 \cdot 6$ | 5．1 | 1123 | 68 | －060 | $+36 \mathrm{I} \cdot 6$ | 1744.6 |  |  |  |
| Feb．$\quad 10$ | 250 | V（Pípliabán） | D o 945.6 | 4 | $2 \cdot 5$ | $5 \cdot 2$ |  |  |  |  |  |  |  |  |
| Jan．27，28 | 256 | VI（Samohi） | D ○ $730 \cdot 8$ | 8 | $2 \cdot 6$ | $5 \cdot 1$ | 1169 | 71 | －061 | $-38 \cdot 7$ | 1745 ＊ | $1745^{\circ} 2$ | 1744 | $5 \cdot 5$ |
| ＂30，31 | 255 | VII（Kukinda） | D o 5 20．9 | 8 | $2 \cdot 5$ | 5＇1 |  |  |  |  |  |  |  |  |
| 27，28 | 242 | VI（Samoli） | D $014{ }^{\text {2 }}$－1 | 8 | 2.6 | $5 \cdot 1$ | 1357 | 87 | －064 | ＋182．0 | $1745^{\circ} 3$ |  |  |  |
| Feb．3，4 | 221 | III（Ku＊ása） | D 0822.6 | 8 | $2 \cdot 7$ | $5^{11}$ |  |  |  |  |  |  |  |  |
| Jan．30，31 | 221 | VII（Kukinda） | D ○ 338.3 | 8 | $2 \cdot 6$ | $5 \cdot 1$ | $79^{2}$ | 42 | －053 | － $55 \cdot 4$ | 1563.5 |  |  |  |
| Feb．$\quad 5$ | 248 | IV（Mehwása） | E ○ 315\％9 |  |  | $5^{\circ} 2$ | 708 |  |  | ＋180．1 | 1563.1 | 1563.3 | 1562 |  |
| Jan．30，31 | 233 | VII（Kukinda） | D 01359.5 | 8 | $2 \cdot 6$ | 511 | 708 | 40 | －056 | ＋180 1 | 1563 | 1563 | 1562 | 5 |
| ＂$\cdot 27,28$ | 242 | VI（Samohi） | D o $1429^{\circ} \mathrm{I}$ | 8 | $2 \cdot 6$ | $5^{11}$ |  |  | $\cdot 064$ | －182．0 |  |  |  |  |
| ＂30，31 | 255 | VII（Kukinda） | D o 520．9 | 8 | $2 \cdot 5$ | $5 \cdot 1$ | 1357 | 87 | $\cdot 064$ | －182．0 | 1563.2 |  |  |  |
| ＂27，28 | 230 | VI（Samohi） | D 02246.9 | 8 | $2 \cdot 7$ | 5．1 |  |  |  |  |  |  |  |  |
| ＂20，23 | 249 | VIII（Kápri） | E○ $339^{\circ}$ | 8 | $2 \cdot 5$ | $5^{11}$ | 1294 | 77 | 060 | －503．6 | 12416 |  |  |  |
| ＂30，31 | 244 | VII（Kukinda） | D $018 \mathbf{8 8 . 4}$ | 8 | $2 \cdot 7$ | $5 \cdot 1$ |  |  |  |  |  | $1240{ }^{\circ}$ | 1239 | 5 |
| ＂22，23 | 254 | VIII（Kápri） | E O $346 \cdot 7$ | 8 | $2 \cdot 5$ | $5^{1} 1$ | 987 | 58 | 059 | $-324.2$ | 1239 1 |  |  |  |
| ＂ 27 | 217 | VI（Samohi） | D o 650.5 | 4 | $2 \cdot 6$ | 5＊1 |  |  |  |  |  |  |  |  |
| ＂16，17 | 255 | IX（Punákot） | D $0710 \cdot 8$ | 8 | $2 \cdot 5$ | $5 \cdot 1$ | 928 | 49 | 053 | ＋ 4.6 | $1749{ }^{\circ} 8$ |  |  |  |
| ＂$\quad 20$ | 229 | VIII（Kápri） | E O 723.6 | 4 | $2 \cdot 7$ | 5•1 |  | 48 |  |  |  | 1749.8 | 1748 | $5^{1} 1$ |
| ＂16，17 | 241 | IX（Punákot） | D 02413.8 | 8 | $2 \cdot 6$ | 5＇1 | 1097 | 48 | 044 | $+5093$ |  |  |  |  |

Nots．－Station XIII（Indráwan）appertains to the Khánpisura Meridional Series．
＊This hoight is to be combined with negative sign on account of change in the leight of the pillar at Station XIII（Indráran）．

| Astronomical Date |  | Number and Name of Station | Observed Vertical Angle |  | Height in feet |  |  | $\left\|\begin{array}{c}\text { Terrestrial } \\ \text { Refraction }\end{array}\right\|$ |  |  | Height in feet of 2nd Station above Mean Sea Level |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1861-62 | Mean of <br> Times <br> of obser－ vation |  |  |  |  | 䜨至畐 |  |  |  |  | Trigonometrical Results |  | FinalResult |  |
|  |  |  |  |  |  |  |  |  |  |  | $\begin{gathered} \text { By each } \\ \text { deduc- } \\ \text { tion } \end{gathered}$ | Mean |  |  |
|  | $\boldsymbol{h} m$ |  | －＇＂ |  |  |  | ＂ |  |  |  |  |  |  | feet |
| Jan．20，21 | 225 | VIII（Kápri） | D ○ $1834^{\circ} 4$ |  |  | 5．1 | 960 | 45 |  | $-318.5$ | 921．9 |  |  |  |
| Dec．24，Jan． 10 | 242 | XIII（Patángri） | Eo 3 54．2 | 8 | $2 \cdot 6$ | $5 \cdot 2$ | 960 | 45 |  | $-3185$ | 9219 |  |  |  |
| Jan．16，17 | 230 | IX（Punákot） | Do3122．7 | 8 | $2 \cdot 8$ | $5 \cdot 1$ | 1273 | 77 | －061 | －824．4 | 925.4 |  |  |  |
| 10 | 222 | XIII（Patángri） | E $01236 \cdot 3$ | 4 | $2 \cdot 6$ | $5 \cdot 2$ |  |  |  |  |  |  |  |  |
| ＂16，17 | 217 | IX（Punákot） | D $02930 \cdot 1$ | 8 | $2 \cdot 6$ | 5．1 | 1129 | 74 | －065 | $-708 \cdot 0$ | 1041 $\cdot 8$ |  |  |  |
| $"_{1860-61} 12$ | 2.19 | XVII（Bhor） | E 01259.4 | 4 | $2 \cdot 6$ | 5．1 |  |  |  |  |  | 1039.4 | 1037 | ＊ |
| Jan．5，6 | 224 | XIII（Patángri） | Do 16.5 | 8 | $2 \cdot 7$ | $5 \cdot 2$ | 797 | 48 | －060 | ＋113．2 | $1036 \cdot 9$ |  |  |  |
| ＂ 20 | 225 | XVII（Bhor） | D $01047 \% 3$ | 4 | $2 \cdot 6$ | 5＇1 |  |  |  |  |  |  |  |  |
| ＂5，6 | 241 | XIII（Patángri） | D 02011.2 | 8 |  | $5 \cdot 2$ | 792 | 41 | －052 | －327＊4 | 596＊3 |  |  |  |
| ＂． 2 | 221 | XIV（Kágarol） | E○ 758.0 | 4 | $2 \cdot 6$ | 5．1 | 792 | 41 |  | －327 4 | 596 |  |  |  |
| Dec．14，15 | 250 | XVII（Bhor） | D 02226.0 | 8 | $2 \cdot 7$ | 5．1 | 1002 | 59 | －059 | －441．4 | 598．0 | $597 *$ | 595 | 5 |
| ＂21，27 | 238 | XIV（Kágarol） | E○ 731.6 | 8 | $2 \cdot 7$ | $5 \cdot 1$ | 1002 | 59 | 55 | －4414 |  | 597 | 595 | 5 |
| Jan． 19 | 220 | XVIII（Rencha） | D o 24211 | 4 | $2 \cdot 7$ | 5．1 | 688 | 33 | $\cdot 048$ | $+52 \cdot 7$ | 596．6 |  |  |  |
| ＂ 2 | 236 | XIV（Kágarol） | Do $755^{\circ} \mathrm{I}$ | 4 | $2 \cdot 7$ | $5 \cdot 1$ |  | 33 |  | ＋ 52 |  |  |  |  |
| ＂5，6 | 239 | XIII（Patángri） | $\begin{array}{llll}\text { D } 020 & 20.9\end{array}$ | 8 | $2.7$ | $5 \cdot 2$ | 1095 | 52 | $\cdot 048$ | $-378 \cdot 2$ | 545＇5 |  |  |  |
| ＂ 19 | 231 | XVIII（Rencha） | E○ 323.6 | 4 | $2 \cdot 6$ | $5 \cdot 1$ | 1095 | 5 |  | 378 |  |  |  |  |
| Dec．14，15 | 241 | XVII（Bhor） | 1） 02923.7 | 8 | 2.6 | 5．1 | 696 | 44 | －063 | $-497 \cdot 2$ | $542 \cdot 2$ | $544^{1}$ | 542 | 5 |
| ＂10，11 | 232 | XVIII（Rencha） | E○19 0．1 | 8 | $2 \cdot 8$ | $5 \cdot 1$ | 696 | 44 |  | 4972 |  | 544 | 54 | 5 |
| Jan． 2 | 236 | XIV（Kágarol） | D o $755^{\circ} \mathrm{I}$ | 4 | $2 \cdot 7$ | 5．1 | 688 | 33 |  | $-52.7$ | 544＊5 |  |  |  |
| ＂ 19 | 220 | XVIII（Rencha） | Do $24^{\prime \prime} 1$ | 4 | $2 \cdot 7$ | $5 \cdot 1$ | 688 | 33 |  | 52 | 5445 |  |  |  |
| ＂ 5 ，6 | 246 | XIII（Patángri） | D ○ 1123.3 ． | 8 | $2 \cdot 6$ | $5 \cdot 2$ | 925 | 57 | －062 | －123．7 | $800^{\circ}$ |  |  |  |
| ＂． 15 | 222 | XII（Játhrábhor） | D） 218.3 | 4 | $2 \cdot 6$ | $5^{\prime 1}$ | 925 | 57 |  |  |  | $800 \cdot 6$ | 8 | 5 |
| Doc．21，27 | 233 | XIV（Kágarol） | E 0937.3 | 8 | $2 \cdot 6$ | $5^{\prime 1}$ |  |  |  |  | $801 \cdot 2$ |  |  |  |
| ＂19，20 | 230 | XII（Játhrábhor） | D 01735.4 | 8 | $2 \cdot 6$ | $5 \cdot 2$ | 511 | 7 | 052 |  |  |  |  |  |
| ＂21，27 | 235 | XIV（Kágarol） | D o 829.8 | 8 | $2 \cdot 8$ | 5．1 | 962 | 58 |  | －38．7 | $558 \cdot 3$ |  |  |  |
| Nov．30，Dec． 1 | 245 | XV（Wardhari） | Do 546.2 | 8 | $2 \cdot 7$ | $5 \cdot 2$ | 962 | 58 |  |  |  |  |  |  |
| Dec．19，20 | 241 | XII（Játhrábhor） | D ○ $1647 \times 7$ | 8 |  | $5 \cdot 2$ |  | 46 |  | －243．8 | 556•8 | 5583 | 556 | 5：8 |
| n 1 | 238 | XV（Wardhari） | E○ $61 \cdot 1$ | 4 | $2 \cdot 6$ | $5 \cdot 2$ | 724 | 4 |  | 2438 | 556 | 558 | 556 |  |
| ＂3，4 | 27 | XVI（Ghoráráo） | E o 23 31．2 | 8 |  | 5．1 | 875 | 49 | $\cdot 056$ | ＋233．5 | $559 * 8$ |  |  |  |
| ＂ 1 | 212 | XV（Wardhari） | D ○ 1539.6 | 4 | $2 \cdot 6$ | $5 \cdot 2$ | 875 | 49 |  | ＋233 5 | 559 |  |  |  |
| ＂21，27，28 | 228 | XIV（Kágarol） | D $01642 \cdot 8$ | 12 | $2 \cdot 7$ | 5．1 | 979 | 54 |  | －270．9 | $326 \cdot 1$ |  |  |  |
| ＂3，4 | 220 | XVI（Ghoráráo） | EO 22.2 | 8 | $2 \cdot 7$ | $5 \cdot 1$ | 979 | 54 |  | －270 9 |  |  |  |  |
| ＂ 12 | 242 | XVIII（Rencha） | $\text { D } \circ 1454^{\circ} 5$ | 4 | $2 \cdot 7$ $2 \cdot 7$ | $5 \cdot 1$ | 1052 | 58 |  |  | 326.4 | 325.5 | 323 | 5 |
| ＂ 31 | 225 | XVI（Ghoráráo） | D ○ 052.0 | 4 | $2 \cdot 7$ | 5＇1 | 1052 |  |  |  |  |  |  |  |
| ＂ 1 | 212 | XV（Wardhari） | D o $1539^{\circ} 6$ | 4 | 2.6 | $5 \cdot 2$ | 875 | 49 |  |  | 324＊${ }^{\text {r }}$ |  |  |  |
| ＂3，4 | 27 | XVI（Ghoráráo） | EO 231.2 | 8 | $2 \cdot 8$ | $5^{\circ} 1$ | 875 | 49 |  | －233 5 | 324 |  |  |  |

Notr．－Station XII（Játhrábhor），XIII（Patángri），XIV（Kígarol），XV（Wardhari），XVI（Ghoráráo），XVII（Bhor），and XVIII（Rencha）appertain to the Singi Meridional Series．

| Astronomical Date |  | Number and Name of Station | Observed Vertical Angle |  | Height in feet |  |  | $\left.\begin{aligned} & \text { Terrestrial } \\ & \text { Refraction }\end{aligned} \right\rvert\,$ |  |  | Height in feet of 2nd Station above Mean Sea Level |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1860 | Mean of Times of obser－ vation |  |  |  | 砸 | 兑 |  | 若 |  |  | $\underset{\text { Resu }}{\substack{\text { Thigono }}}$ | metrical <br> ults |  |  |
|  |  |  |  |  | $\infty$ | 童 |  | $\underset{\Delta}{0}$ |  |  | By each deduc－ tion | Mean | Result |  |
|  | \％m |  | －＇ 1 |  |  |  | ＂ |  |  |  |  |  |  | foet |
| $\begin{gathered} \text { Nor.30, Dec. } 1 \\ 1858-59 \end{gathered}$ | 227 | XV（Wardhari） | D 010 32．0 |  |  | $5 \cdot 2$ | 714 |  |  | －108．2 | 450 ＇ 1 |  |  |  |
| Jan．$\quad 3,4,5$ | 210 | $X$（Jhiria） | D ○ 0 16．3 | 14 | $2 \cdot 6$ | $5 \cdot 6$ | 714 | 41 | 057 | －108 2 | 4501 |  |  | 6 |
| ，14，15，16 | 24 | XVI（Ghoráráo） | E ○ 217.8 | 12 | $2 \cdot 6$ | $5 \cdot 6$ |  |  |  |  |  |  | 447 |  |
| ＂4，5 | 224 | X （Jhiria） | D ○ II $40 \cdot 4$ | 10 | $2 \cdot 6$ | $5 \cdot 6$ | 603 | 30 | －050 | ＋123．9 | $449^{\circ} 4$ |  |  |  |
| ＂14，15，16 | 210 | XVI（Ghoráráo） | D o 454.3 | 12 | $2 \cdot 6$ | $5 \cdot 6$ |  |  |  |  |  |  |  |  |
| ＂18，19，20 | 1 57 | XI（Poera） | Do 315.8 | 12 | 2.6 | $5 \cdot 6$ | 512 | 23 | －045 | － $12 \cdot 4$ | 313．1 |  |  |  |
| ＂3，4，5 | 220 | X（Jhiria） | D 01515.9 | 12 | 2.6 | $5 \cdot 6$ |  |  |  |  |  |  |  |  |
| ＂18，19，20 | 25 | XI（Poera） | E $0848 \cdot 0$ | 12 | 2.6 | $5 \cdot 6$ | 387 | 16 | －040 | －137＊ | $312 \cdot 8$ |  |  |  |
| ＂3，4，5 | 223 | X（Jhiria） | D 01242.6 | 16 | $2 \cdot 6$ | $5 \cdot 6$ |  | 16 |  |  |  |  |  |  |
| ＂21，22，24 | 216 | XII（Rámesri） | E 0412.2 | 14 | $2 \cdot 6$ | $5 \cdot 6$ | 452 | 16 | ． 035 | －112．9 | 3339 |  |  |  |
| ＂ 24 | 843 | XI（Poera） | E $0258{ }^{\circ}$ | 4 | 1.4 | 4.9 |  |  |  |  |  | 336．5 | 336 | 30•8 |
| ＂ 24 | 843 | XII（Rámesri） | Do 154.6 | 4 | 11．2 | $5 \cdot 6$ | 415 | 259 | 611 | $+29^{\circ} 2$ | $339{ }^{\circ}$ |  |  |  |
| ＂22，23 | ＊ | XI（Poera） | D ○ 523.1 | 14 | 8.8 | $4 \cdot 9$ |  |  |  | －61．0 | $248 \cdot 8$ |  |  |  |
| ＂22，23 | ＊ | XIII（Gohilia） | E○ 332.5 | 14 | 11．9 | $4 \cdot 9$ | 475 | 159 | 334 | －610 | $248 \cdot 8$ |  |  |  |
| ＂21，22，24 | 232 | XII（Rámesri） | D ○ 952.4 | 16 |  | 6 |  |  |  |  |  | $249 \cdot 6$ | 249 | $24^{\circ} 2$ |
| ＂7，8 | 222 | XIII（Gohilia） | EO 28.3 | 10 | $2 \cdot 6$ | $5 \cdot 6$ | 468 | $\bigcirc$ | 000 | －86．1 | $250 \cdot 4$ |  |  |  |
| ，21，22，24 | 216 | XII（Rámesri） | Do 9 4177 | 12 | $2 \cdot 6$ | $5 \cdot 6$ |  |  |  |  |  |  |  |  |
| Dec．27，28 | 233 | XIV（Bhagwánji） | E 0145.5 | 10 | $2 \cdot 6$ | $5 \cdot 6$ | 471 | 10 | 022 | －79．6 | $256 \cdot 9$ |  |  |  |
| Jan．7，8 | 24 | XIII（Gohilia） | D ○ 353.9 | 8 | 2.6 | 6 |  |  |  |  |  | $255{ }^{\circ} 9$ | 255 | $23^{1}$ |
| Dec．27，28 | 212 | XIV（Bhagwánji） | D o $437 \times 9$ | 10 | $2 \cdot 6$ | $5 \cdot 6$ | 496 | 4 | 009 | $+53$ | 254＊9 |  |  |  |
| Jan．7，8 | 220 | XIII（Gohilia） | D 08 II•8 | 10 | 2.6 | 5．6 |  |  |  |  |  |  | － |  |
| Dec．18，20 | 219 | XV（Rundan） | D $01140 \cdot 4$ | 8 | $2 \cdot 6$ | $5 \cdot 6$ | 553 | 8 | －015 | －53＊2 | 196.4 |  |  |  |
| ＂27，28 | 233 | XIV（Bhagwánji） | D 0812.3 | 8 | 2.6 | $5 \cdot 6$ |  |  |  |  |  | $197 \times 4$ | 196 | $23^{\circ} \mathrm{O}$ |
| ＂18，20 | 212 | XV（Rundan） | E ○ O 5．4 | 12 | $2 \cdot 6$ | $5 \cdot 6$ | $47^{2}$ | 6 | 012 | －57．5 | 198.4 |  |  |  |
| ＂27，28 | 214 | XIV（Bhagwánji） | D o 5 516.6 | 8 | 2.6 | 5.6 |  |  |  |  |  |  |  |  |
| ＂22，23 | 214 | XVI（Mirzápur） | D $0257^{\circ} 9$ | 8 | $2 \cdot 6$ | $5 \cdot 6$ | 503 | 16 | －033 | $-171$ | $238 \cdot 8$ |  | 238 | 8 |
| ＂18，20 | 223 | XV（Rundan） | D 0 O $15^{\circ} 2$ | 8 | $2 \cdot 7$ | $5 \cdot 6$ |  |  |  |  |  | 239 | 2 |  |
| ＂22，23 | 214 | XVI（Mirzápur） | D $0655^{\prime} 9$ | 8 | $2 \cdot 6$ | $5 \cdot 6$ | 428 | 12 |  | ＋ $42 \cdot$ | $239 \times 4$ |  |  |  |
| ＂18，20 | 231 | XV（Rundan） | D ○ 2474 | 8 | $2 \cdot 6$ | $5 \cdot 6$ |  | 18 |  |  |  |  |  |  |
| ＂15，16 | 224 | XVII（Jhinjhar） | Do 5 8．2 | 10 | $2 \cdot 7$ | 5.6 | 487 | 18 | ． 037 | ＋ 16.9 | 214.3 |  |  |  |
| ＂22，23 | 228 | XVI（Mirzápur） | D o 528.2 | 10 | $2 \cdot 6$ | 5.6 |  |  |  |  |  | 2145 | 21300 | $10 \cdot 0$ |
| $" 1852^{15,16}$ | 224 | XVII（Jhinjhar） | D ○ 1 44.5 | 8 | $2 \cdot 6$ | 5.6 | 445 | 20 | －045 | － 24.4 | 214＊7 |  |  |  |
| Feb． 23 | 328 | XVI（Mirzápur） | D 0448.3 | 6 | $4^{*}$ I | 5．5 |  |  |  |  |  |  |  |  |
| $" 1858-59{ }^{25}$ | 315 | XVIII（Wastrál） | D 04309 | 6 | $3 \cdot 7$ | 5.4 | 553 | 16 |  | －6．2 | 232．9 | $232 \cdot 1$ | 22948 | 7 |
| Dec． 16 | 244 | XVII（Jhinjhar） | D o $240 \cdot 7$ | 4 | 2.7 | 5．6 | 483 | 22 |  | ＋ $16 \cdot 8$ |  |  |  |  |
| ，24，Jan． 11 | 1216 | XVIII（Wastrál） | D ○ 52.6 | 8 | 2.6 | ． $5 \cdot 6$ | 483 | 22 | ． 046 | ＋ 16.8 | 2313 |  |  |  |

 23rd January 1859.

| Astronomical Date |  | Number and Name of Station | Observed Vertical Angle |  | Height in feet |  |  | Terrestrial Refraction |  |  | Height in feet of 2nd Station above Mean Sea Level |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1852 | Mean of Times of obser－ vation |  |  |  | 䂞 |  |  |  |  |  | $\underset{\text { Resu }}{ }$ | metrical ults |  |  |
|  |  |  |  |  |  | 嵩 |  |  | ค\％ |  | $\begin{aligned} & \text { By each } \\ & \text { deduc- } \\ & \text { tion } \end{aligned}$ | Mean | Result |  |
|  | $h \quad m$ |  | － 11 |  |  |  | ＂ |  |  |  |  |  |  | feet |
|  | 36 | XVI（Mirzápur） | D o $326 \cdot 1$ |  |  | $5 \cdot 5$ | 533 |  |  | ＋ 13.7 | 251.4 |  |  |  |
| \％ 17 | 318 | XIX（Sanoda） | Do $5^{10} 4$ | 4 | $3 \cdot 8$ | $5 \cdot 4$ | 533 |  |  | $+137$ | 251 |  |  | ＊ |
| ＂ 25 | 34 | XVIII（Wastrál） | Do 3 34． 1 | 4 | 3.8 | $5 \cdot 4$ |  |  |  |  |  |  |  |  |
| ＂ 17 | 327 | XIX（Sanoda） | Do 5 51．5 | 4 | $5 \cdot 0$ | $5 \cdot 4$ | 573 |  | －013 | ＋199 | 2494 |  |  |  |
| ＂ 28 | 314 | XVIII（Wastrá） | Do 400.7 | 6 | $4^{\circ} \mathrm{I}$ | $5 \cdot 4$ |  |  |  |  |  |  |  |  |
| Mar． 4 | 322 | XXI（Sola） | D ○ $532 \cdot 3$ | 6 | $3 \cdot 8$ | 5． 5 | 597 |  |  | $+13.2$ | $242 \cdot 7$ | 2427 | 24206 | 25 |
| ＂$\quad 4$ | 342 | XXI（Sola） | D 0917.8 | 6 | 3.8 | 5．5 | 614 | 12 |  | － 77.5 | 164.6 | 164．6 | 163.66 | 12 |
| ＂$\quad 9$ | 335 | XXII（Sánand） | D ○ 043.4 | 6 | 3.9 | $5 \cdot 4$ | 614 |  |  | － 775 |  |  |  |  |
| Feb． 25 | 333 | XVIII（Wastrál） | D o 552.4 | 6 | 3.8 | $5 \cdot 4$ | 579 |  |  | $-20 \cdot 6$ | $208 \cdot 9$ |  |  |  |
| ${\underset{1858}{\text { Mar. }} 1}$ | 357 | XX（Pálri） | Do 328.1 | 6 | 3.7 | $5 \cdot 4$ | 579 |  |  |  |  |  |  |  |
| Dec．15，16 | 241 | XVII（Jhinjhar） | D o 611.9 | 10 | $2 \cdot 7$ | $5 \cdot 6$ | 778 | 36 |  | －4．0 | $209 \cdot 0$ |  |  |  |
| $" 1852^{18}$ | 244 | $\mathbf{X X}$（Pálri） | Do 5 50．8 | 6 | $2 \cdot 7$ | $5 \cdot 6$ | 778 | 3 |  | － 40 |  | 208．5 | 208 | 6 |
| Mar． 4 | 38 | XXI（Sola） | D o 7 2．1 | 6 | $3 \cdot 8$ | 5．5 | 680 |  |  | － 33.7 | 208.4 |  |  |  |
| \＃ 1 | 346 | XX（Pálri） | Do 338.7 | 4 | 4．1 | $5 \cdot 4$ | 680 |  |  | － 337 |  |  |  |  |
| （1） | 331 | XXII（Sánand） | D o 23 31．5 | 16 | 3.8 | 5＊4 | 613 |  |  | ＋ $43 \cdot 8$ | $207 * 5$ |  |  |  |
| （2） | 39 | XX（Pálri） | Do 722.9 | 10 | 3.8 | $5 \cdot 4$ |  |  |  | $+43$ |  |  |  |  |
| Mar．$\quad 9$ | 48 | XXII（Sánand） | D o 6 6．2 | 6 | $3 \cdot 8$ | 5．4 | 467 |  |  | $-30 \cdot 3$ | $133^{\circ} 4$ | 133.4 | $132 \% 1$ | 18 |
| 》 $\quad 17$ | 311 | XXIV（Khoraj） | D 0142.1 | 6 | 3.8 | $5 \cdot 4$ | 467 |  |  | － 303 | 2334 |  |  |  |
| ＂ 17 | 49 | XXIV（Khoraj） | D ○ 510.4 | 4 | trı | 5.4 | 563 |  |  | ＋ 2.3 | 134.4 | 134.4 | 133.27 | 21 |
| May $\quad 1$ | 456 | XXVI（Hasalpur） | D 059.6 | 6 | 3.7 | $5 \cdot 4$ | 563 |  |  | ＋ 23 | 1344 | 1344 | 13327 | 21 |
| Mar．$\quad 3$ | 336 | XXI（Sola） | D $0246 \cdot 5$ | 6 | 3.9 | $5 \cdot 5$ |  |  |  |  |  |  |  |  |
| ＂ 11 | 31 | XXIII（Hájipur） | D ○ 519.4 | 4 | 3.8 | 5.4 | 497 |  |  | $+17.4$ | 259.5 |  |  |  |
| ＂ 9 | 356 | XXII（Sánand） | E 0 O 0.44 .6 | 4 | 3.9 | $5 \cdot 4$ | 600 |  |  | ＋ 96.6 | $260 \cdot 3$ | $259{ }^{\text {¹ }}$ | 259 | 5 |
| 11 | 325 | XXIII（Hájipur） | D 01013.7 | 4 | 3.8 | 5.4 |  |  |  | ＋ 96 |  |  | 259 | 5 |
| ＂ 17 | 325 | XXIV（Khoraj） | E 0027.5 | 4 | 3.7 | $5 \cdot 4$ | 681 |  |  |  | 257.5 |  |  |  |
| 11 | 313 | XXIII（Hajipur） | D 0121.9 | 6 | $3 \cdot 8$ | 5.4 | 681 |  |  | ＋125 4 | 2575 |  |  |  |
| ＂ 11 | 416 | XXIII（Hájipur） | D $01025^{\circ} 4$ | 4 | 3.9 | 5．4 | 635 |  |  |  | 159.3 |  |  |  |
| ＂ 15 | 327 | XXV（Wádrora） | E O $0429^{\circ} 4$ | 4 | 12.9 | $5 \cdot 4$ | 635 |  |  |  | 159 |  |  |  |
| ＂ 17 | 416 | XXIV（Khoraj） | D ○ 320.4 | 4 | 6.9 | $5 \cdot 4$ |  | －12 |  | ＋ 23.6 | 155.7 | 158．1 |  | 12 |
| 15 | 417 | XXV（Wádrora） | Do 623.9 | 4 | 3.8 | $5 \%$ | 559 |  |  |  | 1557 | 1581 | 8 | 12 |
| May 1 | 446 | XXVI（Hasalpur） | D o 3 24.4 | 4 | 3.8 | 5＊4 |  |  |  |  |  |  |  |  |
| Mar．$\quad 15$ | 349 | XXV（Wadrora） | D ○ $652 \cdot 3$ | 6 | ＋1．1 | $5 \cdot 4$ | 556 |  |  | ＋ 25.9 | $159{ }^{\circ}$ |  |  |  |
| ＂ 17 | 346 | XXIV（Khoraj） | D 07171 | 4 | 3.8 | 5．4 | 546 |  |  |  | $97^{\circ} \mathrm{I}$ |  |  |  |
| 27 | 314 | XXVII（＇Thuleta） | D ○ $2555^{\circ}$ | 6 | 3．8 | 5.4 | 546 |  |  |  | 971 |  |  |  |
| May $\quad 8$ | 53 | XXVI（Hasal pur） | D ○ 6 3．4 | 6 | 3.8 | $5 \cdot 4$ | 521 | － 3 | ． 005 | $-32.9$ | $100 \cdot 4$ | 1010 | 101 | 16 |
| Mar． 27 | 325 | XXVII（Thuleta） | D 0213.2 | 4 | $5 \cdot 6$ | 5.4 | 521 |  |  | 329 |  |  |  |  |

＊Not forthcoming．（1）The mean of observations taken on 9th March，1852，and 12th February，1854．（2）The mean of obserrations taken on 2nd March，1852，and 9th February，1854．t These heighta are to be combined with negative signs on account of change in the height of the pillar at Station XXVI （Haealpur）．


[^48]| Astronomical Date |  | Number and Name of Station | Observed <br> Vertical Angle |  | Height in feet |  |  | Terrestrial Refraction |  |  | Height in feet of 2nd Station above Mean Sea Level |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1852－53 | Mean of <br> Times <br> of obser－ <br> vation |  |  |  | W | $\begin{aligned} & \text { 吕 } \\ & \text { 真 } \end{aligned}$ |  | 窂 |  |  | Trigonom Resu | metrical alts |  |  |
|  |  |  |  |  | $\infty$ | 著 |  |  | 这 |  | By each deduc－ tion | Mean | Result |  |
|  | $h \boldsymbol{m}$ |  | 010 |  |  |  | ＂ |  |  |  |  |  |  | feet |
| Jan． 4 | 325 | XXXIV（Nárechána） | Do $721^{\circ} \mathrm{O}$ |  |  | $5^{\circ} 4$ | 448 |  |  |  | $309 \cdot 4$ |  |  |  |
| ＂6，7 | 319 | XXI（Sápakra） | E 0 O 8．2 | 8 | $3 \cdot 8$ | $5 \cdot 4$ | 448 |  |  |  | 3094 |  |  |  |
| Dec． 15 | 312 | XXXV（Kuária） | E o 116.3 | 4 | $3 \cdot 8$ | $5 \cdot 4$ |  |  |  |  |  | 310 | 313 | 26 |
| $\left.\begin{array}{rr} \text { Dec. } & 10 \\ \text { Jan. } & 6 \end{array} \right\rvert\,$ | 312 3128 | XXI（Sápakra） | $\text { DO } 10 \quad 5^{\circ} 3$ | 6 | $3 \cdot 8$ | 54 5.4 | 544 | 13 | －025 | $+90 \cdot 8$ | 311＇0 |  |  |  |
| Dec． 30 | 438 | XXXV（Kuária） | D $0633^{\circ}$ | 6 | 5•6 | $5 \cdot 4$ |  |  |  |  | ＊ |  |  |  |
| ＂ 16 | 46 | XVIII（Chalarwa） | D o． 622.3 | 4 | $7 \cdot 8$ | $5 \cdot 4$ | 810 |  |  | $+49$ | $225^{\circ} \mathrm{I}$ |  |  |  |
| Jan． 6 | 353 | XXI（Sápakra） | D $01036 \cdot 8$ | 4 | $3 \cdot 8$ | $5 \cdot 4$ |  |  |  |  |  | 214＊9 | 218 | 16 |
| Dec． 16 | 321 | XVIII（Chalarwa） | D 0 I 4 4．3 | 4 | $6 \cdot 9$ | $5^{\circ} 4$ | 689 | － 7 | －010 | $-95{ }^{\circ} 3$ | 214．9 |  |  |  |

Norr．—Stations XVIII（Chalarwa）and XXI（Sápakra）appertain to the Kattywar Meridional Seriea，＊Rejected．

## Description of Spirit－levelled Points．

When determining the Spirit－levelled heights，given on pages $60 \ldots_{\text {r }}$ to $62 \__{\boldsymbol{K}}$ ，the levelling staff stood on the surfaces hereafter described．

XI（Poera）

XVII（Jhinjhar）

XVIII（Wastrál）

XXI（Sola）

XXII（Sánand）

On a peg at the foot of the station，height $=279 \cdot 19$ feet．To this value， $30 \cdot 58$ feet （the height of the upper mark－stone above this peg）being added，the height of the upper mark－stone was found to be $309 \cdot 77$ feet．

On a peg at the foot of the station，height $=206 \cdot 95$ feet．To this value， $6 \cdot 05$ feet （the height of the upper surface of the circular pillar above this peg）being added，the height of the upper surface of the circular pillar was found to be $213 \cdot 00$ feet．

On a peg at the foot of the station，height $=224 \cdot 70$ feet．To this value， $4 \cdot 78$ feet （the height of the upper mark－stone above this peg）being added，the height of the upper mark－stone was found to be $229 \cdot 48$ feet．

On a peg at the foot of the station，height $=218 \cdot 82$ feet．To this value 23.24 feet （the height of the upper mark－stone above this peg）being added，the height of the upper mark－stone was found to be $242 \cdot 06$ feet．

On a peg at the foot of the station，height $=153 \cdot 31$ feet．To this value $\mathbf{1 0 \cdot 3 5}$ feet （the height of the upper mark－stone above this peg）being added，the height of the upper mark－stone was found to be $163 \cdot 66$ feet．

## Description of Spirit-levelled Points-(Continued).

XXIV (Khoraj) On a peg at the foot of the hillock on which the station is built, height $=102 \cdot \mathbf{7 1}$ feet.
To this value, $29 \cdot 40$ feet (the height of the upper surface of the central pillar above this peg) being added, the height of the upper surface of the station was found to be $132 \cdot 11$ feet.

XXVI (Hasalpur) $\quad$ On a peg at the side of the station, height $=118 \cdot \mathbf{7 3}$ feet. To this value, $14 \cdot 54$ feet (the height of the upper mark-stone above this peg) being added, the height of the upper mark-stone was found to be $133 \cdot 27$ feet.

XXX (Ingrori)
On a peg below the station, height $=110 \cdot 62$ feet. To this value, $41 \cdot 16$ feet (the height of the upper mark-stone above this peg) being added, the height of the upper mark-stone was found to be $151 \cdot 78$ feet.

For further particulars of these stations, see pages $5_{\text {_ }_{\text {K }}}$ to $7_{\text {K. }}$

May, 1890.
W. H. COLE,

In charge of Computing Office.

## GUZERAT LONGITUDINAL SERIES.

## PRINCIPAL TRIANGULATION. AZIMUTHAL OBSERVATIONS.

## At XIX (Sanoda)

 December 1851 ; observed by Lieutenant H. Rivers with Troughton and Simms' 18 -inch Theodolite No. 2.

Star observed
Mean Right Ascension 1851.0
Mean North Polar Distance 1851.0
Local Mean Times of Elongation, December 23
$\delta$ Ursæ Minoris (West and East).
$18^{\mathrm{h}} 20^{\mathrm{m}} 24^{\mathrm{s}}$ $3^{\circ} 24^{\prime} 8^{\prime \prime} \cdot 17$
$\left\{\begin{array}{llll}\text { Western } & 6^{\text {b }} & \mathbf{8}^{\mathrm{m}} \\ \text { Eastern } & 18 & 18\end{array}\right.$



Abstract of Astronomical Azimuth observed at XIX (Sanoda) 1851.

1. By Eastern Elongation of $\delta$ Ursæ Minoris.


## 2. By Western Elongation of $\delta$ Ursæ Minoris.




## At XXX (Ingrori)

Lat. N. $22^{\circ} 57^{\prime} 7^{\prime \prime} \cdot 58$; Long. E. $71^{\circ} 51^{\prime} \mathbf{1}^{\prime \prime} \cdot 30=\begin{array}{cc}\boldsymbol{h} \\ 4 & m 7 \\ 47 \\ 24^{\prime} \cdot 1\end{array}$; Height above Mean Sea Level, 152 feet. April 1852; observed by Lieutenant H. Rivers with Troughton and Simms' 18-inch Theodolite No. 2.

| Star observed | a Ursæ Minoris (West and East). |
| :---: | :---: |
| Mean Right Ascension 1852.0 | $1^{\text {h }} 5^{\text {m }} 36^{\text {c }}$ |
| Mean North Polar Distance 1852.0 | $1^{\circ} 28^{\prime} 46^{\prime \prime} \cdot 18$ |
| Local Mean Times of Elongation, April 5 | $\left\{\begin{array}{lll} \text { Western } & 6^{\mathrm{hb}} & 6^{\mathrm{m}} \\ \text { Eastern } & 18 & 9 \end{array}\right.$ |


|  |  |  | fact ibpt |  |  |  | pace bigit |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Observed Horizontal Angle : Diff. of Readings Ref. Mark -Star |  | Reduction in Arc to Time of Elongation | Reduced Observation Ref. Mark - Star at Elongation | Observed Horizontal Angle : Diff. of Readings Ref. Mart-Star |  | Reduction in Are to Time of Elongation | Reduced Observation Ref. Mark-Star at Klongation |
| Apr. 5 | W. | $\begin{array}{rr} \circ & 1 \\ 180 & 1 \\ \& & 1 \\ 0 & 1 \end{array}$ | $\begin{array}{r} +\quad 3630 \cdot 10 \\ 3626 \cdot 70 \\ 3545 \cdot 84 \\ \\ 3536 \cdot 74 \end{array}$ | $\begin{array}{cc} m & 8 \\ 17 & 19 \\ 18 & 32 \\ 33 & 29 \\ 34 & 51 \end{array}$ | $\begin{array}{rrr} +0 & 16 \cdot 50 \\ 0 & 18 \cdot 90 \\ 1 & 1.54 \\ 1 & 6.64 \end{array}$ | $\begin{array}{r} 13646 \cdot 60 \\ 45 \cdot 60 \\ 47 \cdot 38 \\ 43.38 \end{array}$ | $\begin{array}{r} 13625 \cdot 63 \\ 3625 \cdot 77 \\ 3549 \cdot 60 \\ 3543 \cdot 20 \end{array}$ | $\begin{array}{cc} \boldsymbol{m} & 8 \\ 1 & 20 \\ 0 & 33 \\ 26 & 42 \\ 27 & 45 \end{array}$ | $\left\|\begin{array}{cc} \prime & \prime \prime \\ +0 & 0.10 \\ 0 & 0.02 \\ 0 & 39 \cdot 17 \\ 0 & 42 \cdot 31 \end{array}\right\|$ | $\begin{array}{r} \circ \quad \prime \prime \\ +\quad 13625.73 \\ 25.79 \\ 28.77 \\ 25.51 \end{array}$ |
| " 5 | E. | $\begin{array}{cc} 180 & 0 \\ \& & \\ 0 & 1 \end{array}$ | $13548 \cdot 73$ $-\quad 3548 \cdot 26$ $3610 \cdot 14$ 36 9.73 | $\begin{array}{rr} 22 & 28 \\ 20 & 29 \\ 5 & 11 \\ 3 & 4 \end{array}$ | $\left\lvert\, \begin{array}{rl} -0 & 27 \cdot 74 \\ 0 & 23 \cdot 06 \\ 0 & 1.48 \\ 0 & 0.48 \\ 0 \end{array}\right.$ |  | 1 $-\quad 3532.26$ 3535.64 $3618 \cdot 33$ 3617.23 | $\begin{array}{lr} 31 & 31 \\ 30 & 9 \\ 13 & 95 \\ 11 & 35 \end{array}$ | $\left\lvert\, \begin{array}{rrr} -0 & 54.52 \\ 0 & 49 \cdot 90 \\ 0 & 10.65 \\ 0 & 7.39 \end{array}\right.$ | $\begin{array}{r} -13626 \cdot 78 \\ 25.54 \\ 28.98 \\ 24.62 \end{array}$ |
| " 6 | W. | $\begin{gathered} 190 \quad 12 \\ \& \\ 10 \quad 13 \end{gathered}$ | $\begin{array}{r} 13612 \cdot 70 \\ 36 \\ 35.63 \\ 3530.30 \\ 3524.60 \end{array}$ | $\begin{array}{rr} 18 & 49 \\ 19 & 58 \\ 33 & 42 \\ 35 & 1 \end{array}$ | $\left\lvert\, \begin{array}{rl} +0 & 19 \cdot 47 \\ 0 & 21 \cdot 92 \\ 1 & 2 \cdot 31 \\ 1 & 7 \cdot 26 \end{array}\right.$ | $\begin{array}{r} +\quad 3632.17 \\ 28.55 \\ \\ \\ \\ \\ 32.61 \\ 31.86 \end{array}$ | $\begin{array}{r} 1 \quad 3632.30 \\ 3626.50 \\ 3551.50 \\ 3547.07 \end{array}$ | $\begin{aligned} & 1213 \\ & 13 \\ & 13 \\ & 27 \\ & 29 \\ & 28 \\ & 42 \end{aligned}$ | $\left\lvert\, \begin{array}{rr} +0 & 8 \cdot 21 \\ 0 & 9 \cdot 66 \\ 0 & 41 \cdot 48 \\ 0 & 45 \cdot 22 \end{array}\right.$ |  |
| " 6 | E. | $\begin{gathered} 190 \quad 12 \\ \& \\ 10 \quad 12 \end{gathered}$ | $\begin{array}{r} -\quad 13550 \cdot 17 \\ 3558 \cdot 10 \\ 3624 \cdot 36 \\ 3618 \cdot 14 \end{array}$ | $\begin{array}{rr} 24 & 50 \\ 22 & 51 \\ 2 & 17 \\ 6 & 56 \end{array}$ | $\begin{array}{rrr} - & 33.90 \\ 0 & 28.71 \\ 0 & 0.29 \\ 0 & 2.65 \end{array}$ | $\left\lvert\, \begin{array}{rl} -136 & 24.07 \\ & 26 \cdot 8 \mathrm{I} \\ & 24.65 \\ & 20 \cdot 79 \end{array}\right.$ | $\begin{array}{r} 13521 \cdot 54 \\ 3529.33 \\ 36 \\ 4.40 \\ 36 \quad 6.74 \end{array}$ | $\begin{array}{ll} 31 & 36 \\ 30 & 0 \\ 14 & 21 \\ 10 & 52 \end{array}$ | $\left\lvert\, \begin{array}{rrr} -0 & 54 \cdot 83 \\ 0 & 49 \cdot 43 \\ 0 & 11 \cdot 34 \\ 0 & 6 \cdot 49 \end{array}\right.$ | $-13616.370 \begin{array}{r} 18.76 \\ 15.74 \\ 13.23 \end{array}$ |
| " 7 | W. | $\begin{array}{r} 20020 \\ \& \\ 2020 \end{array}$ | $\begin{array}{r} 1 \quad 3633 \cdot 03 \\ 3630 \cdot 03 \\ 3554 \cdot 80 \\ 3551 \cdot 24 \end{array}$ | $\begin{array}{rr} 6 & 38 \\ 8 & 21 \\ 27 & 24 \\ 28 & 25 \end{array}$ |  | $\begin{array}{r} +13635.45 \\ \\ \\ \\ \\ \\ \\ 36 \cdot 8 \cdot 66 \\ \\ 35 \cdot 61 \end{array}$ | $\begin{array}{r} +\quad 3636 \cdot 50 \\ 3636 \cdot 47 \\ 3614 \cdot 86 \\ 36.11 \cdot 26 \end{array}$ | $\begin{array}{r} 212 \\ 0 \\ 0 \\ 19 \\ 29 \\ 20 \\ 50 \end{array}$ | $\begin{array}{r} +0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} 0.21 .000$ | $\begin{array}{r} 13636 \cdot 77 \\ 36 \cdot 47 \\ 36 \cdot 25 \\ 35 \cdot 14 \end{array}$ |
| " 7 | E. | $\begin{aligned} & 200 \quad 20 \\ & 20 \quad 20 \\ & 20 \quad 20 \end{aligned}$ | $\begin{array}{r} -\quad 3539.74 \\ 3553.93 \\ 3620.20 \\ 3623.17 \\ 3623.30 \end{array}$ | $\begin{array}{rr} 24 & 29 \\ 22 & 53 \\ 7 & 7 \\ 5 & 31 \\ 4 & 10 \end{array}$ | $\begin{array}{rrr} -0 & 32.92 \\ 0 & 28.77 \\ 0 & 2.79 \\ 0 & 1.67 \\ 0 & 0.96 \end{array}$ | $\begin{array}{\|r} -13612.66 \\ 22.70 \\ 22.99 \\ \\ 24.84 \\ \\ 24.26 \end{array}$ | $\begin{array}{r} -\quad 13529.14 \\ 3530.30 \\ 36 \\ 3.93 \\ 364.06 \end{array}$ | $\begin{array}{ll} 30 & 57 \\ 29 & 51 \\ 16 & 41 \\ 15 & 23 \end{array}$ | $\left\lvert\, \begin{array}{rlll} -0 & 52.57 \\ 0 & 48.91 \\ 0 & 15.30 \\ 0 & 13.01 \end{array}\right.$ | $\left\lvert\,-136 \begin{array}{r} 21 \cdot 71 \\ 19 \cdot 21 \\ 20 \cdot 23 \\ \\ \\ \\ \\ \end{array}\right.$ |


|  |  |  | face left |  |  |  | pacr bigit |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Observed Horizontal Angle: 1liff. of llendings Hef. Murk-Star |  | Reduction in dre to time of kiongation | Reduced Observation <br>  at Elungation | Observed Horizontal Angle : Diff. of Readings Llef. Mark-Star |  | Reduction in Are to Time of Elongation | Reduced Observation <br> Ref. Mark-Star at Elongation |
| A pr. 8 | V. | $\begin{gathered} 210 \quad 29 \\ \& \\ 3029 \end{gathered}$ | $\begin{array}{r}\circ \\ \hline 1\end{array}$ | $\begin{array}{lr} n & 8 \\ 11 & 82 \\ 13 & 3 \\ 24 & 11 \\ 25 & 14 \end{array}$ |  | $+136 \begin{array}{r} 33 \cdot 22 \\ 28 \cdot 87 \\ 33 \cdot 16 \\ 31 \cdot 90 \end{array}$ | $\begin{array}{r} 13631 \cdot 84 \\ +3632 \cdot 73 \\ 3611 \cdot 84 \\ \\ \\ \\ 36150 \end{array}$ | $\begin{array}{rr} m & 8 \\ & \\ 3 & 35 \\ 5 & 57 \\ 18 & 42 \\ 19 & 35 \end{array}$ | $\left\lvert\, \begin{array}{rr} 0 & 0.71 \\ 0 & 1.95 \\ 0 & 19.22 \\ 0 & 21.08 \end{array}\right.$ | $\begin{array}{r} 13632 \cdot 55 \\ 34 \cdot 68 \\ 31 \cdot 06 \\ 22 \cdot 58 \end{array}$ |
| " 8 | E. | $\begin{gathered} 210 \\ \& \\ 80 \\ 30 \end{gathered}$ | -13554.20 3559.67 3623.03 3619.40 3620.96 | $\begin{array}{r} 2242 \\ 2125 \\ 850 \\ 6 \\ 640 \\ 502 \\ 522 \end{array}$ | $\begin{array}{rr} -0 & 28.31 \\ 0 & 25.20 \\ 0 & 4.29 \\ 0 & 2.52 \\ 0 & 1.58 \end{array}$ | - 13622.51 | 1 -1540.53 3540.60 36 9 | $\begin{array}{ll} 28 & 45 \\ 27 & 32 \\ 16 & 4 \\ 14 & 35 \end{array}$ |  | $\begin{array}{r} 13625.91 \\ 22.22 \\ 23.76 \\ 22.16 \end{array}$ |
| " 9 | W. | $\begin{array}{r} 220 \quad 38 \\ \& \\ 40 \quad 38 \end{array}$ | 13623.30 $+\quad 3623.63$ 3554.56 3552.40 | $\begin{array}{ll} 14 & 24 \\ 16 & 4 \\ 27 & 15 \\ 28 & 25 \end{array}$ | $\begin{array}{r} +11140 \\ 0 \\ 0 \\ 0 \\ \hline \end{array} 40.78$ | $\begin{array}{r} 13634 \cdot 70 \\ 37 \cdot 83 \\ 35 \cdot 34 \\ 36.74 \end{array}$ | 1 $+\quad 3628.34$ 3629.50 3610.16 36884 | $\begin{array}{cc} 9 & 4 \\ 10 & 26 \\ 21 & 18 \\ 22 & 24 \end{array}$ |  | $\begin{array}{r} 13632 \cdot 86 \\ 35.49 \\ 35.09 \\ 35.8 \mathrm{r} \end{array}$ |
| " 9 | E. | $\begin{gathered} 220 \quad 38 \\ \& \\ 40 \quad 38 \end{gathered}$ | 13556.87 3559.16 3623.47 3611.94 | $\begin{array}{rr} 21 & 3 \\ 19 & 43 \\ 8 & 41 \\ 12 & 42 \end{array}$ | $\begin{array}{r} -0 \\ - \\ \hline \end{array} 24 \cdot 35$ | $\begin{array}{r} 13621.22 \\ 20.52 \\ 27.62 \\ 20.83 \end{array}$ |  | $\begin{array}{ll} 29 & 45 \\ 28 & 28 \\ 14 & 37 \\ 13 & 16 \end{array}$ | $\left\lvert\, \begin{array}{rrr} -0 & 48 \cdot 63 \\ 0 & 44.54 \\ 0 & 11.74 \\ 0 & 9.68 \end{array}\right.$ | $\begin{array}{r} 13621 \cdot 83 \\ 22 \cdot 81 \\ 18 \cdot 38 \\ 18 \cdot 04 \end{array}$ |
| " 10 | W. | $\begin{gathered} 23050 \\ \& 50 \\ 50 \end{gathered}$ | $+\quad 13610.80$ $3610 \cdot 33$ 3539.20 3533.50 | $\begin{array}{lll} 20 & 13 \\ 21 & 24 \\ 32 & 37 \\ 33 & 38 \end{array}$ |  |  | r $+\quad 3628 \cdot 23$ $3624 \cdot 80$ $3556 \cdot 97$ 3554.36 | $\begin{aligned} & 1412 \\ & 1539 \\ & 2755 \\ & 28550 \end{aligned}$ | $\begin{array}{r} +\quad 01111 \\ 013.49 \\ 042.83 \\ 045.68 \end{array}$ | 13639.34 38.29 39.80 40.04 |
| " 10 | E. | $\begin{gathered} 230 \quad 50 \\ \& 50 \\ 50 \end{gathered}$ | 13 <br> $-\quad 35$ <br> 36 <br> 6.43 <br> 3617.67 <br> 3619.03 | $\begin{array}{r} 2125 \\ 2017 \\ 1058 \\ 959 \end{array}$ |  | $\begin{aligned} & 13622.65 \\ & 23.18 \\ & 24.29 \\ & \\ & \\ & \\ & \\ & \\ & \\ & \hline .52 \end{aligned}$ | 13537.33 -15 $38 \cdot 90$ 36 $5 \cdot 70$ 36 5.27 | $\begin{array}{lr} 28 & 0 \\ 26 & 42 \\ 15 & 48 \\ 14 & 51 \end{array}$ | $\begin{array}{r} -043 \cdot 06 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} 13 \cdot 16$ | $\left\lvert\, \begin{array}{rrr} -136 & 20.39 \\ 18.06 \\ 19.43 \\ & 17.40 \end{array}\right.$ |
| , 12 | W. | $\begin{array}{cc} 180 & 1 \\ i t & \\ 0 & 1 \end{array}$ | $\begin{array}{\|} +\quad 3550.33 \\ 3549.57 \\ 3519.90 \\ 35 & 16.83 \end{array}$ | $\begin{aligned} & 2745 \\ & 2847 \\ & 3646 \\ & 3739 \end{aligned}$ | $\begin{array}{r} 042.29 \\ 045.49 \\ 114.21 \\ 117.80 \end{array}$ | $\begin{array}{r} 13632 \cdot 62 \\ 35.06 \\ 34.11 \\ \\ 34.63 \end{array}$ | $\begin{array}{r} +\quad 3613 \cdot 80 \\ 3610 \cdot 10 \\ 3538 \cdot 50 \\ 3537 \cdot 90 \end{array}$ | $\begin{array}{rr} 22 & 22 \\ 23 & 28 \\ 32 & 12 \\ 33 & 8 \end{array}$ | $\begin{array}{r} +027.49 \\ 030.26 \\ 056 \cdot 96 \\ 1 \quad 0.30 \end{array}$ | $\left\lvert\, \begin{array}{r} 13641 \cdot 29 \\ 40 \cdot 36 \\ 35 \cdot 46 \\ 38 \cdot 20 \end{array}\right.$ |
| " 12 | E. | $\begin{array}{cc} 180 & 1 \\ c & \\ 0 & 1 \end{array}$ | $\begin{array}{r} -\quad 13555^{\circ} 47 \\ 3559.70 \\ 3624.40 \\ 3623.24 \end{array}$ | $\begin{array}{rr} 23 & 30 \\ 22 & 32 \\ 3 & 51 \\ 1 & 56 \end{array}$ | $\left\lvert\, \begin{array}{rrr} -0 & 30.35 \\ 0 & 27.91 \\ 0 & 0.82 \\ 0 & 0.21 \end{array}\right.$ | $-136 \begin{aligned} & 25 \cdot 82 \\ & 27.61 \\ & 25.22 \\ & 23.45 \end{aligned}$ | $\begin{array}{r} -\quad 13537 \cdot 03 \\ 3542 \cdot 73 \\ 36 \quad 7 \cdot 56 \\ 3610.26 \end{array}$ | $\begin{array}{rl} 29 & 22 \\ 28 & 22 \\ 14 & 12 \\ 12 & 7 \end{array}$ | $\begin{array}{rrr} -0 & 47 \cdot 36 \\ 0 & 44 & 19 \\ 0 & 11 \cdot 09 \\ 0 & 8 \cdot 08 \end{array}$ | $\begin{array}{r} -13624.39 \\ 26.92 \\ 18.65 \\ \\ 18.34 \end{array}$ |

Abstract of Astronomical Azimuth observed at XXX (Ingrori) 1852.

1. By Eastern Elongation of $a$ Ursæ Minoris.

2. By Western Elongation of a Ursæ Minoris.


Nots.- Where observations occurred on the same pair of zeros on different nights they are reduced in this abstract to one date-the most convenient-by allowing for star's change of place. The date so adopted appears at the hcad of the column and the reduced observation is preceded by an asterisk.

Abstract of Astronomical Azimuth observed at XXX (Ingrori) 1852-(Continued).

| Astronomical Azimuth of Referring Mark ... | ... | ... |  | 180 | - | $\begin{aligned} & 6 \cdot 75 \\ & 6 \cdot 82 \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | ... | ... |  | , |  |  |
|  | ... | ... |  | " |  | $6 \cdot 79$ |
| Angle Referring Mark and XXIX (Por) see page $34_{-_{\text {K. }}}$ ante | ... | ... | + | $18 \quad 26$ |  | 37-37 |
| Astronomical Azimuth of Por by observation | ... | $\ldots$ |  | 198 | 6 | 44*16 |
| Geodetical Azimuth of " by calculation from that adopted (Vol. II, page 141) at Kaliánpur, see page 56_m. ante | ... | ... |  | 198 | 26 | 42.98 |
| Astronomical - Geodetical Azimuth at XXX (Ingrori) ... ... | . |  | + |  |  | 1-18 |

W. H. COLE,

In charge of Computing Office.


Fig. $\mathbf{N}_{\mathrm{o}} .27$


Shale 1 Tnch $=12$ - Miles at $\frac{1}{y 60320}$

## CUTCH COAST SERIES.

## CUTCH COAST SERIES.

## INTRODUCTION.

The Cutch (Kachh) Coast Series of the South-West Quadrilateral is the chain of principal triangles, that commences at the head of the Gulf of Cutch, trends first south-westwards and then north-westwards through the province of Cutch, crosses the western end of the Ran and the southern mouths of the Indus, and terminates near Tatta, 50 miles east of Karáchi. It emanates from Chitror-Wandia, a side of the Kattywar (Káthiávad) Meridional Series, and closes, after a run of 235 miles, on the side Karathol-Sáhiji of the Karachi Longitudinal Series. It is double throughout and consists of one compound figure, one double hexagon, six pentagons and five quadrilaterals.

During the field season of 1853-54 the Bombay Triangulation Party was employed under Lieutenant Nasmyth on trigonometrical work in the
Soason 1858-54. Kattywar Peninsula; one of the assistants, however, Mr. T. Sanger, was deputed to take up the approximate work of the Catch Coast Principal Series, and this he carried from Wándia to Dinoda. By May, 1853, the Kattywar Meridional Series had been completed from the parallel of $23^{\circ}$ to its southern extremity near Diu; and in April and May, 1854, Lieutenant Nasmyth succeeded in carrying the final observations northwards across the Ran of Catch to Chitror. He was precluded, however, from observing at any of the stations of the Cutch Coast Series by the weakness of Mr. Sanger's approximate work, which had made the Cutch triangulation at its junction with the Kattywar principal chain depend on one single triangle and one quadrilateral, in the latter of which were two angles less than $30^{\circ}$.

## CUTCH COAST SERIES.

During the early part of the field season of 1854-55, Lieutenant Nasmyth and Mr. McGill were at Karachi, taking part in the measurement
Season 1854-55. of the Base-line that was being carried out with Colby's apparatus under Colonel A. Strange. Messrs. Sanger and DaCosta, the only other assistants with the party, were both placed on the duty of improving the approximate work at the junction of the Cutch and Kattywar Principal Series.

The district of Wagan in which they were operating was bounded on the one side by the sea and on the other by the Ran, and was not sufficiently broad to admit of symmetrical triangles. The surveyors, therefore, found their task no easy one; but at length they submitted a design that was approved by Nasmyth. Mr. Sanger then took up the approximate work of the Guzerat Longitudinal Series east of Ahmedabad (Amdávád), and Mr. DaCosta continued his observations of the angles of the Kattywar Coast Minor Series which he had been unable to finish the previous year. Towards the end of the measurement of the Karáchi Base-line Lieutenant Nasmyth fell ill, and was on this account detained some weeks at Karáchi. When sufficiently recovered for the journey he had to be moved to Mahábaleshvar. The final work of the Cutch Coast Principal Series was in consequence not taken up during the season 1854-55.

The climate of Cutch in the Autumn is so bad and fever is so prevalent that it is in-

Season 1855-56.
Perbonnel.
Lieutenant D. J. Nasmỳth, Bombay Knginoers; 2nd Assistant.
Mr. J. DaCosta, Sub-Assistant.
" T. Sanger, "
" J. McGill, " judicious to undertake the general duties of a survey there before November. As, however, the town of Naithra was situated in the western part of Cutch and at a comparatively high altitude, Nasmyth decided to move there early in October, and observe Polaris at both elongations for
azimuth, and then to return to the sea coast and to remain till the unhealthy season had passed. Mr. Sanger's approximate work of 1853-54 had not been carried westward of Dinoda and Roha, but as the town of Naithra formed an equilateral triangle with these two stations it was evident that a station would eventually have to be built in its vicinity.

The party's departure was constantly delayed owing to the unsettled state of the weather, and it was not till October 15th that they set out from Poona (Puna). On arrival at Bombay the large theodolite, heliotropes, lamps and all other apparatus were embarked in a Government boat, whilst a sailing ship from Cutch was chartered to carry the native establishment, horses and baggage. About this time scarcity of water was anticipated in Bombay and boats had already been interdicted from drawing their supplies from the island except on payment. That the establishment might not be delayed Nasmyth agreed to a heavy charge; but hardly had the vessel left Bombay when it was found that the alleged supply of water had not been shipped: a day had to be spent in filling the spare tanks before the vessel weighed again for Cutch. The voyagers, however, seemed doomed to misfortune; the wind was against them and the tindal of the ship got out of his reckoning. With but little water left on board, he found himself at the mouth of the Persian gulf within a short distance
of Muscat. Changing his course he sought to make some port on the Kattywar Coast, but was again unfortunate; for the wind died away and there was no land in sight. Scarcity of water now began to press inconveniently on all, and a Brahmin of the party was deputed to pray for better things: he accordingly spent the night invoking the protecting aid of Wiloda, and, as morning broke, concluded his devotions and predicted a coming breeze: the breeze indeed came, but it blew the wrong way. The Kattywar Coast was passed unseen, and before the Konkan shore was gained, the horses had been three days without water. In these extremities a steamer hove in sight; a signal of distress was run to the masthead and great was the joy of the voyagers when the steamer was seen to steer towards them : greater still, however, was their mortification, when the Captain of the steamer, having learnt that it was merely for water that he had been summoned out of his course, abused them roundly and steamed away out of sight. Having replenished their water supply from the Konkan Coast, the party was at length landed safely at Mándvi on November 11th and began their march the following evening.

The country through which the triangulation was to be carried was rocky and unfavorable for carts, and camels could not be procured; for although there were many of these animals in every village, the natives refused to lend them. The camelmen from Gujarát objected to serve in Cutch, and the Rao declined to assist the survey party; Nasmyth liad therefore to employ carts, which were very slow and generally broke down. Much inconvenience was next caused by the sudden withdrawal of the native guard by order of the Bomlay Government; and as his establishment had been divided and distributed all orer the country, Nasmyth's arrangements were quite upset. He submitted the matter to Colonel A. S. Waugh, Surveyor General of India and Superintendent of the Trigonometrical Survey, and by order of the Supreme Government the guard was eventually restored. The party reached Naithra on November 15th and the station of Háthria was immediately selected in the vicinity. Whilst the platform was being built the establishment moved to Roha, Nasmyth himself visiting the country to the north to decide on the best way of completing the figure. On November 19th he followed the establishment to Rohia and set up the instrument, intending to take observations of the final angles, but an unforeseen impediment occurred: Mr. Sanger, who had been sent on in advance to visit the selected stations and assure himself that the preliminary arrangements were perfect, had allowed the ray from a station named Jhuria to Roha to escape his notice: and when Nasmyth arrived he found it hopelessly obstructed by an intervening hill. Nasmyth at once proceeded to Jhuria and after a week's work decided to transfer Mr. Sanger's station to Wára.

He began the final rork at Sámethra, and then visited the stations of Bolári and Katror; and before the year 1855 had closed he had completed the observations at Wara and Roha and had observed as many of the angles at Dinoda, Naliya and Háthria as the unfinished state of the approximate series would allow. He then took up the work of the Kattywar Meridional Series and remained employed on it till the close of the field-work in May 1856.

In the meantime Mr. DaCosta had been carrying on the approximate work of a

Principal Series that was to connect the Cutch Coast Series with the Karachi Longitudinal. He first selected the stations of Saind, Sura Gandára and Manjal and thus formed a somewhat symmetrical hexagon round Háthria : then with the side Manjal-Sura Gandára as his base he carried the approximate series due north up the meridian of $69^{\circ}$, till he joined on to the side Sha Turel-Adúri of the Karáchi Longitudinal Series. As the season advanced he suffered much from the heat of the desert, whilst his marches backwards and forwards over the Ran and across the low swampy land that lies between the Kori and Indus were very trying. He rejoined the head-quarters of the party in May.

It had now become evident that Cutch was a very difficult country to triangulate : the hills were steep and difficult of ascent, and the valleys were obstructed by loose sand and quicksands : the scantiness of the population too in the wild places visited, greatly augmented the troubles of moving about. But of all the parts of the country, that lately traversed by DaCosta seemed the least favorable for trigonometrical work: many of his stations had of necessity been placed on the very border of the Ran; and from experience gained on the Kattywar Meridional Series it was known that such positions would never yield good results. Nasmyth therefore determined to throw over DaCosta's work on the meridian of $69^{\circ}$, and to carry the Cutch Principal Series across the mouths of the Indus parallel to the Coast, and make it join the Karáchi Longitudinal Series north of Tatta.

The party took the field again on August 31st, 1856, but were forced by unfavorable

Season 1856-57.
Personnel.
Lieutonant D. J. Naemyth, Bombay Engineors, 2nd Assistant.
Mr. J. DaCosta, Sub-Assistant.
" T. Sanger, "
$\begin{array}{ll}\text { " J. McGill, } \\ \text { " } & \text { C. MoGill, }\end{array}$
weather to seek shelter in the town of Anjar. On September 8th Nasmyth commenced laying out supplementary triangles to connect the principal triangulation with the sea; and on October 1st he proceeded to Háthria, where he observed Polaris at both elongations for azimuth. He then returned eastwards and continued his work on the

Kattywar Meridional Series.
Early in October Mr. DaCosta, who was now assisted by Mr. Sanger, began the extension of the Cutch Coast Series through Sind from the Ran to Tatta. The side Saind-Sura Gandára proved unsuitable to start from, a station at Suri Muri had to be selected. On the side Suri Muri-Sura Gandára a pentagon was then constructed round Bábia as a centre, which brought the Series to the northern border of Cutch. Beyond, however, the mere selection of the sites of the stations nothing could be done, for no means of building the towers existed, no masons were to be found within miles, and neither bricks nor lime were known.

The country for 40 miles north of the Ran is always inundated in November and December and does not become thoroughly drained till April; so after selecting Lakhpat and Pinjor Pir the two Surveyors proceeded by boat to Karáchi to recommence their work from its northern extremity. The new series started from the side Sáhiji-Karothol of the Karáchi
:Longitudinal Series, and after passing Tatta crossed a flat, damp country, thickly overgrown with bastard cypress and bantle: at first water was good and plentiful, but as the Ran was approached it became scarce and bad. Having selected all the stations DaCosta commenced building the towers near the Ran. During his stay in Karáchi he had made arrangements for their construction and had despatched material by boat to the north-west of Cutch; but statute labor had lately been abolished in Sind, and no workmen could be procured; the inhabitants, as long as fish were in the canals, had no care for their livelihood, and those in the Ran were especially averse to work : at times it seemed as if the operations would fall through, and they probably would have done so if assistance had not arrived from Mándvi. The towers themselves were not easy to build: the foundations could not be dug two feet without water rushing in and rendering the sand loose and yielding. A large supply of bricks had been prepared at Guni and other places, but an unexpected fall of rain in February converted them into mud and threw the builders out of employment. Towards the beginning of June the Indus overflowed its banks and flooded the whole country round, obliging DaCosta to return to recess quarters at Bhúj.

On December 21st Nasmyth completed the Kattywar Meridional Series at Wánkáner, and again resumed work on the Cutch Coast Series first visiting the stations at the junction of the two principal series and then working westwards till he joined on to his side BoláriKatror of the previous season. He utilised Gángta, one of the principal stations of the Kattywar Meridional Series, as the northern point of the Kakarwa pentagon, but left the interior angles of the Gángta-Chitror quadrilateral unobserved. The employment in the two series of the same station rendered the figure at their junction one of great complexity. If the reduction had been carried out rigorously all the triangles within the periphery Gángta-Bela-I wália-Pata-i-Sháh-Khánmír-Kesmára-Kákraji-Mália-Wándia-Sakpur-Ráhida-Ran-Gángta would have had to be regarded as belonging to one compound geometrical figure: the fact too that the interior angles of the quadrilateral GángtaChitror had not been observed would not have lessened the complication. The reduction however was not carried out rigorously : the Dajka pentagon was first reduced independently of any exterior observations and then in the following order the Kanduka-Khánmír quadrilateral, the Monába hexagon and the Nara-Wándia quadrilateral were taken in hand. When, therefore, it came to the turn of the Kakarwa pentagon to be reduced, three of its angular points-Gángta, Nara and Sakpur-had already been fixed in position. In addition thus to the seven geometrical conditions that have to be satisfied in the case of every complete simple pentagon, two others entered into this figure: the sum of the two angles at Nara had a fixed value, and the side Sakpur-Nara had to bear a fixed ratio in length to the side Nara-Gángta.

In January an earthquake occurred which nearly brought down the tower of Kararho, on which the instrument happened to be standing. In March Nasmyth exhausted all the approximate work that was ready for him and then occupied himself in carrying out several repetitions of supposed bad work. Triangular errors of $3^{\prime \prime}$ were common in the neighbourhood of Lakhpat and Pinjor Pir; but though the faulty angles were repeated many times their
values always remained the same and the errors were not decreased. The only explanation of the difficulty offered by Nasmyth was, that signals were not only rendered unsteady by haze but were also distorted in a constant direction by currents from the Ran, leaving unequal densities in the air: where the country was all Ran, increased triangular errors did not present themselves. The field work was brought to a close on April 17th, 1857, and the party returned to their recess quarters at Bhúj.

In October, 1857, with a view to relieve General Lawrence, a column was being organised at Deesa (Disa) in all haste to attack Ãuwa a walled town situated half way between Abu and Nusseerabad (Nasirabad) which was held by mutineers of the Jodhpore (Jodhpur) legion. As General Lawrence was urgently in want of the services of an Engineer Officer and there was no other available, Lieutenant Nasmyth was requested to accompany the force and remain with it for three months: this he consented to do anticipating Colonel Waugh's approval. Nasmyth reached Deesa on October 16th, a week after the force had left, and at once made arrangements to follow; but on the eve of marching, he was officially informed that the delay in his arrival had been attributed to his inability to leave his work in Cutch, and that consequently other arrangements had been made and his services were no longer required: on hearing this he had no alternative but to retrace his steps.

The party took the field on October 16th and moved towards the narrow strip of the

Season 1857-58.
Personnel.
Lieutenant D. J. Nasmyth, Bombay Engineera, 1st Assistant.
Mr. J. DaCosta, Sub-Assistant.
" T. Sanger, "
" J. McGill, "
" C. McGill, "

Ran near the stations of Lakhpat and Pinjor Pir. As the northern section of the Cutch Coast Series had presented in its approximate work so many difficulties, the whole personnel were to be concentrated on it, until all the stations had been selected, towers built and rays cleared. Mr. DaCosta took upon himself the task of building the towers at the Ran stations, and deputed Mr. Sanger to clear the rays. Mr. McGill was detached to the vicinity of Mugalbhin where he found the country flooded, one of his rays in fact, the clearance of which required much tree-cutting, running entirely over water: as was to be expected his detachment suffered considerably from fever. Nasmyth joined the party at the end of November and resumed the observations of the final angles on December 10th. He decided to work from north to south and so visited the stations of the Karáchi Longitudinal Series, Kárathol and Sáhiji, first. The upper mark-stone at Kárathol was found destroyed, and a new one liad to be placed by cutting into the centre of the pillar and plumbing from the lowest mark: its correctness was however even then open to doubt, and the stations of Kára and Ghatána had to be revisited and the position of Kárathol re-determined from them. By the end of January the first pentagon round Dománi liad been completed, and by March 10th the final work had been brought down as far as the side Patlia-ka-bcri-Mod. Early in April the northern section of the series closed on the side Lakhpat-Pinjor Pir, where the operations of the previous year had been brought to an end : the stations of Jim and Mugalbhin had to be then revisited and an angle at each re-observed. The principal work of the Cutch Coast Series was completed on May 7th, 1858, when the party returned to their recesm quarters at Bhúj.

On the Sind section of the Series it was found impossible to take the vertical angles in the usual way: many of the signals were not visible at the time of minimum refraction, and on approaching the Ran there were only a few that were so, and these were unsatisfac. tory and unsteady. Under these circumstances the method was resorted to of placing an observer at each extremity of a ray to observe the vertical angles simultaneously at any time of the day or night that the signals might happen to be visible and steady. Nasmyth always observed at one extremity of every ray himself while either DaCosta or MoGillwho were each equipped with a 12 -inch theodolite-was at the other. By placing two assistants on this work Nasmyth was enabled to observe the vertical angles on two rays himself every day. The effects of refraction were very uncertain and could not be relied on : on the ray Patha-ki-beri-Sugandia the signals one day were not seen till 9 P.M., while another day they were visible at 7 o'clock in the morning.

In April, 1858, Mr. Thomas Sanger, who for some years had suffered from ill health, resigned his appointment and retired to the Deccan on a pension : he had entered the Bombay Survey Department in 1825 and had been employed from 1828 to 1834 on the Trigonometrical Survey of the Bombay Presidency, which was being carried out by Lieutenant R. Shortrede under the orders of Captain Jopp. On the amalgamation of this Survey in 1834 with the Great Trigonometrical Survey of India, he had been transferred to the latter and had worked for the last trenty-four years of his service under Lieutenants Jacob, Rivers and Nasmyth.

All the angles of the Cutch Coast Series were observed with Troughton and Simms' 18 -inch Theodolite No. 2*, and were taken on six pairs of zeros. The method adopted of changing zeros was one that had been introduced by Lieutenant Rivers and first employed on the Abu Meridional Series. By it each change of zero was made to fulfil the following conditions:-(1) Each zero was $10^{\circ}$ in excess of the preceding one. (2) At each zero a different $10^{\prime}$ graduation in the degree was employed. (3) Each micrometer zero was a different number of minutes from the division to be intersected, being in three cases to the right of that division and in three to the left. The method is fully described in the Introduction to the Guzerat Longitudinal Series.

The accuracy of the triangulation of the Cutch Coast Series may be tested as follows :-The Kattywar Meridional Series originates from a finally fixed side, Bhilgaon-Akoria, of the Karáchi Longitudinal Series, and runs south to the parallel of $23 \frac{1}{3}^{\circ}$ : at this point the Cutch Coast Series branches off from it to the west, moves round the Coast line and closes on another finally fixed side Károthol-Sáhiji of the Karáchi Longitudinal Series. The latitude and longitude of Karothol and the length and azimuth of the side KarotholSáhiji could thus be computed from Bhilgaon-Akoria through these 350 miles of triangulation, and a comparison of the computed and correct values afford a test of the accuracy of the work.

[^49]The closing errors that exist may be exhibited as follows :-

| Vaidis. | Károthol. |  | Károthol-Sáhiji. |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Latitude. | Longitude. | Azimuth. | Side in feot. |
| Calculated from the side Bhilgaon-Akoria of the Karáchi Longitudinal Series, vid the Kattywar Meridional and Cutch Coast Series. | $24^{\circ} 53^{\prime} 46^{\prime \prime} \cdot 75^{2}$ | $67^{\circ} 55^{\prime} 59^{\prime \prime} \cdot 395$ | $80^{\circ} 16^{\prime} 11^{\prime \prime} \cdot 140$ | $98418 \cdot 2$ |
| Accepted as correct from the Simultaneous Reduction of the North-West Quadrilateral. | $24^{\circ} 53^{\prime} 46^{\prime \prime} \cdot 692$ | $67^{\circ} 55^{\prime} 59^{\prime \prime} \cdot 651$ | $80^{\circ} 16^{\prime} 15^{\prime \prime} \cdot 05^{2}$ | 98412.3 |
| Closing errors ... | + $0^{\prime \prime} .060$ | - $0^{\prime \prime} \cdot 256$ | - $3^{\prime \prime} \cdot 912$ | $+59$ |

On the completion of the simultaneous reduction of the South-West Quadrilateral it was found that the portions of the corrections which had actually fallen to the Cutch Coast Series were as follows:-

$$
\begin{aligned}
& \text { In Latitude of Károthol (crv) ... ...a: ... - } 0^{\prime \prime} \cdot 014 \\
& \text {, Longitude of , ... ... ... + ○ } \cdot 285 \\
& \text {, Azimuth of Károthol (crv)—Sáhiji (cviI) ... }+1 \text {. } 222 \\
& \text { In Side }\left\{\begin{array}{c}
\text { Logarithm of feet ... ... } \quad . .0 \quad . . . \quad-0 \cdot 000,03_{13,4} \\
\text { giving a ratio of about } 4 \cdot 58 \text { inches per mile. }
\end{array}\right. \\
& \text { giving a ratio of about } 4 \cdot 58 \text { inches per mile. }
\end{aligned}
$$

Astronomical observations for azimuth have been taken at but one station of the Cutch Coast Series, viz., Háthria.

The heights of the principal stations of this Series at the present time depend in the first instance on the values of the stations of Gángta, Chitror and Wandia of the Kattywar Meridional Series; next on those of the stations Bhacháo, Sakpur and Charakra, of which the values were determined by spirit-levelling operations in season 1874-75; and thirdly on those of the stations of Károthol and Sáhiji of the Karáchi Longitudinal Series, which were finally fixed in the reduction of the North-West Quadrilateral: but as the trigonometrical differences of height westward of the meridian of $70^{\circ}$ are in several parts of the Series very unsatisfactory, owing to the abnormal refraction along the coast, it is intended, if possible, to defer their final adjustment pending the execution of a contemplated line of levels from the station of Charakra along the Series to Tatta.

## Secondary Triangulation.

A network of secondary triangulation has been thrown over the whole country of Cutch between the principal series and the sea-coast, the area covered being 100 miles long and 20 broad. The triangulation though in the end it practically became a network, was not originally intended to be so. It consisted of two contiguous minor series, one following the coast exactly and the other running between it and the principal chain : as the southern stations of the latter were always used as stations of the intermediary series, and the stations of the two minor series along their contiguous flank were almost in every case identical; the series are no longer to be distinguished but are lost in a network.

In September, 1856, Nasmyth starting from the principal side Charakra-Kararho and working westward laid out some six or seven small triangles along the coast line, but was unable to continue further as he had so much principal work then on hand. In March and April, 1858, Mr. Sanger widened the principal series by carrying the approximate work of a minor series along the southern flank of the former: he commenced at Katror and ended at Jamanwála, having succeeded also in breaking up the southern triangles of the principal heptagon round Háthria.

In January, 1859, owing to the disturbed state of the country and to a rising amongst the Bhils, the Bombay Party were compelled to withdraw from Gujarat where they were working on the principal Longitudinal Series; they retired to Cutch, where Lieutenant Nasmyth on February 5th commenced observing the angles of the minor series that had been chosen by Mr. Sanger on the southern flank of the principal chain. Mr. J. McGill at the same time was directed to select the stations of another minor series, the southern flank of which was to run along the sea-shore, the northern coinciding with the southern flank of Mr. Sanger's.

By March 21st Nasmyth had observed almost all the angles of the upper minor series from Katror to Naliya, taking them with the 18 -inch theodolite on two pairs of zeros: the eight stations that remained to the westwards, on the coast, were difficult of access and the observations from them were taken by Mr. McGill with a 12 -inch theodolite. As the stations of the lower secondary series lately chosen along the coast by Mr. McGill were not ready, the party crossed over to Káthiáwar to take up some minor triangulation there.

The field season of $\mathbf{1 8 5 9 - 6 0}$ opened late, owing to the absence of Captain Nasmyth and of Lieutenant C. T. Haig, who had joined the party in October, 1859, on active service with the Okhámandal Field Force. The first work taken up on their return was the final observation of the angles of the minor series on the coast: these were begun on December 5th, 1859, and finished on January 12th, 1860, an astronomical azimuth of verification having been also observed on three pairs of zeros in the meantime at the secondary station of Mándvi.

In addition to the network of minor triangulation that was thrown over the whole
province of Cutch, a great deal of additional secondary work was executed. All the large principal triangles were broken up into smaller ones, and numerous temples, trees and peaks were intersected from two or more stations in every part of the country. The positions of the important cities of Bhúj and Mándvi were determined, as also of the towns of Fatiagad, Rahpur, Bhamaka, Túna, Kera and Tera. Sufficient points were fixed to enable the line of the coast and the borders of the Ran to be accurately delineated, and there exists no spot in Cutch that is not within two miles of some point whose geodetic elements are known.

Beyond the Ran of Cutch on the north-western portion of the principal series barely any secondary work was executed. The country was a sandy desert, and being situated in the delta of the Indus was frequently under water: the difficulties of carrying the principal series were great, and enormous additional expense would have been entailed, if the party had delayed their progress with secondary work.

Four principal figures exist north of the Ran : in two of them, the Guni and Randa pentagons, no secondary station was established and no natural object or building intersected at all. In the Koti-Jim double hexagon four domes over the tombs of Muhammadan saints were intersected from two or more principal stations, and in the Dománi pentagon the highest dome of the city of Tatta and three minarets of the large town of Pir Patho were laid down.

OUTOH COAST SERIES.
PRINCIPAL TRIANGULATION. ALPHABETIOAL LIST OF STATIONS.


2-L.
CUTCH COAST'SERIBS.
PRINCIPAL TRIANGULATION. NUMERICAL LIST OF STATIONS.


CUTCH COAST SERIES.

## PRINCIPAL TRIANGULATION. DESCRIPTION OF STATIONS.

Of the Principal Stations of this Series those numbered I to XXII, XXIV, XXV, XXXVIII, XLII, XLIV and the two Stations of the Karáchi Series, CIV and CVII, on which this triangulation terminates, are situated on hills or rising ground, and consist of isolated, circular pillars of masonry, either solid or perforated, 3 to 13 feet high, each of which carries a mark-stone ( $\odot$ ) engraved either on the rock in situ or on a stone embedded at about the ground level. The solid pillars have a mark at the summit and sometimes also one or more other marks engraved on stones inserted in them in the normal of the lower mark. Around the pillars and level with their summits platforms of clay, wood and clay, or other materials, have been constructed for the observatory tent to rest on. At those stations where the pillars are perforated, access to the ground level mark is obtained through an aperture prepared for the purpose. At the remaining stations which were situated in the plains it was found necessary to construct towers to overlook the curvature of the earth. These range from 10 to 27 feet in height, and are built in a similar manner to those already described which have perforated pillars.

The following descriptions have been compiled from those given by the Officers who executed the Series, supplemented as regards adjacent villages from the Topographical Survey maps (where available) of the country traversed, and corrected, so far as the local sub-divisions in which the several stations are situated, from the latest Annual Reports furnished by the District Officers to whose charge the stations are committed.
VII.—(Of the Kattywar Meridional Series). Gángta Hill Station, lat. $23^{\circ} 44^{\prime}$, long. $70^{\circ} 32^{\prime}$-observed at in 1856-is situated on the highest part of a hill in the Ran. The road from the village of Rau, at the time the station was visited, was dry but the Ran generally around the station was muddy : it is in the lands of Rau village, pargana Wágad, Cutch State. The ruins of a tower and walls are to be seen here, the place having once been the stronghold of freebooters.

The station consists of a platform about 5 feet in height, enclosing an isolated pillar of masonry which is built in a manner similar to those at the adjacent stations. The approximate directions and distances of the following villages are:-Rau S.E., miles 6; and Dauri N., miles 9.
XI.-(Of the Kattywar Meridional Series). Chitror or Chitrod Hill Station, lat. $23^{\circ} 24^{\prime}$, long. $70^{\circ}$ $44^{\prime}$-observed at in 1854 and 1856-is situated on the highest point of the hill called Dhia which is within a couple of miles of the town of Chitrod: pargana Wágad, Cutch State.

The station consists of a platform enclosing an isolated pillar of masonry, but as it was not sufficiently large for the stand of the instrument, it had to be increased, in effecting which the height of the pillar was increased a little. This addition of about 6 to 7 inches was made after the 30th March 1854. It was again visited in 1856, but no statemeat of any alteration in the construction of the station is forthcoming.
XIV.-(Of the Kattywar Meridional Series). Wándia Station, Lat. $23^{\circ} 15^{\prime}$, long. $70^{\circ} 39^{\prime}$ —observed at in 1856-is on the middle tower or bastion at the re-entering angle on the western face of the town wall of Wándia: pargana Wágad, Cutch State.

The station consists of a mud platform, about 5 feet in height, built on the centre of the solid bastion, enclosing an isolated pillar of masonry, which has a mark-stone at its upper surface. The village of Janghi is to S.W. by W., about $3 \frac{1}{2}$ miles.
I. Bhacháo Hill Station, Lat. $23^{\circ} 18^{\prime}$, long. $70^{\circ} 23^{\prime}$-observed at in 1857 -is situated at the centre of the highest, round bastion or tower at the northern corner of a fort on the summit of the hill. It is in the lands of the village of Bhacháo, pargana Wágad, Cutch State.

The station consists of a platform, about 5 feet in height, enclosing a solid, isolated pillar of masonry, which has a markstone at top. The town of Bhacháo lies at the foot of the hill.
II. Nara Hill Station, lat. $23^{\circ} 26^{\prime}$, long. $70^{\circ} 36^{\prime}$-observed at in 1856 -is situated on one of the hills about 5 miles N.E. of the town of Adhoi, which belongs to Morvi taluka in Kattywar. The little village of Nara, in lands of which the station is, lies at the foot of the hill on the N.W. side: pargana Wágad, Cutch State.

The station consists of a platform of rubble enclosing an isolated pillar of masonry 5 feet in height.
III. Kakarwa Hill Station, lat. $23^{\circ} 30^{\prime}$, long. $70^{\circ}$. $26^{\prime}$-observed at in 1857 -is situated on a hill about a mile $N$. of the village of that name, but in the lands of Lakarwa village: pargana Wágad, Cutch State.

The station consists of a platform of rubble, about 5 feet in height, enclosing an isolated pillar of masonry, which is built in a manner similar to those at the adjacent stations.
IV. Ráhida Station, lat. $23^{\circ} 28^{\prime}$, long. $70^{\circ} 12^{\prime}$-observed at in 1857 -is on the bank of a tank so called which is in Banni, the name of a tract of pasture land on the borders of and extending into the Ran : pargana Banni, Cutch State.

The station consists of a platform of wood and clay enclosing an isolated pillar of masonry.
V. Ran Station, lat. $23^{\circ} 37^{\prime}$, long. $70^{\circ} 19^{\prime}$-observed at in 1857 -is in that part of the Ran, which appertains to the lands of the village of Chaubári, and which at the time that the station was visited was encrusted with salt all round as far as the eye could reach : pargana Chaubári, Cutch State.

The station cousists of a platform of wood and clay enclosing an isolated pillar of masonry, which is 4.75 feet in height above the general surface of the Ran.
VI. Sakpur, locally called Lathara, Hill Station, lat. $23^{\circ} 17^{\prime}$, long. $70^{\circ} 12^{\prime}$-observed at in 1857 -is situated on a hill, about $1 \frac{1}{2}$ miles $W$. of the village of Sakpur and $3 \frac{1}{2}$ miles $S$. of Dhamarka. It is in the lands of Sakpur village, pargana Wágad, Cutch State.

The station consists of a platform of rubble, 5 feet in height, enclosing an isolated pillar of masonry.
VII. Karárho Tower Station, lat. $23^{\circ} 5^{\prime}$, long. $70^{\circ} 13^{\prime}$-observed at in 1857 -is situated on a round tower at the N.E. corner of the village from which the station is named, and in the neighbourhood of the ferry at which the mails cross from Sind to Kattywar: pargana Anjár, Cutch State.

The station consists of a tower, about 13 feet in height, enclosing an isolated pillar of masonry.
VIII. Charakra Hill Station, lat. $23^{\circ} 9^{\prime}$, long. $70^{\circ} 2^{\prime}$-observed at in 1857 -is situated on a hill so called, about $\frac{1}{2}$ a mile E. of the village of Sapárda, and 2 miles N.E. of the town of Anjár : pargana Anjár, Cutch State.

The station consists of a platform of rubble enclosing an isolated pillar of masonry about 5 feet in height.
IX. Joran Hill Station, lat. $23^{\circ} 22^{\prime}$, long. $70^{\circ} 1^{\prime}$-observed at in 1857 -is situated about $\frac{1}{\frac{1}{2}}$ a mile $\mathbf{E}$. of the village from which it derives its name : pargana Miáni, Cutch State.

The station consists of a platform of rubble enclosing an isolated pillar of masonry about 5 feet in height, with markstones at top and bottom.
X. Katror Hill Station, lat. $23^{\circ} 11^{\prime}$, long. $69^{\circ} 51^{\prime}$-observed at in 1855 and 1857 -is situated on the highest part of a hill so called, and about 100 yards $W$. of a pile of stones which bears the name of Asapura Máta : village Wauri, pargana Banni, Cutch State.

The station consists of a platform enclosing an isolated pillar of masonry 5 feet in height. It was again visited in 1857, but no statement of any alteration in the construction of the station is forthcoming. The directions and estimated distances of the following villages are :-Wauri E., miles 2; Warwa S.W., mile 1; Kukma N.E., miles 5.
XI. Bolári Hill Station, lat. $23^{\circ} 22^{\prime}$, long. $69^{\circ} 51^{\prime}$-observed at in 1855 and 1857 -is situated on one of the high knolls of the group of hills about 2 miles to the N . of the village from which it takes its name: pargana Bhuj, Cutch State.

The station consists of a platform, about 5 feet in height, enclosing an isolated pillar of masonry, with mark-stones at top and bottom. When again visited in 1857 "the upper mark-stone had been removed, and in placing a new one due attention was not paid to its being plumbed over the lower mark at the level of the ground ; the top of the pillar was therefore scored with four cuts, the intersection of which will determine the position of the present mark should it ever be effaced."
XII. Sámethra Hill Station, lat. $23^{\circ} 10^{\prime}$, long. $69^{\circ} 33^{\prime}$-observed at in 1855 -is situated on the range of hills lying about 2 miles S.W. of the village from which the station has been named: pargana Bhuj, Cutch State.

The station consists of a platform of rubble, 5 feet in height, enclosing an isolated pillar of masonry.
XIII. Wára Hill Station, lat. $23^{\circ} 21^{\prime}$, long. $69^{\circ} 36^{\prime}$-observed at in 1855 -is situated on the highest part and at; the southern extremity of a high, bluff hill, about 8 miles N. of Bhuj. Close to the station is the tomb, surmounted by a lofty flagstaff, of a Fakir and his relatives who formerly frequented the hill: village 'Iankiasar, pargana Bhuj, Cutch State.

The station consists of a platform, about 5 feet in height, enclosing an isolated pillar of masonry having an aperture on the S. side for access to the lower mark. The village of Tankiasar lies about a mile off on the western side of the hill.
XIV. Roha Hill Station, lat. $23^{\circ} 12^{\prime}$, long. $69^{\circ} 19^{\prime}$-observed at in 1855 -is situated at the eastern side of the hill fort whence it takes its name, and within a few yards of the easternmost bastion : village Roha, pargana Abrása, Cutch State.

The station consists of a platform, about 4 feet in height, enclosing an isolated pillar of masonry. "The upper markstone is supposed to be plumbed over the lower one, but fine scores have been made on the top of the pillar, the intersection of which will determine the position of the present station mark, should it ever be effaced."
XV. Dinoda Hill Station, lat. $23^{\circ} 27^{\prime}$, long. $69^{\circ} 23^{\prime}$-observed at in 1855 and 1857 -is situated on the western part of the high hill of that name lying towards the northern coast of Cutch, and about 40 yards $\mathbf{E}$. of a small Hindu temple. It is in the lands appertaining to the village of Dinoda, pargana Abrása, Cutch State.

The statior consists of a platform of rubble, 5 feet in height, enclosing an isolated pillar of masonry. It was again visited in 1857, but no statement of any alteration in the construction of the station is forthcoming.
XVI. Háthria Hill Station, lat. $23^{\circ} 27^{\prime}$, long. $69^{\circ} 5^{\prime}$-observed at in 1855 and 1857 -is situated on the highest part of a range of hills. It is in the lands of Naithra village which lies about 3 miles to S ., pargana Abrása, Cutch State.

The station consists of a platform of rubble, 5 feet in height, enclosing an isolated pillar of masonry, with an aperture for access to the lower mark-stone. It was again visited in 1857, but no statewent of any alteration in the construction of the station is forthcoming.
XVII. Naliya Station, lat. $23^{\circ} 14^{\prime}$, long. $68^{\circ} 52^{\prime}$-observed at in 1855 and 1857 -is situated on the rising ground about 2 miles $S$. of the town from which the station has been named : pargana Abrása, Cutch State.

The station consists of the usual platform of rubble, about 5 feet in height, enclosing an isolated pillar of masonry. It was again visited in 1857, but no statement of any alteration in the construction of the station is forthcoming.
XVIII. Manjal, locally called Shersháh, Hill Station, lat. $23^{\circ} 38^{\prime}$, long. $69^{\circ} 11^{\prime}$ —observed at in 1857 -
is situated on the highest part of the hill from which it takes its name, and about a mile S.E. of the village of Nára : pargana Kora, Cutch State.

The station consists of a platform, about 5 feet in height, enclosing an isolated pillar of masonry.
XIX. Saind Hill Station, lat. $23^{\circ} 25^{\prime}$, long. $68^{\circ} 49^{\prime}$-observed at in 1857-is situated on a hill which is in lands of Ida village: pargana Jakháwu, Cutch State.

The station consists of a platform of loose rubble enclosing an isolated pillar of masonry 4 feet in height, with an aperture on the S . side for access to the lower mark.
XX. Suri Muri, locally named Suri Bhit, Hill Station, lat. $23^{\circ} 33^{\prime}$, long. $68^{\circ} 47^{\prime}$-observed at in 1857 is situated on a hill about $\frac{1}{4}$ of a mile E . of the village of Chakrahi to which it appertains: pargana Abrása, Cutch State.

The station consists of a tower of stone and earth, 12 feet in height, enclosing a perforated pillar of masonry of which the upper 5 feet is isolated, having an aperture of 3 feet by 2 feet ou the S. side for access to the lower mark.
XXI. Sura Gandára Hill Station, lat. $23^{\circ} 40^{\prime}$, long. $68^{\circ} 59^{\prime}$-observed at in 1857 -is situated on the highest of the Gandára hills, about 3 miles S.W. of the village of Kora, and in the lands appertaining to Sokapur village which is at the foot of the hill : pargana Gardo, Cutch State.

The station consists of a platform of rubble enclosing an isolated pillar of masonry about 5 feet in height.
XXII. Bábia Hill Station, lat. $23^{\circ} 42^{\prime}$, long. $68^{\circ} 49^{\prime}$-observed at in 1857 -is situated on the low, rocky hill about a mile N. of the hamlet of Bábia: pargana Gardo, Cutch State.

The station consists of a platform of rubble, about 10 feet in height, enclosing a pillar of masonry of which the upper 5 feet is isolated.
XXIII. Jamanwála Tower Station, lat. $23^{\circ} 35^{\prime}$, long. $68^{\circ} 39^{\prime}$-observed at in 1857 -stands at a distance of about $\frac{3}{8}$ of a mile N.E. of the village so called. It is in the lands of Lakmi Ráni village, pargana Gardo, Cutch State.

The station consists of a tower of loose rubble, 12 feet in height, enclosing a perforated pillar of masonry of which the upper 5 feet is isolated, having an aperture of 3 feet by 2 feet, on the S . side for access to the lower mark.
XXIV. Pinjor Pir Hill Station, lat. $23^{\circ} 43^{\prime}$, long. $68^{\circ} 36^{\prime}$-observed at in 1857 and 1858 -is situated on a sand hillock locally called Bhorda Bhit, on the bank of the Kori Salt river : village Náráyan Sir, pargana Lakhpat, Cutch State.

The station consists of a platform of loose rubble enclosing a perforated pillar of masonry 12 feet in height, with an aperture on the $S$. side for access to the lower mark. It was again visited in 1858, but no statement of any alteration in the construction of the station is forthcoming. The town of Náráyan Sir is about 4 miles to S.W., and Kotesar about as far but more westerly.
XXV. Lakhpat Station, lat. $23^{\circ} 49^{\prime}$, long. $68^{\circ} 50^{\prime}$-observed at in 1857 and 1858 -is upon the southeastern and highest tower of the town of Lakhpat on the left bank of the Kori mouth of the Indus river : pargana Lakhpat, Cutch State.

The station consists. of the usual platform of rubble, 5 feet in height, enclosing an isolated pillar of masonry. It was again visited in 1858, but no statement of any alteration in the construction of the station is forthcoming.
XXVI. Sugandia Tower Station, lat. $23^{\circ} 52^{\prime}$, long. $68^{\circ} 32^{\prime}$-observed at in 1858 -is situated about 8 miles W. of Kot Blasti Bandar village, and 12 miles S.W. of Guni; it takes its name from a village said to have existed in the locality at a former time: taluka Játi, district Sháhbandar, Karáchi.

The station consists of a tower of masonry, 24 feet in height, enclosing a perforated pillar of masonry of which the upper 5 feet is isolated: an arched aperture gives access to the lower mark.
XXVII. Said Ali Tower Station, lat. $23^{\circ} 56^{\prime}$, long. $68^{\circ} 43^{\prime}$-observed at in 1858 -is about 4 miles from Kotir the hut and platform for the refuge of travellers between Cutch and Sind, and $1 \frac{8}{4}$ miles S.E. of Bulji Chauki: taluka Játi, district Sháhbandar, Karáchi.

The station consists of a tower of masonry, 24 feet in height, enclosing a perforated pillar of masonry of which the upper 5 feet is isolated : au arched aperture gives access to the lower mark. Kot Bhasti Bandar is to S.S.W., about 6 miles.
XXVIII. Guni Tower Station, lat. $24^{\circ} 2^{\prime}$, long. $68^{\circ} 35^{\prime}$-observed at in 1858 -is about a mile E. of the village of Guni at which there is a Dharmshála (rest house), and about $\frac{1}{2}$ a mile N. of Loharwárikar northernmost boundary: taluka Játi, district Karáchi.

The station consists of a tower of sun-dried bricks and mud cement enclosing a perforated pillar of masonry of which the upper 5 feet is isolated : an arched aperture on the $S$. side, which is now closed up, gave access to the lower mark.
XXIX. Hakra Tower Station, lat. $24^{\circ} 7^{\prime}$, long. $68^{\circ} 44^{\prime}$-observed at in 1858 -stands in the Ran and about $2 \frac{1}{4}$ miles N . of the southern edge of the Hakriwaro Nar: taluka Játi, district Karáchi.

The station consists of a tower of masonry, 24 feet in height, enclosing a perforated pillar of masonry of which the upper 5 feet is isolated: an arched aperture gives access to the mark.
XXX. Patha-ki-beri, locally known as Sírkap, Tower Station, lat. $24^{\circ} 3^{\prime}$, long. $68^{\circ} 25^{\prime}$-observed at in 1858-stands on a small mound on the Sugandia creek on which there is a small shrine, and about 10 miles W. of Guni : taluka Játi, district Karáchi.

The station consists of a tower of masonry, 25 feet in height, enclosing a perforated pillar of masonry of which the upper 5 feet is isolated : an arched aperture gives access to the lower mark. The village of Sháh Samalio is about 5 miles to N.E.
XXXI. Mod Tower Station, lat. $24^{\circ} 12^{\prime}$, long. $68^{\circ} 34^{\prime}$-observed at in 1858-stands in a patch of land which had been under cultivation, and is about 2 miles E. of the Tappa Dâk Chauki at Vehr: taluka Játi, district Karáchi.

The station consists of a tower of masonry, 25 feet in height, enclosing a perforated pillar of masonry of which the upper 5 feet is isolated: an arched aperture gives access to the lower mark. The village of Dhand is about $1 \frac{1}{2}$ miles to W .
XXXII. Jim Tower Station, lat. $24^{\circ} 13^{\prime}$, long. $68^{\circ} 22^{\prime}$ —observed at in 1858 -stands about 4 miles $\mathbf{S}$. of the village of Miáni : taluka Játi, district Karáchi.

The station consists of a tower enclosing a perforated pillar of masonry of which the upper 5 feet is isolated : an arched aperture on the S . side gives access to the lower mark. 'The approximate directions and distances of the following villages are :Jehánkhán N.E., miles 3 ; and Kunwáro Ghot E., miles 4.
XXXIII. Nurlisháh or Nursháh Tower Station, lat. $24^{\circ} 7^{\prime}$, long. $68^{\circ} 16^{\prime}$-observed at in 1858 -stands about 2 miles N.E. of Allah Mehmán's old tomb, and some 4 miles S. of the village of Jatanjo, the country in the neighbourhood being a waste : taluka Játi, district Karáchi.

The station consists of a tower, but no particulars of its construction are forthcoming ; it may however be presumed that it is similar to those at the adjacent stations. . The approximate directions and distances of the following villages are :-Jaltan N.N.W., miles 4; and Kotia Allah Mehmán S.S.W., miles 3.
XXXIV. Dhui Tower Station, lat. $24^{\circ} 20^{\prime}$, long. $68^{\circ} 29^{\prime}$-observed at in 1858 -stands in a patch of arable land subject to inundation, and is about 10 miles S.E. of the town of Mugalbhin : taluka Játi, district Karáchi.

The station consists of a tower enclosing a perforated pillar of masonry of which the upper 5 feet is isolated : an arched aperture on the S . side gives access to the lower mark. Pindi Raj and Hasan Lund villages are about $2 \frac{1}{2}$ miles to S.E.
XXXV. Koti Tower Station, lat. $24^{\circ} 16^{\prime}$, long. $68^{\prime} 12^{\prime}$-observed at in 1858 -stands about a mile $\mathbb{S}$. of the village of Koti on the road from Mugalbhin to Sláhbandar: taluka Játi, district Karáchi.

The station consists of a tower, 27 feet in height, enclosing a perforated pillar of masonry of which the upper 5 feet is isolated : an arched aperture gives access to the lower mark. The approximate directions and distances of the following villages are :-Hasan Ját S.W., mile $\frac{3}{4}$; Chach W., miles $2 \frac{1}{2}$; and Buteh S.S.W., miles $1 \frac{1}{4}$.
XXXVI. Nindámani, locally called Sháh Miro, Tower Station, lat. $24^{\circ} 11^{\prime}$, long. $68^{\circ} 3^{\prime}$-observed at in 1858-is about a mile N.W. of Nindámani village, and some 6 miles $\mathbf{E}$. of the town of Sháhbandar: village Jholu, taluka Sháhbandar, district Karáchi.

The station consists of a tower of brick and clay enclosing a perforated pillar of masonry of which the upper 5 feet is isolated : a passage roofed with wood gives access to the lower mark. The approximate directions and distances of the following villages are :-Doli Mirani S.E., miles $1 \frac{1}{4}$; and Musijo Ghoti W.N.W., miles $3 \frac{1}{2}$.
XXXVII. Mugalbhin. locally called Jhurra, Tower Station, lat. $24^{\circ} 21^{\prime}$, long. $68^{\circ} 20^{\prime}$-observed at in 1858-is about a mile $E$. of the town from which it takes its name, and a few hundred yards from the huts known as Khere-ka-wála: taluka Játi, district Karáchi.

The station consists of a tower, 20 feet in height, enclosing a perforated pillar of masoury of which the upper 5 feet is isolated, having an arched aperture for access to the lower mark. The village of Khamisa Kheru is about $\frac{3}{4}$ of a mile to N.E.
XXXVIII. Abansháh, local name Abansháhjo Takiar, Hill Station, lat. $24^{\circ} 22^{\prime}$, long. $68^{\circ} 1^{\prime}$-observed at in 1858-is situated on the southern extremity of a hill on the road from Sujáwal to Sháhbandar ; the hill is used as a place of burial for the chief people of the surrounding districts, and appertains to the village of Khamiso Majawar: taluka Sháhbandar, district Karáchi.

The station consists of a platform of stone and clay enclosing an isolated and perforated pillar of masonry 10 feet in height : an arched aperture on the E. side gives access to the lower mark. The approximate directions and distances of the following villages are :-Shekh Husainsháh N., mile $\frac{1}{2}$; Ibrahim Odajo S.E., mile 1; and Sháh Yakik E., miles 5.
XXXIX. Gada, locally called Bakhi, Tower Station, lat. $24^{\circ}{ }^{\circ} 6^{\prime}$, long. $68^{\circ} 13^{\prime}$-observed at in 1858is about a mile S. of the village of Gada, and 8 miles N.W. of the town of Mugalbhin. It is in the lands of the village of Makán Bakhi, taluka Játi, district Karáchi.

The station consists of a tower of brick and clay, 25 feet in height, enclosing a perforated pillar of masonry of which the upper 5 feet is isolated: an arched aperture gives access to the lower mark. The approximate directions and distances of the following villages are :-Kásim Gada N.W., mile $\frac{1}{2}$; Husain Baka S.S.E., miles 2 $\frac{1}{2}$; and Mubammad Hingora S., miles 2.
XL. Randa, also known as Rakhal, Tower Station, lat. $24^{\circ} 32^{\prime}$, long. $68^{\circ} 5^{\prime}$-observed at in 1858-stands at a distance of $\frac{1}{8}$ of a mile $N$. of the village from which it takes its name: taluka Sujáwal, district Karáchi.

[^50]XLI. Khar Tower Station, lat. $24^{\circ} 36^{\prime}$, long. $68^{\circ} 13^{\prime}$-observed at in 1858 -stands adjoining the small village of Khar which appertains to Deh Abad Páncho, and is about 5 miles E. of the town of Sujáral: taluka Sujáwal, district Karáchi.

The station consists of a tower of brick and mud, 25.08 feet in height, enclosing a perforated pillar of masonry : an arched aperture on the $S$. side gives access to the lower mark. The approximate directions and distances of the following villages are :-Nindo Baran (new) S.SW., mile $\frac{1}{2}$; and Rajo Mian N.E., miles $1 \frac{1}{4}$.
XLII. Bíbi Mariam, locally called Bíbi Mariamjo Thul, Hill Station, lat. $24^{\circ} 33^{\prime}$, long. $67^{\circ} 56^{\prime}$ observed at in 1858-is situated on a hill so called, close to the road from Tatta to Kotri Allahrakhyo and about $\frac{3}{4}$ of a mile S.E. of the well known place of Pir Patho: village Pir Patho, taluka Tatta, division Jerruck, district Karáchi.

[^51]XLIII. Vikia Tower Station, lat. $24^{\circ} 42^{\prime}$, long. $68^{\circ} 6^{\prime}$-observed at in 1858 -stands a few hundred yards N.N.E. of Vikia village to which it appertains, and is about $\frac{1}{4}$ of a mile off the high road between Mugalbhin and Belo: taluka Sujáwal, district Karáchi.

The station consists of a mud tower, 20 feet in height, enclosing a perforated pillar of brickwork of which the upper 5 feet is isolated: an arched aperture on the S . side gives access to the lower mark. The approximate directions and distances of the circumjacent villages are:-Belo N., miles $2 \frac{1}{2}$; Isa Mohana S.E., mile $\frac{1}{4}$; and Kadu Mula N., mile $\frac{1}{4}$.
XLIV. Dománi, locally called Domanjo Thul, Hill Station, lat. $24^{\circ} 40^{\prime}$, long. $67^{\circ} 54^{\prime}$-observed at in 1858-is situated on a hill about 1 mile N.W., of the village of Dománi (Chota), and $\frac{1}{4}$ of a mile off the high road from 'latta to the village of Ghulám Muhammad: taluka Tatta, division Jerruck, district Karáchi.

The station consists of a platform of masonry enclosing a hollow, isolated pillar of masonry 5 feet in height: an arched aperture on the S . side gives access to the lower mark. The approximate directions and distances of the circumjacent villages are:Domáui W., miles 2; Kalan Kot S., miles 3; and Zakrio Khajo E., miles 2.
XLV. Sukpur, locally known as Sukpurwáro Thul, Tower Station, lat. $24^{\circ} 33^{\prime}$, long. $67^{\circ} 45^{\prime}$ —observed at in 1857 -is about a mile S. of the village of Sukpur, and 4 miles E. of the town of Mirpur Sákro. It is in the lands of Makán Glázi Deh Sukpur, tappa Mirpur, taluka Sákro, district Karáchi.

The station consists of a tower enclosing a perforated pillar of masonry 10 feet in height of which the upper 5 feet is isolated: an arched aperture on the S. side gives access to the lower mark. The nearest villages are Sukpur Gházi Khán and Umedali.
CIV.-(Of the Karáchi Lóngitudinal Series). Károthol, locally called Kárewáro Thul, Hill Station, lat. $24^{\circ} 54^{\prime}$, long. $67^{\circ} 56^{\prime}$-observed at in 1853 and 1857 -is situated on the highest part of a hill so called, which appertains to the village of Suf Shoro: taluka 'latta, division Jerruck, district Karáchi.

The station consisted of a platform enclosing a solid, circular and isolated pillar of masonry, 3 feet in height, which had a mark-stone at top, another at bottom, and a third 1 foot below the former. It was again visited in 1857 in the course of the Cutch Coast Series Operations when the upper mark-stone having been destroyed the station was rebuilt with a perforated pillar and with an aperture to admit of access to the lower mark. In cutting down the pillar intermediate marks were found but these were engraved on such small stones that from the pillar being built solid over them they were displaced before they were detected. The Railway Station of Jhimpir is 3 miles to N . There is no village in the neighbourhood, excepting a few huts on the verge of a pool of water to $S$. of the station, which are generally occupied by herdsmen.
CVII.-(Of the Karáchi Longitudinal Series). Sáhiji or Sahij Hill Station, lat. $24^{\circ}$ 51', long $67^{\circ} 38^{\prime}$-observed at in 1853 and 1857 -is situated on a small mound so called, adjoining a tomb on the northern edge of a long flat range of hills, forming the southern bank of a stream or dry watercourse, from which it is distant about 300 yards. It is $1 \frac{1}{2}$ miles $S$. of the small and well known temple of Runpitiáni close to the hill road from Karáchi to Kotri : taluka Tatta, district Karáchi.

The station consists of a platform enclosing a solid, circular and isolated pillar of masonry 3 feet in height, which has a mark-stone at surface, auother at level of foundation, and a third 2 feet above the latter. It was again visited in 1857 in the course of the Cutch Coast Series Dperations, but no statement of any alteration in the construction of the station is forthcoming.
J. B. N. HENNESSEY,

## OUTCH COAST SERIES.

PRINCIPAL TRIANGULATION. OBSERVED ANGLES.


Nors_-Station XI and XIV apportain to the Kattywar Meridional Seriee.


Norn.-Stations XI and XIV appertain to the Kattywar Meridional Serices.


## At II (Nara)

December 1856; observed by Lieutenant D. J. Nasmyth with Troughton and Simms' 18-inch Theodolite No. 2.


Nore.-Stations VII, XI and XIV appertain to the Kattywar Meridional Series.

## At III (Kakarwa)

January 1857; observed by Lieutenant D. J. Nasmyth with Troughton and Simms' 18-inch Theodolite No. 2.


Nors.-Station VII appertains to the Kattywar Meridional Series.

## At VII (Gángta)

December 1856; observed by Lieutenant D. J. Nasmyth with Troughton and Simms' 18-inch Theodolite No. 2.


## At IV (Ráhida)

January 1857; observed by Lieutenant D. J. Nasmyth with Troughton and Simms' 18-inch Theodolite No. 2.


Notz.-Station VII appertains to the Kattywar Meridional Series.

## At IV (Ráhida)-(Continued).

| $\underset{\text { Between }}{\text { Angle }}$ | $160^{\circ} 8^{\prime}$ | $340^{\circ} 8^{\prime}$ | $170{ }^{\circ} 19^{\prime}$ | $\begin{array}{r} \text { Circl } \\ 350^{\circ} 19^{\prime} \end{array}$ | le readin $180^{\circ} 29^{\prime}$ | gs, tele <br> $0^{\circ} 29^{\prime}$ | scope be <br> $190^{\circ} 35^{\prime}$ | ing set $10^{\circ} 35^{\prime}$ | $\begin{aligned} & \text { on } V \\ & 200^{\circ} 45^{\prime} \end{aligned}$ | $20^{\circ} 45^{\prime}$ | $210^{\circ} 7^{\prime}$ | $80^{\circ} 57^{\prime}$ | M $=$ Mean of Groups <br> $v^{2}=$ Relative Weight <br> C $=$ Concluded Anglo |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VI \& IX |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=37^{\prime \prime \cdot} \cdot 7 \eta \\ & w=1 \cdot 3^{2} \\ & w=3 \cdot 19 \\ & \frac{1}{w}=0 \cdot 31 \\ & C=58^{\circ} 38^{\prime} 37^{\prime \prime} \cdot 75 \\ & M=3^{\prime \prime \prime} \cdot \eta^{\prime} \\ & w=\begin{array}{c} 1 \\ w \end{array} \end{aligned}$ |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 37\%1 | $38 \cdot 38$ | 39*10 | $39^{1} 17$ | 32.23 | 44.37 | 3717 | $36 \cdot 89$ | 37*10 | 39.29 | 33.96 | 3777 |  |
| Vİ\& IX |  <br>  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 3738. | 37.80 | $35^{\circ} 44$ | $39^{\circ 25}$ | 34*48 | 43.39 | $37 \times 8$ | 38.25 | 3971 | 38.95 | 35.22 | $35^{\circ} 02$ |  |

## At V (Ran)

January 1857; observed by Lieutenant D. J. Nasmyth with Troughton and Simms' 18-inch Theodolite No. 2.

| $\begin{aligned} & \text { Angle } \\ & \text { between } \end{aligned}$ | $0^{\circ}{ }^{\circ}$ | $180^{\circ}{ }^{\prime}$ | $10^{\circ} 11^{\prime}$ | $\begin{gathered} \text { Circle } \\ 190^{\circ} 11^{\prime} \end{gathered}$ | reading <br> $20^{\circ} 22^{\prime}$ | s, telesco <br> $200^{\circ} 22^{\prime}$ | pe bein $30^{\circ} 28^{\prime}$ | g set on <br> $210^{\circ} 28^{\prime}$ | VII* $40^{\circ} 39^{\prime}$ | $220^{\circ} 39^{\prime}$ | $60^{\circ} 50^{\circ}$ | $230^{\circ} 50^{\prime}$ | $M=$ Mean of Groups <br> w = Relative Weight <br> $C=$ Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| VII* \& III | " | " | " | " | " | " | " | " | " | " | " |  | $\begin{aligned} & M=52^{\prime \prime} \cdot 96 \\ & w=1 \cdot 07 \\ & \frac{1}{w}=0 \cdot 93 \\ & C=74^{\circ} 18^{\prime} 52^{\prime \prime} \cdot 96 \end{aligned}$ |
|  | $l$ | 50.87 | $756.23 l$ | $l 50.00$ | $h 52.67$ | $h_{45.14}$ | $l 52.73$ | $l 54.94$ | $l$ 55:96 | $l 52.43$ | 55.63 | $l 53.87$ |  |
|  | $l 53 \cdot 70$ | $l 5140$ | $l 58.06$ | $l 49.27$ | $\begin{aligned} & l 54.77 \\ & l \\ & 53.90 \end{aligned}$ | $h_{44 \cdot 60}$ | $l 51.73$ | $l 53.44$ | 57'27 | $l 53 \cdot 27$ | $55^{\circ} \mathrm{O}$ | $l 54.90$ |  |
|  | 53.40 | 51.14 | 5714 | 49.64 | 53.78 | $44 * 87$ | 52.23 | 54:19 | 56.61 | 52.85 | 55.34 | 54.38 |  |
| III \& IV |  <br>  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=24^{\prime \prime \prime} \cdot 88 \\ & w=1 \cdot 34 \\ & \frac{1}{w}=0 \cdot 75 \\ & C=81^{\circ} 10^{\prime} 24^{\prime \prime} \cdot 88 \end{aligned}$ |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | $19^{\prime} 57$ | 25.33 | 19.35 | 25.77 | 25\%91 | 28.70 | 24.86 | 25.68 | 23.18 | 27.56 | 27.97 | 24.67 |  |

## At VI (Sakpur)

January 1857; observed by Lieutenant D. J. Nasmyth with Troughton and Simms' 18-inch Theodolite No. 2.


Note.—Stution VII* appertains to the Kattywar Meridional Series.


## At VII (Karárho)-(Continued):



## At VIII (Charakra)

February 1857; olserved by Lieutenant D. J. Nasmyth with Troughton and Simms' 18-inch Theodolite No. 2.


## At IX (Joran)

January 1857; observed by Lieutenant D. J. Nasmyth with Troughton and Simms' 18-inch Theodolite No. 2.


## At $X$ (Katror)

December 1855 and February 1857; observed by Lieutenant D. J. Nasmyth with Troughton and Simms' 18-inch Theodolite No. 2.


## At X (Katror)-(Continued).



## At XI (Bolári)

*December 1855; and $\dagger$ February 1857; observed by Lieutenant D. J. Nasmyth with Troughton and Simms' 18-inch Theodolite No. 2.

| Anglo between | $268{ }^{\circ} 54^{\prime}$ | $88^{\circ} 54^{\prime}$ | $279^{\circ} 6^{\prime}$ | Circl <br> $99^{\circ} 6^{\prime}$ | reading <br> $289^{\circ} 16^{\prime}$ | s, telesc <br> $109^{\circ} 16^{\prime}$ | ope bein $299^{\circ} 22^{\prime}$ | $119^{\circ} 22^{\prime}$ | $\begin{aligned} & \text { n IX } \\ & 309^{\circ} 33^{\prime} \end{aligned}$ | $129^{\circ} 33^{\prime}$ | $319^{\circ} 44^{\prime}$ | $139^{\circ} 44^{\prime}$ | $M=$ Mean of Groups <br> $w_{0}=$ Relative Weight <br> $C=$ Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\text { IX \& }{ }^{\dagger} \text { VIII }$ | " | " | " | " | " | " | " | " | " | " | " | " |  |
|  | $\begin{aligned} & h_{7} 7 \cdot 27 \\ & h_{7} 93 \end{aligned}$ | $\begin{aligned} & h 3 \cdot 17 \\ & h_{2} \cdot 30 \end{aligned}$ | $\begin{aligned} & h_{3.53} \\ & h_{4.30} \end{aligned}$ | $h 1.80$ $h 3.07$ | 7517 26.30 | $l$ $l$ $l$ 2.63 | $l$ 7 6 5 | $l 5.47$ 64.80 | $\begin{aligned} & l 8.23 \\ & h 6 \cdot 70 \end{aligned}$ | h 9.97 $h 8.60$ | $\begin{aligned} & h_{2} \cdot 50 \\ & h_{3} \cdot 20 \end{aligned}$ | $\begin{aligned} & h 7.43 \\ & h_{9.23} \end{aligned}$ |  |
|  |  |  |  |  | $l 6.83$ |  |  |  | $h 6.34$ | $h 9.73$ |  | $\begin{aligned} & h 710 \\ & h 8.27 \end{aligned}$ | $\dot{w}=2 \cdot 18$ |
|  | $7 \cdot 60$ | $2 \cdot 74$ | 3.91 | $2 \cdot 44$ | 6.10 | 370 | 5.48 | 5.14 | 709 | 9.43 | $2 \cdot 85$ | 8.01 |  |


| At XI (Bolári)-(Continued). |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Angle between |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\stackrel{\dagger}{\text { VIII \& } X}$ |  <br>  <br> $l 53.97 l 59.23$ <br> $h 51.00$ |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=53^{\prime \prime} \cdot 54 \\ & w=0 \cdot 73 \\ & \frac{1}{w}=1 \cdot 3^{8} \\ & C=40^{\circ} 26^{\prime} 53^{\prime \prime} \cdot 54 \end{aligned}$ |
|  | 52.87 | $56 \cdot 50$ | 57.05 | 59.80 | 54.46 | 59.95 | 50•70 | 52.00 | 47.25 | 49.60 | $50 \cdot 97$ | 51•36 |  |
| X \& XII |  <br>  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=31^{\prime \prime} \cdot 6 \mathrm{I} \\ & w=1 \cdot 26 \\ & \frac{1}{w}=0 \cdot 80 \\ & C=5^{\circ} 23^{\prime} 31^{\prime \prime} \cdot 6 I \end{aligned}$ |
|  | 32.03 | 28.21 | $34^{\circ} 92$ | $3{ }^{\circ} \cdot 08$ | 34.14 | 27\%1 | $37 \cdot 37$ | $32 \cdot 88$ | $30 \cdot 32$ | 33.00 | $30 \cdot 50$ | 2785 |  |
| XII \& XIII |  <br>  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=45^{\prime \prime} \cdot 62 \\ & w=1 \cdot 51 \\ & \frac{1}{w}=0 \cdot 66 \\ & C=30^{\circ} 40^{\prime} 45^{\prime \prime} \cdot 62 \end{aligned}$ |
|  | 4932 | 47.24 | $41 \cdot 89$ | $43 \cdot 15$ | 42.97 | 44.42 | $42 \cdot 55$ | 44.98 | 48:21 | 48:19 | $44 \cdot 85$ | 49.63 |  |

## At XII (Sámethra)

November 1855 ; observed by Lieutenant D. J. Nasmyth with Troughton and Simms' 18-inch Theodolite No. 2.

| Angle between | $0^{\circ} 1^{\prime}$ | $180^{\circ} 1^{\prime}$ | $10^{\circ} 12^{\prime}$ | Circle $190^{\circ} 12^{\prime}$ | reading <br> $20^{\circ} 20^{\circ}$ | , telesco <br> $200^{\circ} 20^{\prime}$ | pe bein $30^{\circ} 29^{\prime}$ | g set on <br> $210^{\circ} 29^{\prime}$ | $\begin{aligned} & \text { XIV } \\ & 40^{\circ} 38^{\prime} \end{aligned}$ | $220{ }^{\circ} 38^{\prime}$ | $50^{\circ} 50^{\circ}$ | $230^{\circ} 51^{\prime}$ | $M=$ Mean of Groups <br> ${ }^{w}=$ Relative Weight <br> C = Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| XIV \& XV | " | " | " | " | " | " | " | " | " | " | " |  | $\begin{aligned} M & =55^{\prime \prime} \cdot 34 \\ w & =1 \cdot 47 \\ \frac{\mathbf{I}}{w} & =0 \cdot 68 \\ C & =5^{\circ} 47^{\prime} 55^{\prime \prime} \cdot 34 \end{aligned}$ |
|  | $\begin{aligned} & h_{52 \cdot 16} h \\ & h_{51} \cdot 27 \end{aligned}$ | $\begin{aligned} & h 53 \cdot 36 \\ & h \\ & 54.07 \end{aligned}$ | $\begin{aligned} & h 57.77 \\ & l \\ & 56 \cdot 77 \end{aligned}$ | $\begin{aligned} & h 54 \cdot 30 \\ & h 54 \cdot 90 \end{aligned}$ | $\begin{array}{r} l \\ l \\ l \\ l 8.57 \\ 58.04 \end{array}$ | $\begin{aligned} & l 50 \cdot 37 \\ & l \\ & l \end{aligned}$ | $\begin{aligned} & l 61 \cdot 30 \\ & l 6 \mathrm{I} \cdot 27 \end{aligned}$ | $\begin{aligned} & l 56.44 l \\ & l \\ & l \end{aligned}$ | $\begin{aligned} & l 5 \div 43 \\ & l \\ & l 5707 \end{aligned}$ | $\begin{aligned} & l 57 \cdot 10 \\ & l \\ & 57 \cdot 33 \end{aligned}$ | $\begin{aligned} & l \\ & l \\ & h \\ & 53^{\prime} \cdot 66 \\ & \hline \end{aligned}$ | $\begin{aligned} & h \begin{array}{l} h 2 \cdot 87 \\ h \\ h 3 \cdot 34 \end{array} \end{aligned}$ |  |
|  | $51^{172}$ | 53.71 | $57 \cdot 27$ | 54:60 | 5731 | 51.27 | 61.28 | $56 \cdot 42$ | 56.25 | 57.22 | 53.95 | $53^{10}$ |  |
| XV \& XIII |  <br>  $h_{53.16 l}{ }_{55}{ }^{3} 30$ |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=55^{\prime \prime} \cdot 3^{8} \\ & w=1 \cdot 12 \\ & \frac{1}{w}=0 \cdot 89 \\ & C=42^{\circ} 2^{\prime} 55^{\prime \prime} \cdot 3^{8} \end{aligned}$ |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | $56 \cdot 29$ | 52.20 | $51 \times 96$ | 52.60 | $56 \cdot 70$ | $54 \times 17$ | $50 \cdot 63$ | 58.2I | $59^{\circ 20}$ | 56.79 | 54.63 | 61:14 |  |



## At XIV (Roha)

December 1855; observed by Lieutenant D. J. Nasmyth with Troughton and Simms' 18-inch Theodolite No. 2.


## At XV (Dinoda)-(Continued).

| $\underset{\text { between }}{\text { Angle }}$ | $0^{\circ} 0^{\prime} \quad 180^{\circ} 0^{\prime}$ | $10^{\circ} 12^{\prime}$ | Circle $190^{\circ} 12^{\prime}$ | readings, <br> $20^{\circ} 22^{\prime}$ | , telesco <br> $200^{\circ} 22^{\prime}$ | pe being $30^{\circ} 28^{\prime}$ | set on <br> $210^{\circ} 28^{\prime}$ | $\begin{aligned} & \text { XIII } \\ & 40^{\circ} 39 \end{aligned}$ | $220^{\circ} 39$ | $50^{\circ} 49^{\prime}$ | $230^{\circ} 49^{\prime}$ | $M=$ Mean of Groups <br> ${ }^{20}=$ Relative Weight <br> $C=$ Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| XII \& XIV | " " | " | " | " | " | " | " | " | " | " | " | $\begin{aligned} & M=40^{\prime \prime} \cdot 30 \\ & w=1 \cdot 13 \\ & \frac{1}{w}=0 \cdot 89 \\ & C=42^{\circ} 35^{\prime} 40^{\prime \prime} \cdot 30 \end{aligned}$ |
|  | h45'70 h40.03 <br> $h 45^{\circ} 20 h_{40.64}$ | $l 45970$ | $l 39^{\circ} 43 \mathrm{l}$ | $l$ | ${ }_{l}^{l} 35 \cdot 17$ | $l$ | $l 39.40$ | h 41 l 20 |  | $\begin{aligned} & h 35 \cdot 30 \\ & h 35^{\circ} 44 \end{aligned}$ | $\begin{aligned} & h_{4} 43 \cdot 24 \\ & h_{44} \cdot 10 \end{aligned}$ |  |
|  | $45 * 45 \quad 40 \cdot 34$ | 45.50 | 39.66 | 40:02 | $35^{\prime} 90$ | 38.00 | 38.99 | $40 \cdot 50$ | $40 \cdot 22$ | 35.37 | $43 \cdot 67$ |  |
| XIV \& XVI |  <br>  h 58.50 |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=58^{\prime \prime} \cdot 73 \\ & w=1 \cdot 34 \\ & \frac{1}{w}=0 \cdot 75 \\ & C=76^{\circ} \quad 3^{\prime} 58^{\prime \prime} \cdot 73 \end{aligned}$ |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | $54.80 \quad 56.01$ | 53.78 | 59.59 | 59.75 | 6r 53 | 6143 | 60.39 | 58.75 | 58.83 | 63.60 | $56 \cdot 33$ |  |
| $\text { XVI \& }{ }^{\dagger} \mathrm{XVIII}$ | $\begin{aligned} & h 13.57 \\ & h 110.86 \\ & h_{14} .14 \end{aligned} h_{9} 9.74$ | $h_{13}{ }^{\circ} \mathrm{Co} h$ | h 8117 | 6.87 | $h 3.06$ | $l$ 6.10 | $l 6.63$ | $l 710$ | $l 6.47$ | h. 4.80 | h $10 \cdot 56$ | $\begin{aligned} & M=8^{\prime \prime} \cdot 06 \\ & w=0 \cdot 98 \\ & \frac{1}{w}=1 \cdot 02 \\ & C=43^{\circ} 14^{\prime} 8^{\prime \prime} \cdot 06 \end{aligned}$ |
|  |  | $\begin{aligned} & h 15.23 \\ & h 14^{\circ} 13 \end{aligned}$ | h 7100 | 537 | h 3.83 | $l 480$ | $6 \cdot 04$ | 723 | 724 |  | h1124 |  |
|  | $13.86 \quad 10.30$ | $14^{\prime 12}$ | $7 \cdot 58$ | 6.12 | 3.45 | 545 | 6.33 | 717 | 6.85 | $4 \cdot 62$ | 10'90 |  |

## At XVI (Háthria)

$\ddagger$ December 1855; and §February 18557; observed by Lieutenant D.J. Nasmyth with Troughton and Simms' 18-inch Theodolite No. 2.

| Angle between | $0^{\circ} 1^{\prime} \quad 180{ }^{\circ} 1^{\prime} \quad 10^{\circ} 11^{\prime}$ | $\begin{gathered} \text { Circle } \\ 190^{\circ} 11^{\prime} \end{gathered}$ | reading <br> $20^{\circ} 22^{\prime}$ | s, telesc $200^{\circ} 22^{\prime}$ | cope bein $30^{\circ} 28^{\prime}$ | ng set on <br> $210^{\circ} 28^{\prime}$ | $\begin{gathered} \text { on } X V \\ 40^{\circ} 39^{\prime} \end{gathered}$ | $220^{\circ} 39^{\prime}$ | $50^{\circ} 50^{\prime}$ | $230^{\circ} 50^{\prime}$ | $M=$ Mean of Groups <br> $w_{0}=$ Relative Weight <br> $C=$ Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $X V{ }_{\&}^{\ddagger} X I V$ | " " " | * | " | " |  |  |  | " | " | " | $\begin{aligned} & M=48^{\prime \prime} \cdot 15 \\ & w=1 \cdot 24 \\ & \frac{1}{w}=0 \cdot 80 \\ & C=50^{\circ} 13^{\prime} 48^{\prime \prime} \cdot 15 \end{aligned}$ |
|  |  | $\begin{aligned} & h_{47} 40 \\ & h_{47} 70 \end{aligned}$ | $\begin{aligned} & l 50 \cdot 26 \\ & l \\ & l 0 \cdot 90 \end{aligned}$ | $\begin{aligned} & l 44.23 \\ & l \\ & l 44: 87 \end{aligned}$ | $l \begin{aligned} & l_{54.27} \\ & l_{5} 03 \end{aligned}$ | $\begin{array}{r} l_{49.66} \\ l \\ l_{4} .36 \end{array}$ | $\begin{aligned} & l 48 \cdot 17 \\ & l 48 \cdot 53 \end{aligned}$ | $\begin{aligned} & l 47.34 \\ & h 48.67 \end{aligned}$ | $\begin{aligned} & h_{49} \cdot 67 \\ & h_{50} \cdot 90 \end{aligned}$ | $\begin{aligned} & h 42 \cdot 73 \\ & h \\ & h 3^{\prime} \cdot 43 \end{aligned}$ |  |
|  | $\begin{array}{lll}46 \cdot 64 & 45.37 & 49.74\end{array}$ | 47.55 | $50 \cdot 58$ | $44^{*} 55$ | 54.65 | $49^{\circ} \mathrm{I}$ | $48 \cdot 35$ | 48.01 | 50.28 | $43 \cdot 08$ |  |
| $\text { XIV } \stackrel{\ddagger}{\&} \text { XVII }$ |  <br>  |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =25^{\prime \prime} \cdot 53 \\ w & =1 \cdot 14 \\ \frac{1}{w} & =0 \cdot 87 \\ C & =82^{\circ} 11^{\prime} 25^{\prime \prime} \cdot 53 \end{aligned}$ |
|  | $26.43 \quad 26.93 \quad 21.25$ | 26.76 | 23.07 | 23.61 | 19.34 | 25.08 | 26.22 | 29:13 | 28.51 | 30.05 |  |
| Lesser circle readings | $231^{\circ} 1^{\prime} \quad 51^{\circ} 1^{\prime} \quad 241^{\circ} 12^{\prime}$ | $61^{\circ} 12^{\prime} 2$ | $251^{\circ} 23^{\prime}$ | $71^{\circ} 23^{\prime}$ | $261{ }^{\circ} 29^{\prime}$ | $81^{\circ} 29^{\prime} \quad 2$ | $271{ }^{\circ} 39^{\prime}$ | $91^{\circ} 39^{\prime} \quad 2$ | $281{ }^{\circ} 50^{\prime}$ | $101{ }^{\circ} 50^{\prime}$ | $\begin{aligned} & M=62^{\prime \prime} \cdot 29 \\ & w=0 \cdot 62 \\ & \frac{1}{w}=1 \cdot 61 \\ & C=37^{\circ} 43^{\prime} 2^{\prime \prime} \cdot 29 \end{aligned}$ |
| XVII \& XIX | $\begin{array}{lll} l & 57.73 & l l \\ l & 63 \cdot 74 & h_{5} \\ l & 58 \cdot 1.7 \\ l 62 \cdot 07 & h_{5} 8 \cdot 03 \end{array}$ | $\begin{aligned} & h_{57 \times 50} \\ & h_{59.63} \\ & h_{59}{ }^{\prime} 70 \end{aligned}$ | $\begin{aligned} & l \begin{array}{l} 57 \cdot 73 \\ l \\ l 6 \cdot 64 \end{array} \end{aligned}$ | $h 60 \cdot 60$ $l 59^{\circ} 40$ | $\begin{aligned} & h 66 \cdot 80 \\ & h 67^{\circ} 93 \end{aligned}$ | $\begin{aligned} & h 59.07 \\ & h 60.57 \\ & h \end{aligned}$ | $\begin{aligned} & h 63 \cdot 67 \\ & h 64 \cdot 24 \end{aligned}$ | $\begin{aligned} & l 67 \cdot 00 \\ & l 65^{\circ} 96 \end{aligned}$ | $\begin{aligned} & h_{70 \cdot 84}^{70} \\ & h_{71 \cdot 27} \end{aligned}$ | $\begin{aligned} & h 62 \cdot 80 \\ & h 64.53 \end{aligned}$ |  |
|  | 58.03 62.91. 58.10 | 58.94 | $57 \cdot 18$ | $60 \cdot 00$ | 67.37 | 59.82 | 63.95 | $66 \cdot 48$ | 71.06 | 63.66 |  |


| At XVI (Háthria)-(Continued). |  |  |
| :---: | :---: | :---: |
| $\underset{\substack{\text { Angle } \\ \text { between }}}{\text { n }}$ | Circle readings, telescope being set on XVII <br> $\begin{array}{lllllllll}231^{\circ} 1^{\prime} & 51^{\circ} 1^{\prime} & 241^{\circ} 12^{\prime} & 61^{\circ} 12^{\prime} & 251^{\circ} 23^{\prime} & 71^{\circ} 23^{\prime} & 261^{\circ} 29^{\prime} & 81^{\circ} 29^{\prime} & 271^{\circ} 39^{\prime}\end{array} 91^{\circ} 39^{\prime} 281^{\circ} 50^{\prime} \quad 101^{\circ} 50^{\prime}$ | $\begin{aligned} & M=\text { Meean of Groups } \\ & { }^{v}=\text { Relative Weight } \\ & C=\text { Concluded Angle } \end{aligned}$ |
| $X I X \& X X$ |  | $\begin{aligned} & M=5^{\prime \prime \prime} \cdot 07 \\ & w=2 \cdot 17 \end{aligned}$ |
|  | $\begin{array}{llllllllllll}59 & 69 & 58 \cdot 64 & 60 \cdot 75 & 58 \cdot 55 & 59.70 & 57 \cdot 64 & 57 \cdot 48 & 55 \cdot 76 & 58 \cdot 35 & 53.95 & 54 \cdot 90\end{array}$ | $C=29^{\circ} 47^{\prime} 58^{\prime \prime} \cdot 07$ |
| $x x_{\&}^{\S} \mathrm{XxI}$ |  <br>  | $\begin{aligned} & M=60^{\prime \prime} \cdot 22 \\ & w=0 \cdot 60 \\ & \frac{1}{w}=1 \cdot 66 \\ & C=45^{\circ} 2^{\prime} 0^{\prime \prime} \cdot 22 \end{aligned}$ |
|  | $\begin{array}{lllllllllllll}54 \cdot 35 & 54.80 & 62 \cdot 45 & 58 \cdot 93 & 65 \cdot 72 & 63 \cdot 55 & 60 \cdot 00 & 61.89 & 59.47 & 68 \cdot 50 & 55 \cdot 22 & 57 \cdot 73\end{array}$ |  |
| XXI \& XVIII |  <br>  | $\begin{aligned} & M=8^{\prime \prime} \cdot 5^{6} \\ & w=1 \cdot 3^{2} \\ & \frac{1}{w}=0 \cdot 7^{6} \\ & C=5^{\circ} 37^{\prime} \cdot 8^{\prime \prime \prime} \cdot 56 \end{aligned}$ |
|  | 7.95 11.02 4.4 .43 |  |
| $\frac{\S}{\text { §vili } \& V}$ |  <br>  | $\begin{aligned} & M=35^{\prime \prime} \cdot 28 \\ & w=1 \cdot 66 \\ & \frac{1}{w}=0 \cdot 60 \\ & C=63^{\circ} 24^{\prime} 35^{\prime \prime} \cdot 28 \end{aligned}$ |
|  | $\begin{array}{llllllllllll}39.62 & 35 \cdot 78 & 35 \% 76 & 38 \cdot 18 & 36 \cdot 79 & 36 \cdot 73 & 33.90 & 35 \cdot 90 & 30 \cdot 67 & 35 \cdot 43 & 30 \cdot 88 & 33 \cdot 67\end{array}$ |  |
|  | At XVII (Naliya) |  |
| March 1857; observed by Lieutenant D. J. Nasmyth with Troughton and Simms' 18-inch Theodolite No. 2. |  |  |
| $\underset{\text { Angle }}{\text { Antween }}$ | $0^{\circ} \sigma^{\prime} \quad 180^{\circ} 0^{\prime} \quad 10^{\circ} 11^{\prime} \quad 190^{\circ} 11^{\prime} \quad 20^{\circ} 22^{\prime} \quad 200^{\circ} 22^{\prime} \quad 30^{\circ} 28^{\prime} \quad 210^{\circ} 28^{\prime} \quad 40^{\circ} 39^{\prime} \quad 220^{\circ} 39^{\prime} \quad 50^{\circ} 49^{\circ} \quad 230^{\circ} 49^{\prime}$ | $\begin{aligned} & M=\text { Mean of Groups } \\ & w=\text { Relative Weight } \\ & C=\text { Concluded Angle } \end{aligned}$ |
| XIX \& XVI |  <br>  | $\begin{aligned} & M=16^{\prime \prime} \cdot 50 \\ & w=1 \cdot 76 \\ & \frac{1}{w}=0 \cdot 57 \\ & C=56^{\circ} 41^{\prime} 16^{\prime \prime} \cdot 50 \end{aligned}$ |
|  | $\begin{array}{lllllllllllllll}15.30 & 19.22 & 15.86 & 14.62 & 19.29 & 11.80 & 21.15 & 16.42 & 17.80 & 16.95 & 14.83 & 14.74\end{array}$ |  |

## At XVII (Naliya)-(Continued).

December 1855; observed by Lieutenant D.J. Nasmyth with Troughton and Simms' 18-inch Theodolite No. 2.

| Angle between |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| XVI \& XIV | " | " | $\prime$ | " | " | " | " | " | " | " | $\prime \prime$ |  | $\begin{aligned} M & =41^{\prime \prime} \cdot 76 \\ w & =1 \cdot 83 \\ \frac{1}{w} & =0 \cdot 55 \\ C & =5^{\circ} 0^{\prime} 41^{\prime \prime} \cdot 76 \end{aligned}$ |
|  |  <br>  h $40 \cdot 20$ |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 38.24 | 42.08 | 40.05 | $46 \cdot 49$ | 38.93 | $43^{\prime 12}$ | 4113 | $44 * 93$ | 39*99 | 39.55 | $42 \cdot 85$ | $43 \cdot 70$ |  |

## At XVIII (Manjal)

February 1857; observed by Lieutenant D. J. Nasmyth with Troughton and Simms' 18-inch Theodolite No. 2.


| At XIX (Saind)-(Continued). |  |  |
| :---: | :---: | :---: |
| $\underset{\text { betwean }}{\substack{\text { Angle }}}$ | Circle readings, telescope being set on XX <br> $\begin{array}{lllllllllll} & 0^{\circ} 0^{\prime} & 180^{\circ} \sigma^{\prime} & 10^{\circ} 11^{\prime} & 190^{\circ} 11^{\prime} & 20^{\circ} 22^{\prime} & 200^{\circ} 2 z^{\prime} & 80^{\circ} 80^{\prime} & 210^{\circ} 30^{\prime} & 40^{\circ} 89^{\prime} & 220^{\circ} 39^{\prime} \\ 50^{\circ} & 48^{\prime} & 230^{\circ} 48^{\prime}\end{array}$ | $M=$ Mean of Groups <br> ${ }_{C}^{w}=\begin{gathered}\text { Relative Weight } \\ \text { Coneluded } A \text { Angle }\end{gathered}$ |
| XXI \& XVI |  <br>  <br>  <br>  | $\begin{aligned} & M=47^{\prime \prime} \cdot 08 \\ & w=1 \cdot 22 \\ & \frac{1}{w}=0 \cdot 82 \\ & C=49^{\circ} 45^{\prime} 47^{\prime \prime} \cdot 08 \end{aligned}$ |
|  | $\begin{array}{lllllllllllll}52 \cdot 76 & 45 \cdot 29 & 48 \cdot 13 & 47 \cdot 71 & 42 \cdot 82 & 41.83 & 47 \cdot 96 & 48 \cdot 92 & 46 \cdot 03 & 48 \cdot 10 & 44 \cdot 81 & 50 \cdot 54\end{array}$ |  |
| XVI \& XVII |  <br>  <br>  <br>  | $\begin{aligned} & M=39^{\prime \prime} \cdot 60 \\ & w=1 \cdot 59 \\ & \frac{1}{w}=0 \cdot 63 \\ & C=85^{\circ} \cdot 35^{\prime} 33^{\prime \prime} \cdot 60 \end{aligned}$ |
|  | $\begin{array}{lllllllllllll}36 \cdot 16 & 42 \cdot 40 & 40 \cdot 06 & 41.37 & 42 \cdot 38 & 42 \cdot 48 & 42 \cdot 74 & 37 \cdot 15 & 37 \cdot 00 & 36 \cdot 53 & 40 \cdot 28 & 36 \cdot 68\end{array}$ |  |
| At XX (Suri Muri) <br> *March; and $\dagger$ April 1857; observed by Lieutenant D. J. Nasmyth with Troughton and Simms' 18-inch Theodolite No. 2. |  |  |
|  |  |  |  |
| $\underset{\text { between }}{\text { Angle }}$ | Circle readings, telescope being set on XXIII <br> $\begin{array}{lllllllllll}224^{\circ} 23^{\prime} & 44^{\circ} 22^{\prime} & 284^{\circ} 84^{\prime} & 54^{\circ} 33^{\prime} & 244^{\circ} 44^{\prime} & 64^{\circ} 44^{\prime} & 254^{\circ} 54^{\prime} & 74^{\circ} 54^{\prime} & 265^{\circ} 1^{\prime} & 85^{\circ} 1^{\prime} & 275^{\circ} 10^{\prime}\end{array} 95^{\circ} 10^{\prime}$ | $M=$ Mean of Group ${ }_{5}=$ Relative Weight <br> ${ }_{c}^{*}=$ Konaliuded Angle |
| $\underset{\text { XXIII }}{\text { XXIII }}$ |  <br>  | $\begin{aligned} & M=56^{\prime \prime} \cdot 65 \\ & w=1 \cdot 04 \\ & \frac{1}{w}=0 \cdot 96 \\ & C=87^{\circ} 39^{\prime} 56^{\prime \prime} \cdot 65 \end{aligned}$ |
|  | $\begin{array}{llllllllllll}61 \cdot 35 & 61 \cdot 16 & 55 \cdot 27 & 53 \cdot 90 & 55 \cdot 73 & 52 \cdot 46 & 53 \cdot 02 & 53 \cdot 72 & 59.81 & 54 \cdot 53 & 60 \cdot 50 & 58 \cdot 39\end{array}$ |  |
| $\underset{\mathbf{X X I I}}{\underset{\text { XXI }}{*}}$ |  <br>  $h{ }_{57} \cdot 63 h_{55}{ }^{6} \mathbf{6}$ <br> $h_{52 \cdot 23}{ }^{2}$ 54776 | $\begin{aligned} & M=5^{\prime \prime \prime} \cdot 89 \\ & w=1 \cdot 26 \\ & \frac{1}{w}=0 \cdot 80 \\ & C=47^{\circ} 57^{\prime} 56^{\prime \prime} \cdot 88 \end{aligned}$ |
|  | $\begin{array}{lllllllllllll}56 \cdot 50 & 56 \cdot 70 & 56 \cdot 03 & 59 \cdot 68 & 59 \cdot 38 & 64 \cdot 12 & 56 \cdot 38 & 56 \cdot 10 & 53 \cdot 42 & 56 \cdot 37 & 52 \cdot 33 & 55 \cdot 61\end{array}$ |  |
| XXI \& XVI |  <br>  $l 24.34$ | $\underset{w}{K}=\begin{gathered} 2 \eta_{2}^{n} \cdot 18 \\ 2 \end{gathered}$ |
|  | $\begin{array}{llllllllllll}24 \cdot 10 & 28 \cdot 93 & 26 \cdot 91 & 25 \cdot 93 & 28 \cdot 72 & 24 \cdot 43 & 31.67 & 29.83 & 27 \cdot 73 & 25 \cdot 92 & 26 \cdot 68 & 25 \cdot 35\end{array}$ |  |

## At XX (Suri Muri)-(Continued).

| Angle between | $224^{\circ} 23^{\prime} 44^{\circ} 22^{\prime} \quad 2$ | $234^{\circ} 34^{\prime}$ | Circle r <br> $54^{\circ} 38^{\prime}$ | eadings, <br> $244^{\circ} 44^{\prime}$ | telescop $64^{\circ} 44^{\prime}$ | pe being <br> $254^{\circ} 52^{\prime}$ | set on <br> $74^{\circ} 52^{\prime}$ | $\begin{aligned} & \text { XXIII } \\ & 265^{\circ} 1^{\prime} \end{aligned}$ | $85^{\circ} 1^{\prime}$ | $275^{\circ} 10^{\prime}$ | $95^{\circ} 10^{\prime}$ | $\begin{aligned} & M=\text { Mean of Groups } \\ & w_{0}=\text { Relative Weight } \end{aligned}$ $C=\text { Concluded Angle }$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\stackrel{+}{\text { XXI }} \stackrel{\text { XVI }}{ }$ |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & w=3 \cdot 90 \\ & \frac{1}{w}=0 \cdot 26 \\ & C=54^{\circ} 37^{\prime} 26^{\prime \prime} \cdot 55 \\ & \left.M=\begin{array}{r} 25^{\prime \prime} \cdot 68 \\ w \end{array}\right) .63 \end{aligned}$ |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | $23.97 \quad 25.49$ | 26.21 | 23.10 | $28 \cdot 27$ | 22.68 | 31.98 | 27.87 | $26 \cdot 40$ | 24.60 | 23.01 | 24.62 |  |
| XVI \& XIX |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=37^{\prime \prime \prime} \cdot 44 \\ & w=13 \\ & w=4 \cdot 3^{8} \\ & \frac{I}{w}=0 \cdot 23 \\ & C=62^{\circ} 5^{8^{\prime}} 3^{8 \prime \prime} \cdot 22 \\ & M=3^{8^{\prime \prime} \cdot 94} \\ & \frac{w}{w}=25 \end{aligned}$ |
|  | 41'18 $\quad 38 \cdot 42$ | 36.04 | $39 \cdot 85$ | 34.71 | 39.09 | 33.37 | 38.55. | $34 \cdot 83$ | 38.69 | 3731 | 37.21 |  |
| $\stackrel{\dagger}{\text { XVI }} \stackrel{\text { XIX }}{ }$ |  <br>  |  |  |  |  |  |  |  |  |  |  |  |
|  | 40'32 3970 | 39.67 | $40 \cdot 52$ | $35^{\circ 28}$ | $40 \cdot 21$ | 34.27 | $40 \cdot 88$ | $36 \cdot 32$ | $40^{\circ} 90$ | 40.06 | 39.10 |  |

## At XXI (Sura Gandára)

$\ddagger$ February; and §April 1857; observed by Lieutenant D. J. Nasmyth with Troughton and Simms' 18-inch Theodolite No. 2.



## At XXII (Bábia)

March 1857; observed by Lieutenant D. J. Nasmyth with Troughton and Simms' 18-inch Theodolite No. 2.

| Angle between | $0^{\circ} 0$ | $180^{\circ} 0^{\circ}$ | $10^{\circ} 11^{\prime}$ | $\begin{gathered} \text { Circle } \\ 190^{\circ} 11^{\prime} \end{gathered}$ | readings <br> $20^{\circ} 22^{\prime}$ | , telesco <br> $200^{\circ} 22^{\prime}$ | pe bein $30^{\circ} 28^{\prime}$ | get on <br> $210^{\circ} 28^{\prime}$ | $\begin{aligned} & \text { XXI } \\ & 40^{\circ} 39^{\prime} \end{aligned}$ |  |  | $230^{\circ} 49^{\prime}$ | $M=$ Mean of Groups <br> 20 - Relative Weight <br> C $=$ Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| XXI \& XX | $l 65^{\circ} 10 l 65^{\prime 9}$ <br> $l 64^{\circ} 00164^{\circ} 00$ |  | " | " | " | " | " | " | " | " | " |  | $\begin{aligned} M & =64^{\prime \prime} \cdot 8 \mathrm{I} \\ w & =1 \cdot 20 \\ \frac{\mathbf{I}}{w} & =0 \cdot 83 \\ C & =85^{\circ} \cdot 28^{\prime} \quad 4^{\prime \prime} \cdot 8 \mathbf{1} \end{aligned}$ |
|  |  |  | $\begin{aligned} & h 62 \cdot 63 \\ & l \\ & l \\ & l \\ & l \end{aligned} 6 \cdot 73$ | $\begin{aligned} & h 59 \cdot 20 \\ & h 60 \cdot 13 \end{aligned}$ | $\begin{aligned} & 63.50 \\ & 64.24 \end{aligned}$ | $\begin{aligned} & l \\ & l \\ & l 8.60 \\ & 57.90 \end{aligned}$ | $\begin{aligned} & h 67.43 \\ & 768.53 \end{aligned}$ | $\begin{aligned} & \hbar 68 \cdot 17 \\ & h 67 \cdot 70 \end{aligned}$ | $\begin{aligned} & l 66 \cdot 97 \\ & l 67 \cdot 16 \end{aligned}$ | $\begin{aligned} & l \\ & l \\ & l \\ & l 6 \cdot 4 \cdot 8 \\ & \hline \end{aligned}$ | $66 \cdot 90$ 66.53 | $l 67.17$ $l 66.34$ |  |
|  | 64.5 | 64.97 | 63.30 | 59.66 | $63 \cdot 87$ | 58.25 | 67*98 | 67.94 | $67 \cdot 06$ | $66 \cdot 64$ | 66.71 | 66.76 |  |



Norv.-_Station XXII was visited twice in March 1857. The angles not marked were measured during the first visit; those marked * during the second visit.

| At XXIII (Jamanwála)-(Continued). |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\underset{\text { between }}{\text { Angle }}$ | $0^{\circ} 0^{\prime}$ | $180^{\circ}{ }^{\circ}$ | $10^{0} 11^{\prime}$ | Circle r $190^{\circ} 11^{\prime}$ | readinge <br> $20^{\circ} 22^{\prime}$ | , telesco <br> $200^{\circ} 22^{\prime}$ | $\begin{gathered} \text { pe being } \\ 80^{\circ} 28^{\prime} \end{gathered}$ | $\begin{gathered} g \text { set on } \\ 210^{\circ} 28^{\prime} \end{gathered}$ | $\begin{gathered} \text { XXIV } \\ 40^{\circ} 39^{\prime} \end{gathered}$ |  | $50^{\circ} 49$ | $230^{\circ} 49^{\prime}$ | $M=$ Mean of Groups <br> ${ }^{w}=\begin{gathered}\text { Relative } \\ C\end{gathered}$ |
| XXII \& XX |  <br>  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=5^{\prime \prime} \cdot 49 \\ & w=1 \cdot 51 \\ & \frac{1}{w}=0 \cdot 66 \\ & C=49^{\circ} 14^{\prime} 5^{\prime \prime \prime} \cdot 49 \end{aligned}$ |
|  | 56.28 | 59'12 | 54:52 | 5735 | 54:22 | $60 \cdot 66$ | 5487 | 62.08 | 54:63 | 56.61 | 53'77 | 53.78 |  |

## At XXIV (Pinjor Pir)

*March 1857; $\dagger$ April 1857; and $\ddagger$ April 1858; observed by Lieutenant D.J. Nasmyth with Troughton and Simms' 18-inch Theodolite No. 2.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline $$
\underset{\text { between }}{\text { Angle }}
$$ \& $0^{\circ} 0^{\prime} \quad 1800^{\prime}$ \& $10^{\prime} 11^{\prime}$ \& Circle r

$1900^{\circ} 11^{\prime}$ \& readings, $20^{\circ} 22^{\prime}$ \& telesco

\[
200^{\circ} 23^{\prime}

\] \& | pe being |
| :--- |
| $30^{\circ} 28^{\prime}$ | \& | set on |
| :--- |
| $210^{\circ} 28^{\prime}$ | \& \[

$$
\begin{gathered}
\text { XXVI } \\
40^{\circ} 39^{\prime}
\end{gathered}
$$

\] \& $220{ }^{\circ} 39^{\prime}$ \& ${ }^{6} 0^{\circ} 49^{\prime}$ \& $230^{\circ} 49^{\prime}$ \& | $M=$ Mean of Groups |
| :--- |
| $v^{v}=$ Relative Weight |
| $C=$ Concluded Angle | <br>

\hline \multirow[t]{2}{*}{$$
\underset{\text { XXVII }}{\underset{\text { XVI }}{\ddagger}}
$$} \& \multicolumn{11}{|l|}{} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
M & =25^{\prime \prime} \cdot 85 \\
w & =0 \cdot 95 \\
\frac{1}{w} & =1 \cdot 05 \\
C & =43^{\circ} 53^{\prime} 25^{\prime \prime} \cdot 85
\end{aligned}
$$
\]} <br>

\hline \& $22.92 \quad 21003$ \& 21.82 \& 27.18 \& $27 \cdot 92$ \& 21.88 \& 28.91 \& 29.79 \& $31^{17} 7$ \& $26 \cdot 89$ \& 26.35 \& 23.74 \& <br>

\hline \multirow[t]{2}{*}{\[
\underset{\mathbf{X X V}}{\stackrel{\ddagger}{\mathbf{X} I I}} \&

\]} \& \multicolumn{11}{|l|}{|  |
| :--- |
|  $h_{51}$. 60 |
| $759^{\prime} 40$ |} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
M & =55^{N \cdot 21} \\
w & =1 \cdot 36 \\
\frac{1}{w} & =0 \cdot 74 \\
C & =37^{\circ} 35^{\prime} 55^{\prime \prime} \cdot 21
\end{aligned}
$$
\]} <br>

\hline \& 58.70 56.80 \& 53.68 \& 51.78 \& 52*99 \& 53'13 \& 53.42 \& 55.13 \& 52.94 \& 59.85 \& 53.82 \& $60 \cdot 28$ \& <br>

\hline \multirow[t]{2}{*}{$\underset{\text { XXII }}{\stackrel{\ddagger}{\dagger}}$} \& \multicolumn{11}{|l|}{|  |
| :--- |
|  |} \& \multirow[t]{2}{*}{} <br>

\hline \& $4.32 \quad 8.93$ \& \& $10 \times 58$ \& 777 \& \& \& $8 \cdot 60$ \& 733 \& $1 \cdot 92$ \& 5.83 \& $1 \times 92$ \& <br>

\hline \multirow{4}{*}{$\begin{array}{ll}\text { XXV \& } \\ \text { XXII } \\ & +\{ \end{array}$} \& \multicolumn{11}{|c|}{Circle readings, telescope being set on XXV} \& $$
{ }_{20}^{M}=6_{1}^{\prime \prime} \cdot 3_{51}^{88}
$$ <br>

\hline \& \multicolumn{11}{|l|}{\multirow[t]{2}{*}{}} \& \multirow[t]{2}{*}{$$
\begin{aligned}
& w=2 \cdot 33 \\
& \frac{1}{w}=0 \cdot 43 \\
& C=30^{\circ} 11^{\circ} 7^{n} \cdot 13
\end{aligned}
$$} <br>

\hline \& \& \& \& \& \& \& \& \& \& \& \& <br>

\hline \& 11.76 12.81 \& 10\%74 \& 13.24 \& $7 \times 54$ \& 13.54 \& 4.06 \& 421 \& $6 \cdot 37$ \& 5'73 \& $8 \cdot 69$ \& $3 \cdot 57$ \& $$
\begin{aligned}
& M=8^{50} \cdot 5^{2} \\
& 0.82 \\
& 0.82
\end{aligned}
$$ <br>

\hline
\end{tabular}

| At XXIV (Pinjor Pir)-(Continued). |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\underset{\text { between }}{\text { Angle }}$ | Circle readings, telescope being set on XXV <br>  |  |  |  |  |  |  |  |  |  | $M=$ Mean of Groupe <br> $*=$ Relative Weight $C=$ Concluded Angle |  |  |
| $\underset{\text { XXIIII }}{\stackrel{*}{*}}$ |  <br>  $264: 37$ |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=65^{\prime \prime} \cdot 57 \\ & w=1 \cdot 25 \\ & \frac{1}{w}=0 \cdot 80 \\ & C=69^{\circ} 2^{\prime} 5^{\prime \prime} \cdot 57 \end{aligned}$ |  |  |
|  | $66.55 \quad 64.99 \quad 68.52$ | $60 \cdot 84$ | $65 \cdot 32$ | 59.55 | 69:13 | 64*8 | 6760 | $64 \times 5$ | 69*4 | 66•17 |  |  |  |
| At XXV (Lakhpat) <br> §March 1857; TApril 1857; and \|| March 1858; observed by Lieutenant D. J. Nasmyth with Troughton and Simms' 18-inch Theodolite No. 2. |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\underset{\substack{\text { Angleen } \\ \text { betwen }}}{\text { a }}$ | Circle readings, telescope being set on XXI <br>  |  |  |  |  |  |  |  |  |  | $M=$ Mean of Groups <br> ${ }^{20}=$ Relative Weight |  |  |
| $\left\|\begin{array}{r} \S \\ \text { XXI\& XXII } \\ \text { I } \end{array}\right\|$ |  <br>  <br>  <br>  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=37^{\prime \prime} \cdot 5^{\circ} \\ & w=1 \cdot 5^{6} \\ & \frac{1}{w}=0 \cdot 64 \\ & C=48^{\circ} 50^{\prime} 37^{\prime \prime} \cdot 50 \end{aligned}$ |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | $\begin{array}{lll}34 \cdot 64 & 34.23 & 39\end{array}$ | $37 \times 47$ | $39 \cdot 59$ | $33 \cdot 58$ | 42'45 | 39.89 | 38.67 | 38.37 | 36.99 | 3476 |  |  |  |
| $\left.\begin{array}{r} \S \\ \text { XXII \& } \\ \text { XXIV }\{ \end{array}\right\}$ |  <br>  <br>  <br>  <br>  |  |  |  |  |  |  |  |  |  | ${ }_{w 0}=54_{3}{ }^{n+50} .50$ |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | $\begin{array}{lllllllllllll}54 \cdot 22 & 54 \cdot 67 & 55 \cdot 63 & 53 \cdot 81 & 54 \cdot 35 & 55 \cdot 55 & 51 \cdot 54 & 55 \cdot 82 & 56 \cdot 13 & 56 \cdot 78 & 50 \cdot 36 & 55\end{array}$ |  |  |  |  |  |  |  |  |  |  |  |  |
| $\left\lvert\, \begin{gathered} \\| \\ \mathrm{XXII} \& \mathrm{XXIV} \end{gathered}\right.$ | Circle readings, telescope being set on XXII <br>  <br>  <br>  <br> ${ }_{h}{ }_{53} \cdot 50$ <br> $l 55 \cdot 26$ <br> 261.47 |  |  |  |  |  |  |  |  |  | $\begin{aligned} & w=4 \cdot 39 \\ & \frac{1}{w}=0 \cdot 23 \\ & \boldsymbol{C}=5^{\circ} 32^{\prime} 55^{\prime \prime \prime} \cdot 11 \\ & \left.w=56_{1}^{\prime \prime} \cdot 5\right\rangle \\ & w=29 \end{aligned}$ |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | $\begin{array}{llll}52 \cdot 36 & 56 \cdot 79 & 53 \cdot 66\end{array}$ | $55 \cdot 44$ | 59.74 | 52.85 | 62.02 | 59.65 | 57.58 | $58 \cdot 44$ | 54'63 | $55 \% 3$ |  |  |  |
| $\underset{\mathbf{X X V I}}{\underset{X X I V}{H}}$ |  $\boldsymbol{l} 9^{9.83} \boldsymbol{l}$ |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=9^{\prime \prime \cdot} \cdot 75 \\ & w=2 \cdot 89 \\ & \frac{1}{w}=0 \cdot 35 \\ & C=3^{\circ} 27^{\circ} 9^{\prime \prime} \cdot 75 \end{aligned}$ |  |  |
|  | $10 \cdot 73$ 5.34 $10 \cdot 36$ | 1071 | 979 | 1170 | 6.40 | 9.46 | 1130 | 11.45 | $9: 37$ | 10.38 |  |  |  |



## At XXVII (Said Ali)

March 1858; observed by Lieutenant D.J. Nasmyth with Troughton and Simms' 18-inch Theodolite No. 2.

| Angle between | 1870 $31{ }^{\prime}$ | $7{ }^{0} 31$ | $190^{\circ} 42^{\circ}$ | Circle <br> $17^{\circ} 42^{\prime}$ | reading $207^{\circ} 53^{\prime}$ | s , telesc <br> $27^{\circ} 53^{\prime}$ | ope bein <br> $217^{\circ} 59^{\prime}$ | $\begin{aligned} & \text { gis or or } \\ & 37^{\circ} 59^{\prime} \end{aligned}$ | XXV <br> $228^{\circ} 10^{\prime}$ |  | $238{ }^{\circ} 21^{\prime}$ | $58^{\circ} 21^{\prime}$ | $N^{2}=$ Mean of Groupe w $=$ Relative Weight $C=$ Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| XXV \& XXIV |  |  | " | " | " | " | " | " | " | " | " | " | $\begin{aligned} & M=35^{\prime \prime} \cdot 88 \\ & w=1 \cdot 48 \\ & \frac{1}{w}=0 \cdot 68 \\ & C=66^{\circ} 42^{\prime} 35^{\prime \prime} \cdot 87 \end{aligned}$ |
|  | l $36.17 l 38.06$ $l 37.53 l 38.37$ |  | $l 34 \cdot 10 l$ | 39.13 | 33.17 | 35:80 | 31.90 | $32 \cdot 87$ | $l 39^{\circ} 03 l$ | $40 \cdot 43$ | $l 35.67$ | $l 33 \cdot 10$ |  |
|  |  |  | $\begin{array}{ll} l & 31 \cdot 83 \\ l \\ 32 \cdot 73 \end{array}$ |  | $\begin{aligned} & 31.00 \\ & 32.73 \\ & 32.90 \end{aligned}$ | $35 \cdot 73$ | $33^{\circ} 20$ | $\begin{aligned} & 35^{\circ} 46 \\ & 35^{\prime \prime} 90 \end{aligned}$ | $l 37 \cdot 44$ | 40'00 | $l 35^{\prime 27}$ | $l 33 \cdot 47$ |  |
|  | $36 \cdot 85$ | $38 \cdot 22$ | $32 \cdot 89$ | 39.86 | 32.45 | 3577 | 32.55 | 34774 | 38.23 | 40'22 | $35 \times 47$ | 33.28 |  |

## At XXVII (Said Ali)-(Continued).



## At XXVIII (Guni)

March 1858; observed by Lieutenant D. J. Nasmyth with Troughton and Simms' 18-inch Theodolite No. 2.



## At XXX (Patha-ki-beri)

March 1858; observed by Lieutenant D. J. Nasmyth with Troughton and Simms' 18-inch Theodolite No. 2.

| Angle between | $192{ }^{6} 6^{\prime}$ | $12^{\circ} 6^{\prime \prime}$ | $202^{\circ} 16^{\prime}$ | Circle re <br> $22^{\circ} 16$ | adings, te $212^{\circ} 27^{\prime}$ | lescope $82^{\circ} 8^{\prime}$ | $\begin{aligned} & \text { being } \\ & 222^{\circ} 33^{\prime} \end{aligned}$ | et on X $42^{\circ} 88^{\prime}$ | $\begin{aligned} & \text { XXIII } \\ & 232^{\circ} 44^{\prime} \end{aligned}$ | $52^{\circ} 44^{\prime}$ | $242^{\circ} 55^{\prime}$ | $62^{\circ} 55^{\prime}$ | $M=$ Mean of Groups <br> $w_{0}=$ Relative Weight <br> $C=$ Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\underset{\text { XXXII }}{\text { XXXIII }}$ |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=10^{\prime \prime} \cdot 89 \\ & w=1 \cdot 11 \\ & \frac{1}{w}=0 \cdot 90 \\ & C=48^{\circ} \cdot 28^{\prime} 10^{\prime \prime} \cdot 89 \end{aligned}$ |
|  | 11'14 | II'73 | . 6.59 | 1433 | 12.52 | 17.27 | 13.42 | $10 \cdot 25$ | 6.08 | $10 \cdot 29$ | 8.88 | $8 \cdot 14$ |  |
| $\frac{\text { XXXII }}{\text { XXXI }}$ |  <br>  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =64^{\prime \prime} \cdot 24 \\ w & =0 \cdot 95 \\ \frac{1}{w} & =1 \cdot 05 \\ C & =63^{\circ} 18^{\prime} 4^{\prime \prime} \cdot 24 \end{aligned}$ |
|  | 61*57 | 59.87 | 65.30 | 62.97 | 69:23 | 5772 | $62 \cdot 56$ | 66.01 | 64:98 | 64:00 | 68•16 | 68.50 |  |
| $\begin{aligned} & \text { XXXI \& } \\ & \text { XXVIII } \end{aligned}$ |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =37^{\prime \prime} \cdot 57 \\ w & =0 \cdot 98 \\ \frac{\mathbf{I}}{w} & =1 \cdot 03 \\ C & =56^{\circ} 8^{\prime} 37^{\prime \prime} \cdot 57 \end{aligned}$ |
|  | $40^{\prime} 33$ | 42:66 | 37'99 | 36.01 | 3131 | $43 \cdot 65$ | $34 * 96$ | 36.35 | 37.66 | $39^{\circ} 00$ | 34.76 | 36•17 |  |
| $\underset{\text { XXVI }}{\text { XXVIII }}$ |  <br>  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =24^{\prime \prime} \cdot 57 \\ w & =1 \cdot 60 \\ \frac{\mathbf{1}}{w} & =0 \cdot 62 \\ C & =52^{\circ} 34^{\prime} 24^{\prime \prime} \cdot 58 \end{aligned}$ |
|  | 19.94 | 23:36 | 24.65 | 26.46 | 27.31 | 21.78 | 29.81 | 26.28 | 25.08 | 22.84 | 24.63 | 22.64 |  |

## At XXXI (Mod)

March 1858; observed by Lieutenant D. J. Nasmyth with Troughton and Simms' 18-inch Theodolite No. 2.

| Angle between | $143^{\circ} 55^{\prime}$ | $323^{\circ} 55^{\prime}$ | $154^{\circ} 6^{\prime}$ | Circle <br> $334^{\circ} 6^{\prime}$ | readings, $164^{\circ} 17^{\prime}$ | telescop $844^{\circ} 17^{\prime}$ | e being <br> $174^{\circ} 22^{\prime}$ | set on X $354^{\circ} 23^{\prime}$ | $\begin{aligned} & \text { XXIX } \\ & 184^{\circ} \mathbf{3 3 ^ { \prime }} \end{aligned}$ | $4^{\circ} 33^{\prime}$ | $194^{\circ} 44^{\prime}$ | $14^{\circ} 44^{\circ}$ | $M=$ Mean of Groupe <br> $w^{*}=$ Relative Weight <br> $C=$ Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { XXIX \& } \\ & \text { XXVIII } \end{aligned}$ | " | - | " | - | " | " | " | -" | " | " | " |  | $\begin{aligned} & M=52^{\prime \prime} \cdot 53 \\ & w=1 \cdot 11 \\ & \frac{1}{w}=0 \cdot 90 \\ & C=52^{\circ} 53^{\prime} 52^{m \cdot} \cdot 54 \end{aligned}$ |
|  |  <br>  h $57.20 l 50$ 43 $h 53.90$ $l$ $l$ 54.90 |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | $59^{112}$ | 50'54 | $55^{\prime} 75$ | 53.33 | 56.21 | 53*14 | 52*43 | $48 \cdot 35$ | 51.80 | 50'48 | 48.32 | 50\%90 |  |



## At XXXII (Jim)-(Continued).

| Angle between | $0^{\circ} 0^{\prime}$ | $180^{\circ} 0^{\prime}$ | ${ }_{10}{ }^{\circ} 11^{\prime}$ | Circle re <br> $190^{\circ} 11^{\prime}$ | dings, <br> $20^{\circ} 22^{\prime}$ | telescope <br> $200^{\circ} 22^{\prime}$ | being <br> $30^{\circ} 28^{\prime}$ | $\begin{aligned} & \text { set on XI } \\ & 210^{\circ} 28^{\prime} \end{aligned}$ | $\begin{aligned} & \text { XXVII } \\ & 40^{\circ} 38^{\prime} \end{aligned}$ | $220^{\circ} 38^{\prime}$ | $50^{\circ} 49$ | $230^{\circ} 49^{\prime}$ | $M=$ Mean of Groups <br> $\omega_{0}=$ Relative Weight <br> C = Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} * \\ \text { XXX \& } \& \\ \mathbf{X X X I I I} \end{gathered}$ |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=57^{\prime \prime} \cdot 37 \\ & w=0 \cdot 9 \mathbf{1} \\ & \frac{1}{w}=1 \cdot 10 \\ & C=61^{\circ} 9^{\prime} 57^{\prime \prime \prime} \cdot 37 \end{aligned}$ |
|  | 63.02 | $57 \times 50$ | 58.85 | 5715 | 61/19 | $55^{\circ} 44$ | 53.81 | 63.45 | 56•19 | 54\%73 | 54.99 | 52'15 |  |
| $\underset{\text { XXXV }}{\stackrel{\#}{\text { XXIII }} \&}$ |  <br>  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=43^{\prime \prime} \cdot 57 \\ & w=0 \cdot 96 \\ & \frac{1}{w}=1 \cdot 04 \\ & C=70^{\circ} 43^{\prime} 43^{\prime \prime} \cdot 57 \end{aligned}$ |
|  | 42.32 | 43.29 | $43 \cdot 48$ | $43 \cdot 83$ | 48.51 | $40 \cdot 27$ | $40^{\circ} 50$ | $36 \cdot 40$ | 44•16 | 44.93 | 48.79 | $46 \cdot 41$ |  |
| $\begin{aligned} & \stackrel{*}{\text { XXXV }} \boldsymbol{\&} \\ & \mathbf{X X X V I I} \end{aligned}$ |  |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=12^{N \cdot} \cdot 84 \\ & w=0.99 \end{aligned}$ |
|  | 12'55 | 16.00 | 13.98 | $10 \cdot 69$ | $6 \cdot 57$ | 19.93 | 12.33 | 13.00 | 12.34 | 12:80 | 8.61 | 15.28 |  |
| $\begin{aligned} & \stackrel{\dagger}{\mathbf{X X X} V \&} \\ & \mathbf{X X X V I I} \end{aligned}$ | Circle readings, telescope being set on XXXV <br> $0^{\circ} 1^{\prime} \quad 180^{\circ} 1^{\prime} \quad 10^{\circ} 11^{\prime} \quad 190^{\circ} 11^{\prime} \quad 20^{\circ} 22^{\prime} \quad 200^{\circ} 22^{\prime} \quad 30^{\circ} 28^{\prime} \quad 210^{\circ} 28^{\prime} \quad 40^{\circ} 39^{\prime} \quad 220^{\circ} 39^{\prime} \quad 50^{\circ} 49^{\prime} \quad 230^{\circ} 49^{\prime}$ |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & w=3 \cdot 03 \\ & \frac{1}{w}=0 \cdot 33 \\ & C=57^{\circ} \quad 3^{\prime} 11^{\prime \prime} \cdot 79 \end{aligned}$ |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 9*55 |  | 10’73 | 13.60 | 13.20 | 5.09 | $13 \cdot 10$ | 11.38 | 13.68 | 1192 | 12.28 | 10.37 | $\begin{gathered} M=11^{\prime \prime \prime} \cdot 27 \\ w=2 \cdot 04 \\ =20 \end{gathered}$ |

## At XXXIII (Nurlisháh)

February 1858; observed by Lieutenant D. J. Nasmyth with Troughton and Simms' 18-inch Theodolite No. 2.




## At XXXVI (Nindámani)

February 1858; observed by Lieutenant D. J. Nasmyth with T'roughton and Simms' 18-inch Theodolite No. 2.

| Angle between |  | Circle readings, telescope being set on XXXVIII |  |  |  |  |  |  |  |  |  |  | $M=$ Mean of Groups. <br> ${ }^{20}$ = Relative Weight <br> $C=$ Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\underset{\mathbf{X X X V}}{\text { XXXVIII }}$ | l | " | " | " | " ${ }^{\circ}$ | " | " | " | " | " | " |  | $\begin{aligned} M & =19^{\prime \prime} \cdot 12 \\ w & =1 \cdot 56 \\ \frac{1}{w} & =0 \cdot 64 \\ C & =69^{\circ} 37^{\prime} 19^{\prime \prime} \cdot 12 \end{aligned}$ |
|  |  <br>  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 15.29 | $16 \cdot 03$ | $21 \times 43$ | 18.74 | 1710 | 14.68 | 19.69 | 22.45 | 20.95 | 19.75 | 21.48 | 21.89 |  |
| $\begin{aligned} & \text { XXXV \& } \\ & \text { XXXIIII } \end{aligned}$ | $\begin{array}{cccc} h 10 \cdot 37 & h 1193 & l \\ l & l 0 & 47 & h 12 \cdot 70 \\ l \end{array}$ |  |  |  |  |  | 10.447.678.97 | $\begin{aligned} & 4.20 \mathrm{~h} \\ & 2.90 \mathrm{~h} \end{aligned}$ | $\begin{array}{llll} h & 8: 80 & l \\ 7 & 8.06 & l \\ l \end{array}$ | $\begin{array}{lll} l & 8 \cdot 14 & l \\ l & 7.40 \\ l & 6.86 \end{array}$ | $\begin{array}{lll} 5.43 & l \\ 5.74 & l \end{array}$ | 8.30 | $\begin{aligned} & M=8^{N} \cdot 71 \\ & w=1 \cdot 43 \\ & \frac{1}{w}=0 \cdot 70 \\ & C=5^{\circ} 57^{\prime} 8^{\prime \prime \prime} \cdot 71 \end{aligned}$ |
|  |  |  | $\begin{aligned} & 7.00 \\ & 7.20 \end{aligned}$ |  |  |  |  |  |  |  |
|  | 10'42 | 12.32 |  |  |  | $6 \cdot 00$ | $10 \cdot 39$ | $10 \cdot 53$ | 13.32 | 903 | $3 \cdot 55$ | 8.43 |  | $7 \times 47$ | $5 \times 59$ | $7{ }^{\prime} 50$ |

* Two sets of observations were made at Koti station, the first set included all the angles at that station, but those marked with an asterisk were rejeeted and were re-observed.



## At XXXVIII (Abansháh)

Febrvary 1858; observed by Lieutenant D. J. Nasmyth with Troughton and Simms' 18-inch Theodolite No. 2.


## At XXXIX (Gada)

Febrwary 1858; observed by Lieutenant D. J. Nasmyth with Troughton and Simms' 18-inen Theodolite No. 2.

| Angle between | $0^{\circ} \boldsymbol{\alpha}$ | $180^{\circ} 0^{\prime}$ | $10^{\circ} 11^{\prime}$ | Circle rea $190^{\circ} 12^{\prime}$ | $\begin{aligned} & \text { adings, t } \\ & 20^{\circ} 22^{\circ} \end{aligned}$ | telescope $200^{\circ} 22^{\prime}$ | being <br> $30^{\circ} 28^{\prime}$ | $\begin{aligned} & \text { set on } X \text { ? } \\ & 210^{\circ} 28^{\prime} \end{aligned}$ | XXVII $40^{\circ} 39$ | $290^{\circ} 89^{\prime}$ | $50^{\circ} 49^{\prime}$ | $280^{\circ} 49^{\prime}$ | $M=$ Mean of Groups <br> ${ }^{2}$ = Relative Weight <br> C = Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\underset{\text { XXXII }}{\text { XXXVII }}$ | " | " | " | " | " | " | " | " | , " | " | - |  | $\begin{aligned} M & =19^{N} \cdot 58 \\ w & =2 \cdot 68 \\ \frac{1}{w} & =0 \cdot 37 \\ C & =56^{\circ} 22^{\prime} 19^{\prime \prime} \cdot 5^{8} \end{aligned}$ |
|  | $l 17.70$ $l 18.57$ | $l 17.83$ $l$ 19.80 | $k 20.46$ |  | $l$ | $l 16.03$ 717.03 | $l \begin{aligned} & 21.73 \\ & 24 \\ & 24\end{aligned}$ | 220.17 121013 | $k 20.54$ | K20.77 | 15.33 | 718.70 718.8 |  |
|  | $l 19.73$ | $l 2 \mathrm{I} \cdot 30 \mathrm{~h}$ | $\begin{aligned} & k 16.33 \\ & l 1797 \end{aligned}$ | $\text { k } 20.00$ |  | - | 22.00 |  | H1984 |  | - |  |  |
|  | 18.67 | 19.64 | 17\%97 | 19.95 | 22500 | 16.53 | 22.73 | 20.65 | 20.19 | 21.47 | 16.34 | 18:76 |  |
| $\begin{gathered} \text { XXXV \& } \\ \text { XXXVIII } \end{gathered}$ |  <br>  627.57 <br>  l22.80 |  |  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=24^{N \cdot 18} \\ & w=2 \cdot 35 \\ & \frac{1}{w}=0 \cdot 43 \\ & C^{\prime}=60^{\circ} 38^{\prime} 24^{\prime \prime} \cdot 19 \end{aligned}$ |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | $25 \cdot 68$ | 23.42 | $25 \cdot 26$ | $25 \cdot 33$ | 19.35 | 2797 | 23.07 | $25^{\circ 21}$ | 21.95 | 23.75 | 24*73 | $24 * 48$ |  |



## At XL (Randa)

February 1858; observed by Lieutenant D. J. Nasmyth with Troughton and Simms' 18-inch Theodolite No. 2.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Angle
between \& \(0^{\circ} 1^{\prime}\) \& \(180^{\circ} 1^{\prime}\) \& \(10^{\circ} 12^{\prime}\) \& \begin{tabular}{l}
Circle \\
\(190^{\circ} 11^{\prime}\)
\end{tabular} \& \begin{tabular}{l}
readings, \\
\(20^{\circ} 22^{\prime}\)
\end{tabular} \& s , telescop \(200^{\circ} 2^{\prime}\) \& pe bein \(30^{\circ} 28^{\prime}\) \& get on \(210^{\circ} 28^{\prime}\) \& \[
\begin{aligned}
\& \text { XLII } \\
\& 40^{\circ} 39^{\prime}
\end{aligned}
\] \& \(220^{\circ} 39^{\prime}\) \& \(150^{\circ} 49^{\prime}\) \& \(230^{\circ} 49^{\circ}\) \& \begin{tabular}{l}
\(M=\) Mean of Groups \\
\({ }^{*}=\) = Relative Weight \\
C = Concluded Angle
\end{tabular} \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
\& \text { XLII \& } \\
\& \text { XLIIII }
\end{aligned}
\]} \& \multicolumn{3}{|l|}{\(h_{51} \cdot 00 h_{53} .57 h_{53} .06\) \(h_{53} \cdot 00 h_{51} \cdot 86 h_{53} \cdot 10\)} \& \[
\begin{gathered}
" \\
l 53 \cdot 33 \\
h 52 \cdot 00 \\
h \\
h 5_{4} \cdot 23
\end{gathered}
\] \& \[
\begin{gathered}
" \\
h 57.30 \\
l 56.87 \\
l \\
l \\
56 \cdot 97
\end{gathered}
\] \& \[
\begin{aligned}
\& h_{52.90} \\
\& h_{51} \cdot 67
\end{aligned}
\] \& \[
\begin{gathered}
\prime \prime \\
l 57 \cdot 66 \\
l \\
59 \cdot 34
\end{gathered}
\] \& \[
\begin{aligned}
\& l 56 \cdot 16 \\
\& l 58 \cdot 63 \\
\& l \\
\& l \\
\& \hline 5 \cdot 53
\end{aligned}
\] \& \begin{tabular}{l}
h \(59^{\circ} 03\) \\
h 58.30
\end{tabular} \& "
\(h 60 \cdot 66\)

59 \& | $l 54.63$ |
| :--- |
| $l 56.50$ | \& \[

$$
\begin{aligned}
& h 57.36 \\
& l \\
& 55^{\circ} 97
\end{aligned}
$$

\] \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& M=55^{\prime \prime} \cdot 63 \\
& w=1 \cdot 41 \\
& \frac{1}{w}=0 \cdot 71 \\
& C=97^{\circ} 5^{\prime} 55^{\prime \prime} \cdot 63
\end{aligned}
$$
\]} <br>

\hline \& 52.00 \& 52.72 \& 53.08 \& 53.19 \& 57*05 \& 52.28 \& 58.50 \& 5777 \& 58.67 \& 60•10 \& 55.56 \& $56 \cdot 67$ \& <br>

\hline \multirow[t]{2}{*}{XLIII \& XLI} \& \multicolumn{12}{|l|}{} \& \multirow[t]{2}{*}{$$
\begin{aligned}
& M=15^{\prime \prime} \cdot 37 \\
& w=1 \cdot 3^{8} \\
& \frac{\mathrm{I}}{w}=0 \cdot 72 \\
& C=55^{\circ} 10^{\prime} 15^{\prime \prime} \cdot 37
\end{aligned}
$$} <br>

\hline \& 13.04 \& 11.65 \& 12.81 \& 14.48 \& 13.50 \& 15.53 \& 16.85 \& 15.69 \& $19^{\circ} 55$ \& $14 * 48$ \& 21.84 \& 15.07 \& <br>

\hline \multirow[t]{2}{*}{\[
$$
\begin{gathered}
\text { XLI\& } \\
\text { XXXIX }
\end{gathered}
$$

\]} \& \multicolumn{12}{|l|}{|  |
| :--- |
|  |} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
& M=33^{\prime \prime} \cdot 50 \\
& w=1 \cdot 26 \\
& \frac{1}{w}=0 \cdot 80 \\
& C=62^{\circ} 34^{\prime} 33^{\prime \prime} \cdot 50
\end{aligned}
$$
\]} <br>

\hline \& $36 \cdot 52$ \& $33 \cdot 63$ \& $37 \cdot 43$ \& $32 \cdot 86$ \& $37 \cdot 17$ \& 29.48 \& $33 \times 42$ \& 3511 \& 30.25 \& 32-32 \& $28 \cdot 13$ \& 35’70 \& <br>

\hline \multirow[t]{2}{*}{\[
$$
\begin{aligned}
& \text { XXXIX \& } \\
& \text { XXXVIII }
\end{aligned}
$$

\]} \& \multicolumn{12}{|l|}{|  |
| :--- |
|  |} \& \multirow[t]{2}{*}{\[

$$
\begin{aligned}
M & =42^{N} \cdot 67 \\
w & =2 \cdot 46 \\
\frac{1}{w} & =0 \cdot 41 \\
C & =71^{\circ} 16^{\prime} 42^{N} \cdot 67
\end{aligned}
$$
\]} <br>

\hline \& -39092 \& 45.28 \& $45^{\circ} 28$ \& $45^{\circ 20}$ \& 42.60 \& 38.93 \& 44776 \& 41:88 \& $43 \cdot 17$ \& 41.64 \& 42*44 \& 40'93 \& <br>
\hline
\end{tabular}

> At XL (Randa)—(Continued).

| Angle between | $0^{\circ} 1^{\prime}$ | $180{ }^{\prime} 1^{\prime}$ | $10^{\circ} 12^{\prime}$ | $\begin{aligned} & \text { Circle r } \\ & 180^{\circ} 11^{\prime} \end{aligned}$ | readings, <br> $20^{\circ} 22^{\prime}$ | telesco <br> $200^{\circ} 28^{\prime}$ | pe being $30^{\circ} 28^{\prime}$ | set on $210^{\circ} 28^{\prime}$ | $\begin{aligned} & \text { XLII } \\ & 40^{\circ} 89^{\prime} \end{aligned}$ | $220^{\circ} 39^{\prime}$ | 50 $49^{\prime}$ | $230^{\circ} 49{ }^{\prime}$ | $\boldsymbol{M}=$ Mean of Groups <br> $v_{0}$ = Relative Weight <br> C = Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\underset{\text { XXII }}{\text { XXXVIII }}$ | " | " | " | " | " | " | " | " | * | * | " | " | $\begin{aligned} & M=32^{N \cdot} \cdot 26 \\ & w=0 \cdot 99 \\ & \frac{1}{w}=1 \cdot 01 \\ & C=73^{\circ} 52^{\prime} 32^{N} \cdot 26 \end{aligned}$ |
|  | k 36.60 h 35.67 | 735.93 73584 | K 31.24 | $\begin{aligned} & l 31 \cdot 26 \\ & k 33 \cdot 03 \end{aligned}$ | $\begin{aligned} & l 29.30 \\ & l 28.80 \end{aligned}$ | h 38.00 | $l 26.64$ | $\begin{aligned} & l 30 \cdot 73 \\ & l 33.64 \\ & l 31.44 \end{aligned}$ | $\begin{aligned} & K 28 \cdot 50 \\ & h 28.20 \end{aligned}$ | h 31.24 $h 33$ 7 | $l$ | 734.94 $l 33.90$ |  |
|  | 36.14 | $35 \cdot 88$ | 31'74 | 32'15 | 29.05 | 38.25 | $26 \cdot 55$ | 31•94 | $28 \cdot 35$ | 32.23 | $30 \cdot 45$ | $34 * 42$ |  |

## At XLI (Khar)

February 1858; observed by Lieutenant D. J. Nasmyth with Troughton and Simms' 18-inch Theodolite No. 2.


## At XLII (Bíbi Mariam)

January 1858; observed by Lieutenant D. J. Nasmyth with Troughton and Simms' 18-inch Theodolite No. 2.

| Angle between | $289{ }^{\circ} 16^{\prime} \quad 109{ }^{\circ} 16^{\prime} \quad 2999^{\circ} 26^{\prime}$ | $\begin{gathered} \text { Circle } \\ 119^{\circ} 26^{\prime} \end{gathered}$ | readings <br> $309^{\circ} 37^{\prime}$ | , telesco <br> $129^{\circ} 87^{\prime}$ | pe being <br> $319^{\circ} 48^{\prime}$ | g set on $139^{\circ} 49^{\prime}$ | XLV <br> $329^{\circ} 55^{\prime}$ | $140^{\circ} 55^{\prime}$ | $840^{\circ} 4$ | $160^{\circ} 4^{\prime}$ | M = Mean of Groups <br> $x_{0}=$ Relative Weight <br> C = Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| XLV \& XLIV | " " " | " | " | " | " | " | " | " | " | " | $M=63^{\prime \prime} \cdot 62$ |
|  |  <br>  |  |  |  |  |  |  |  |  |  | $\begin{aligned} & w=1 \cdot 05 \\ & \frac{1}{w}=0 \cdot 95 \\ & C=70^{\circ} 45^{\prime} \quad 3^{N \cdot 62} \end{aligned}$ |
|  | $68.14 \quad 68 \cdot 36 \quad 61.93$ | $65^{111}$ | 61.82 | $66 \cdot 42$ | 57.53 | $66 \cdot 22$ | $61 \cdot 12$ | 60.85 | $61 \cdot 16$ | 64.77 |  |



## At XLIII (Vikia)-(Continued).



## At XLIV (Dománi)

January 1858; observed by Lieutenant D. J. Nasmyth with Troughton and Simms' 18-inch Theodolite .No. 2.

| Angle between | $0^{\circ} 0^{\prime} \quad 180{ }^{\circ} 0^{\prime}$ | $\begin{array}{cc}  & \text { Circle } \\ 10^{\circ} 11^{\prime} & 190^{\circ} 11^{\prime} \end{array}$ | readings <br> $20^{\circ} 22^{\prime}$ | , telescop <br> $200^{\circ} 22^{\prime}$ | e being <br> $30^{\circ} 28^{\prime}$ | set on $210^{\circ} 28^{\prime}$ | $\begin{gathered} \text { CVII } \\ 40^{\circ} 39^{\prime} \end{gathered}$ | $220^{\circ} 38^{\circ}$ | $50^{\circ} 49^{\prime}$ | $230^{\circ} 49^{\prime}$ | $M=$ Mean of Groups <br> ${ }^{2} 0$ = Kelative Weight <br> $C=$ Concluded Anglo |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CVII \& CIV | " " | " " | " | " | " | " | " | " | " |  | $\begin{aligned} & M=44^{\prime \prime} \cdot 22 \\ & w=2 \cdot 0 \mathbf{I} \\ & \frac{\mathbf{I}}{w}=0 \cdot 50 \\ & C=59^{\circ} 27^{\prime}+4^{\prime \prime} \cdot 22 \end{aligned}$ |
|  | $\begin{aligned} & h_{40 \cdot 20 ~}^{h_{41} \cdot 56} \\ & h_{42} h_{40} h_{42} \cdot 63 \\ & h_{42} \cdot 67 \end{aligned}$ |  | $\begin{aligned} & h 48.30 \\ & h 47.50 \end{aligned}$ | $\begin{aligned} & h 39.43 \\ & h 39^{\circ} 43 \end{aligned}$ | $\begin{aligned} & l 44 \cdot 43 \\ & l 44 \cdot 93 \end{aligned}$ | $l$ | $\begin{aligned} & l \\ & 44.54 \\ & l \\ & 45.83 \end{aligned}$ | $\begin{aligned} & l 44.87 \\ & l \\ & l \end{aligned}$ | $l$ | $\begin{aligned} & l \\ & l \\ & l 5^{\prime \prime}: 27 \\ & 45^{\prime} 10 \end{aligned}$ |  |
|  | $41^{\prime} 76 \quad 42 \cdot 10$ | 44:30 42.34 | 47\%90 | 39.43 | 44*68 | $45 \cdot 88$ | $45 \cdot 18$ | $45^{\circ} 04$ | $46 \cdot 88$ | 45:18 |  |
| $\begin{aligned} & \text { CIV \& } \\ & \text { XLIII } \end{aligned}$ |  <br>  $h_{59.07} \quad h_{57} 20 \quad$ h62.17 |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =59^{\prime \prime} \cdot 25 \\ v & =1 \cdot 36 \\ \frac{1}{w} & =0 \cdot 74 \\ C & =71^{\circ} 15^{\prime} 59^{\prime \prime} \cdot 25 \end{aligned}$ |
|  | 59.49 61.49 | $56.47 \quad 62.58$ | 54.98 | 55.83 | $60 \cdot 70$ | 57.27 | 59.90 | 59.70 | 64.93 | 57.69 |  |
| $\underset{\text { XLIII }}{\text { XLIII }}$ |  <br>  h 10.93 |  |  |  |  |  |  |  |  |  | $\begin{aligned} M & =11^{\prime \prime} \cdot 89 \\ w & =0 \cdot 94 \\ \frac{1}{w} & =1 \cdot 06 \\ C & =85^{\circ} \quad 7^{\prime} 11^{\prime} \cdot 89 \end{aligned}$ |
|  | $11.28 \quad 9.44$ | $10.88 \quad 6.39$ | 16.08 | 14.04 | 12.75 | 1573 | 15.08 | 13.08 | 4.84 | 13.06 |  |
| $\begin{gathered} \text { XLIII \& } \\ \text { XLV } \end{gathered}$ |  <br>  $h 55^{\circ} 00$ |  |  |  |  |  |  |  |  |  | $\begin{aligned} & M=55^{h} \cdot 3^{2} \\ & w=1 \cdot 99 \\ & \frac{1}{w}=0 \cdot 50 \\ & C=67^{\circ} 33^{\prime} 55^{\prime \prime \prime} \cdot 3^{2} \end{aligned}$ |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  | $53.77 \quad 52.50$ | $57774 \quad 59.07$ | 54.33 | 54:30 | 57.27 | 54.53 | $58 \cdot 79$ | 53.11 | 56.30 | 52.12 |  |

Note. -Stations CIV and CVII appertain to the Karáchi Longitudinal Series of the North-West Quaùrilateral.

| At XLIV (Dománi)-(Continued). |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Angle between | Circle readings, telescope being set on CVII |  |  |  |  |  |  |  |  |  |  |  | $M=$ Mean of Groups <br> $w_{0}=$ Relative Weight <br> C = Concluded Angle |
| $\underset{\text { CVII }}{\substack{\text { XLV }}}$ | $\begin{aligned} & h 114.63 \\ & h 12.27 \\ & h 12.83 \end{aligned}$ | $\begin{gathered} " \\ h_{1} 6.00 h \\ h_{15}{ }^{\circ} 40 \end{gathered}$ |  |  | $\begin{array}{ll}4 & 7 \\ h & 83 \\ 7 & 764\end{array}$ | $\begin{gathered} " \\ h 13.74 \\ l 16.37 \\ l \pm 6.40 \end{gathered}$ | $\begin{gathered} n \\ l \\ l .83 \\ l \\ 4.64 \end{gathered}$ | $\begin{array}{cc} \prime \prime \\ l & 5.23 \\ l & 6.50 \end{array}$ | $\begin{array}{lll} l & \prime \prime \\ l & 0.30 \\ l & 0.27 \end{array}$ | $l 8.80$ <br> 19.90 | 7 $l$ 7 7 6.90 |  | $\begin{aligned} M & =9^{\prime \prime} \cdot 22 \\ w & =0 \cdot 60 \\ \frac{1}{w} & =1 \cdot 67 \\ C & =76^{\circ} 35^{\prime} \quad 9^{\prime \prime} \cdot 22 \end{aligned}$ |
|  | 13.24 | $15 \cdot 70$ | 10.28 | $8 \cdot 45$ | 799 | 15.50 | 5.23 | $5 \cdot 87$ | $0 \cdot 28$ | 9.35 | 714 | 11.62 |  |

## At XLV (Sukpur)

December 1857; observed by Lieutenant D. J. Nasmyth with Troughton and Simms' 18-inch Theodolite No. 2.


## At CIV (Károthol)

December 1857; observed by Lieutenant.D.J. Nasmyth with Troughton and Simms' 18-inch Theodolite No. 2.


Note.—Stations CIV and CVII appertain to the Karáchi Jongitudinal Series of the North.West Quadrilateral.


Nors.-Stations CIV and CVII appertain to the Karachi Longitudinal Series of the North-West Quadrilateral.

## ADDENDUM.

The observer having measured all the angles at IV (Ráhida) was informed that the upper mark-stone at IX (Joran) had been destroyed by some evil disposed individual : on this, a new upper mark-stone plumbed over the lower one was fixed at IX, and to test the identity of the old and new marks at this station, one of the angles at IV already measured, viz., VI and IX, was measured over again. As the two sets thus obtained agreed closely, both were retained.

Certain triangles defined by stations here marginally noted, (besides others) gave large triangular errors. On this the ob-

| XX | (Suri Mru |
| :---: | :---: |
| $\mathbf{X x I}$ | (Sura Gandára) |
| XXII | (Bábia) |
| XXIII | (Jamanwála) |
| XxIV | (Pinjor Pir) |
| XXV | (Lathpat) |
| XXXII | (Jim) |
| XXXVII | (Mugalbhin) | server remeasured some of the angles, so that in some instances he took two complete sets, and in others three sets were observed as at XXIV (Pinjor Pir), XXV (Lakhpat) \&c.-

Now when sets of observations are repeated under the same circumstances i.e. without change of instrument, zeros, or observers, all the individual measures on each zero should be combined to give one zero mean, so that the several sets may be represented by one combined set, as in the case of angle XXI and XXII at XXV.

But instead of this rule, different sets of the same angle, measured under the same circumstances, have in some instances been manipulated separately, by oversight; as at IV angle VI and IX; and eventually the values of $M$ have been combined with their weights to find $C$. This procedure was necessarily accepted when the value of $C$ had already been used in grinding the figure; because to recast the separate sets into one set, according to rule; would have altered $C$ and its weight, and this would have entailed grinding the figure over again. The difference in procedure, illustrated by the angles quoted above, has arisen in this manner.

4ugust 1880.
J. B. N. HENNESSEY,

In charge of Computing Office.

## CUTCH COAST SERIES.

## PRINCIPAL TRIANGULATION. SUMS OF SQUARES OF APPARENT ERRORS.

Sums of Squares of Aipparent Errors of Single Obseroations, and of Apparent Errors of Single Zeros.

| Station of Observation | Observed Angle | Number of Observations | Sum of Squares of Errors of single Obserrations | $\begin{gathered} \text { Number of } \\ \text { Zeros } \end{gathered}$ | Sum of Squares of Errors of single Zeros | Remabis |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| XI | XIV \& I | 25 | 9.00 | 12 | 158.59 |  |
| " | I \& II | 24 | $6 \cdot 46$ | 12 | 123.88 |  |
| XIV | I \& II | 26 | $12 \cdot 20$. | 12 | 79.34 |  |
| " | II \& XI | 26 | 6.94 | 12 | 142.59 |  |
| I | VII \& VI | 25 | $7 \cdot 82$ | 12 | 119.04 |  |
| " | VI \& IV | 27 | $26 \cdot 60$ | 12 | $33 \cdot 89$ |  |
| " | IV \& III | 25 | $7 \cdot 36$ | 12 | 63.21 |  |
| " | III \& II | 26 | 12.19 | 12 | 118.03 |  |
| " | II \& XI | 27 | 13.97 | 12 | 114.71 | Troughton and Simms' 18-inch |
| " | XI \& XIV | 25 | 7.95 | 12 | $130 \cdot 80$ | Theodolite No. 2. |
| II | XI \& XIV | 27 | 8.05 | 12 | 107.87 |  |
| " | XIV \& I | 28 | 10.77 | 12 | 153.00 |  |
| " | I \& III | 27 | 10.98 | 12 | 129.39 | - |
| " | III \& VII* | 29 | 12.04 | 12 | $79 \cdot 73$ |  |
| III | II \& I | 44 | 28.23 | 12 | $76 \cdot 76$ |  |
| " | I \& IV | 40 | $30 \cdot 84$ | 12 | 130.63 |  |
| " | IV\&V | 42 | 41.24 | 12 | 164.22 |  |
| " | V \& VII* | 42 | 26.41 | 12 | $53 \cdot 82$ |  |

Nots.-Stations VII*, XI and XIV appertain to the Kattywar Meridional Series.

| Station of Observation | Obserred Angle | Number of Observations | Sum of Squares of Errors of single Observations | Number of Zeros | Sum of Squares of Errors of single Zeros | Rrmaris |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| III | VII* \& II | 38 | 21.51 | 12 | 82.81 |  |
| VII* | II \& III | 29 | 17.61 | 12 | $136 \cdot 04$ |  |
| " | III \& V | 25 | 4.69 | 12 | 184.49 |  |
| IV | V \& III | 24 | $7 \cdot 66$ | 12 | 94*44 |  |
| " | III \& I | 25 | 12.22 | 12 | $75^{17}$ |  |
| " | I \& VI | 27 | $10 \cdot 68$ | 12 | $88 \cdot 55$ |  |
| " ${ }^{\prime}$ | VI \& IX | 28 | 16.55 | 12 | 96.76 |  |
| " | VI \& IX | 24 | $3 \cdot 74$ | 12 | 69.61 |  |
| V | VII* \& III | 25 | $8 \cdot 17$ | 12 | $121 \cdot 16$ |  |
| " | III \& IV | 25 | 13.62 | 12 | 95*72 |  |
| VI | I \& VII | 25 | $6 \cdot 06$ | 12 | 123.24 |  |
| " | VII \& VIII | 25 | 4.48 | 12 | 179.27 |  |
| " | VIII \& IX | 25 | $6 \cdot 27$ | 12 | 138.40 |  |
| " | IX \& IV | 25 | 4.86 | 12 | $107 \cdot 36$ |  |
| " | 1V\&I | 24 | 6.26 | 12 | $109 \cdot 12$ |  |
| VII | VIII \& VI | 26 | 13.84 | 12 | 148.85 |  |
| " | VI \& I | 24 | 4.47 | 12 | 171 18 |  |
| VIII | X \& XI | 25 | $7 \cdot 32$ | 12 | 133.14 |  |
| " | XI \& IX | 27 | 14.47 | 12 | 119.61 |  |
| " | IX \& VI | 27 | 3.05 | 12 | $93 \cdot 77$ |  |
| " | VI \& VII | 26 | 6.63 | 12 | $86 \cdot 57$ | Troughton and Simms' 18 -inch Theodolite No. 2. |
| IX | IV \& VI | 26 | 9.63 | 12 | 52.8I |  |
| " | VI \& VIII | 26 | 9.72 | 12 | $53 \cdot 8 \mathrm{I}$ |  |
| " | VIII \& X | 26 | 9.23 | 12 | 73.60 |  |
| " | X \& XI | 25 | - 9.84 | 12 | 133.51 |  |
| $\mathbf{X}$ | XII \& XIII | 26 | 12.16 | 12 | 116.63 |  |
| " | XIII \& X1 | 34 | 9*45 | 12 | $78 \cdot 47$ |  |
| " | XI \& IX | 48 | 52.17 | 12 | 91•50 |  |
| " | IX \& VIII | 25 | $5 \cdot 38$ | 12 | 139.90 |  |
| XI | IX \& VIII | 29 | 11.14 | 12 | 58.74 |  |
| " | VIII \& X | 30 | 14.06 | 12 | 179.53 |  |
| " | X \& XII | 24 | $3 \cdot 82$ | 12 | 104.29 |  |
| " | XII \& XIII | 25 | 11.92 | 12 | 84.59 |  |
| XII | XIV \& XV | 24 | 6.49 | 12 | 88.23 |  |
| " | XV \& XIII | 26 | 15.30 | 12 | 114.46 |  |
| " | XIII \& XI | 28 | $7{ }^{1} 1$ | 12 | $139 \cdot 12$ |  |
| " | XI \& X | 28 | 13.69 | 12 | 181.24 | , |
| XIII | XI \& X | 25 | $9 \cdot 34$ | 12 | $100 \cdot 55$ |  |
| " | X \& XII | 24 | 8. 20 | 12 | $55 \cdot 8 \mathrm{I}$ |  |
| " | XII \& IV | 25 | 5.33 | 12 | $49 \cdot 20$ |  |
| " | XIV \& XV | 25 | 9.65 | 12 | $87 \cdot 49$ |  |

- COTCH COAST SERIES.

| Station of Observation | Obserred Angle | Number of Observa- tions | Sum of Squares of Errors of single Observations | $\begin{aligned} & \text { Number of } \\ & \text { Zeros } \end{aligned}$ | Sum of Squares of Errors of si Zeros | Rrmaris |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| xIV | XVII \& XVI | 28 | 15.66 | 12 | $141 \cdot 76$ |  |
| " | XVI \& XV | 29 | 13.50 | 12 | 89.89 |  |
| " | XV\& XIII | 28 | $11 \cdot 16$ | 12 | $85 \cdot 56$ |  |
| " | XIII \& XII | - 29 | 13.46 | 12 | 87.57 |  |
| XV | XIII \& XII | 24 | $5 \cdot 3$ | 12 | 119.32 |  |
| " | XII \& XIV | 24 | 4.17 | 12 | $116 \cdot 13$ |  |
| " | XIV \& XVI | 26 | $11 \cdot 19$ | 12 | 96.50 |  |
| " | XVI \& XVIII | 25 | 6.97 | 12 | 132.57 |  |
| XVI | XV \& XIV | 24 | 4.25 | 12 | 105.05 |  |
| " | XIV \& XVII | 24 | $7 \cdot 11$ | 12 | 113.61 |  |
| " | XVII \& XIX | 25 | 10.06 | 12 | 209.68 |  |
| " | XIX \& XX | 26 | 15.48 | 12 | 57.54 |  |
| " | XX\& XXI | 28 | 22.27 | 12 | 214.97 |  |
| " | XXI \& XVIII | 25 | 4.69 | 12 | 99.09 |  |
| " | XVIII \& XV | 25 | $7 \cdot 72$ | 12 | $77 \cdot 61$ |  |
| XVII | XIX \& XVI | 25 | 12.31 | 12 | 72.06 |  |
| " | XVI \& XIV | 25 | 4.80 | 12 | 71.05 |  |
| XVIII | XV \& XVI | 25 | $9 \cdot 46$ | 12 | 91*13 |  |
| " | XVI \& XXI | 25 | $5 \cdot 58$ | 12 | $136 \cdot 98$ |  |
| XIX | XX\& XXI | 52 | 35.71 | 12 | 147.69 |  |
| " | XXI\& XVI | 53 | 51.09 | 12 | 106.09 | Troughton and Simms' 18 -inch Theodolite No. 2. |
| " | XVI \& XVII | 52 | 53.97 | 12 | $80 \cdot 06$ |  |
| XX | XXIII \& XXII | 26 | 13.38 | 12 | 124.39 |  |
| " | XXII \& XXI | 28 | 12.46 | 12 | 102.80 |  |
| " | XXI\& XVI | 27 | 6.43 | 12 | $56 \cdot 78$ |  |
| " | XXI \& XVI | 25 | 4.29 | 12 | $80 \cdot 04$ |  |
| " | XVI \& XIX | 28 | 16.08 | 12 | $59 \cdot 12$ |  |
| " | XVI \& XIX | 24 | $2 \cdot \infty$ | 12 | 58.07 |  |
| XXI | XVIII \& XVI | 26 | $8 \cdot 33$ | 12 | $91 \cdot 10$ |  |
| " | XVI \& XIX | 26 | $7 \cdot 65$ | 12 | $93 \cdot 88$ |  |
| " | XIX \& XX | 25 | $8 \cdot 02$ | 12 | $71 \times 0$ |  |
| " | XX\& XXII | 25 | $7 \cdot 20$ | 12 | $65 \cdot 34$ |  |
| " | XXII \& XXV | 25 | $9^{123}$ | 12 | 150.68 |  |
| " | XXII \& XXV | 27 | 13.56 | 12 | 150.89 |  |
| XXII | XXI \& XX | 25 | $7 \cdot 75$ | 12 | $108 \cdot 48$ |  |
| " | XX \& XXIII | 26 | 14.59 | 12 | $79 \cdot 27$ |  |
| " | XXIII \& XXIV | 27 | 17.91 | 12 | 137.85 |  |
| " | XXIV \& XXV | 25 | $7 \cdot 66$ | 12 | $166 \cdot 32$ |  |
| " | xxiv \& XXV | 25 | $8 \cdot 74$ | 12 | 157.51 |  |
| " | XXV \& XXI | 24 | $7 \cdot 35$ | 12 | $92 \cdot 53$ |  |
| " | XXV \& XXI | 24 | 5.26 | 12 | 117.06 |  |


| Station of Observation | Obserred Angle | Number of <br> Observations | Sum of Squares of Errors of single Observations | Number of Zeros | Sum of Squares of Errors of single Zeros | Remaris |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| . XXIII | XXIV \& XXII | 25 | $6 \cdot 66$ | 12 | 56.56 | 7 |
| " | XXII \& XX | 24 | 4.51 | 12 | 86.20 |  |
| XXIV | XXVI\& XXVII | 27 | $17 \cdot 82$ | 12 | 134.86 |  |
| " | XXVII \& XXV | 26 | $7 \cdot 95$ | 12 | 95.59 |  |
| " | XXV \& XXII | 26 | $13 \cdot 12$ | 12 | 84.67 |  |
| " | XXV \& XXII | 53 | $58 \cdot 83$ | 12 | $157 \cdot 67$ |  |
| " | XXII \& XXIII | 25 | 5.98 | 12 | $104 \cdot 13$ |  |
| XXV | XXI \& XXII | 49 | 40'55 | 12 | $82 \cdot 14$ |  |
| " | XXII \& XXIV | 53 | $74 \cdot 84$ | 12 | 38.94 |  |
| " | XXII \& XXIV | 27 | 14.35 | 12 | 99*59 |  |
| " | XXIV \& XXVI | 25 | 13.43 | 12 | $42 \cdot 63$ |  |
| " | XXVI \& XXVII | 24 | $7 \cdot 35$ | 12 | 155.87 |  |
| XXVI | XXX \& XXVIII | 24 | $7 \cdot 07$ | 12 | $33 \cdot 8 \mathrm{I}$ |  |
| " | XXVIII \& XXVII | 26 | $8 \cdot 53$ | 12 | 101.91 |  |
| " | XXVII \& XXV | 24 | $3 \cdot 46$ | 12 | $106 \cdot 50$ |  |
| " | XXV \& XXIV | 25 | 11.62 | 12 | $100 \cdot 52$ |  |
| XXVII | XXV \& XXIV | 28 | 15.27 | 12 | $86 \cdot 65$ |  |
| " | XXIV \& XXVI | 29 | 18.09 | 12 | 99.65 |  |
| " | XXVI \& XXVIII | 25 | $5 \cdot 84$ | 12 | $87 \cdot 02$ |  |
| " | XXVIII \& XXIX | 24 | $4 \cdot 26$ | 12 | $65 \cdot 62$ |  |
| XXVIII | XXVII \& XXVI | 26 | $7 \cdot 20$ | 12 | 62.47 | Troughton and Simms' 18-inch Theodolite No. 2. |
| n | XXVI \& XXX | 26 | $7 \cdot 44$ | 12 | 198.72 |  |
| " | XXX \& XXXI | 25 | $4 \cdot 89$ | 12 | 198.99 |  |
| " | XXXI \& XXIX | 26 | $10 \cdot 54$ | 12 | 57-19 |  |
| " | XXIX \& XXVII | 24 | 4.95 | 12 | 118.92 |  |
| XXIX | XXVII \& XXVIII | 27 | 16.16 | 12 | $72 \cdot 42$ | . |
| " | XXVIII \& XXXI | 28 | 19.74 | 12 | 87.71 |  |
| XXX | XXXIII \& XXXII | 25 | 9.41 | 12 | 116.36 |  |
| " | XXXII \& XXXI | 25 | 10.21 | 12 | 136.45 |  |
| " | XXXI \& XXVIII | 28 | 15.01 | 12 | 132.51 |  |
| " | XXVIII \& XXVI | 26 | 15.71 | 12 | 79-12 |  |
| XXXI | XXIX \& XXVIII | 28 | 20.97 | 12 | 114.90 |  |
| " | XXVIII \& XXX | 27 | 10'16 | 12 | $52 \cdot 61$ |  |
| " | XXX \& XXXII | 29 . | 21.82 | 12 | $83 \cdot 06$ |  |
| " | XXXII \& XXXIV | 27 | 9.70 | 12 | $89^{\prime 3}{ }^{1}$ |  |
| XXXII | XXXVII \& XXXIV | 28 | 14.87 | 12 | 65.09 |  |
| " | XXXIV \& XXXI | 26 | 13.75 | 12 | 68.94 |  |
| " | XXXI \& XXX | 25 | 10. 25 | 12 | 83.41 |  |
| " | XXX \& XXXIII | 25 | 9.82 | 12 | 143.40 |  |
| " | XXXIII \& XXXV | 25 | 10.30 | 12 | $135 \cdot 36$ |  |
| " | XXXV \& XXXVII | 31 | 25.31 | 12 | 129.95 | J |

CUTCH COAST SERIES.

| Station of Observation | Observed Angle | Number of Observations | Sum of Squares of Errors of single Observations | Number of Zeros | Sum of Squares of Errors of single Zeros | Rimaris |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| XXXII | XXXV \& XXXVII | 25 | $8 \cdot 20$ | 12 | 62.97 | , |
| XXXIII | XXXVI \& XXXV | 24 | 4:51 | 12 | $133 \cdot 26$ |  |
| " | XXXV \& XXXII | 24 | 2.67 | 12 | 46.58 |  |
| " | XXXII \& XXX | 24 | $4^{\text {: } 13}$ | 12 | 127.24 |  |
| XXXIV | XXXI \& XXXII | 25 | 13.65 | 12 | 51*86 |  |
| " | XXXII \& XXXVII | 24 | 4.92 | 12 | 114.58 |  |
| XXXV | XXXVIII \& XXXIX | 25 | $10 \cdot 33$ | 12 | 59.65 |  |
| " | XXXIX \& XXXVII | 27 | 17.01 | 12 | 151.06 |  |
| " | XXXVII \& XXXII | 25 | 10*46 | 12 | 87.04 |  |
| " | XXXII \& XXXIII | 27 | 14.55 | 12 | 54.48 |  |
| " | XXXIII \& XXXVI | 26 | 14.59 | 12 | $140 \cdot 31$ |  |
| " | XXXVI \& XXXVIII | 28 | 16.02 | 12 | $48 \cdot 41$ |  |
| XXXVI | XXXVIII \& XXXV | 27 | 14.42 | 12 | $81 \cdot 89$ |  |
| " | XXXV \& XXXIII | 29 | $13 \cdot 84$ | 12 | 90. 21 |  |
| XXXVII | XXXIV \& XXXII | 24 | 4.65 | 12 | 75.22 |  |
| " | XXXII \& XXXV | 26 | $9 \cdot 28$ | 12 | $73 \cdot 18$ |  |
| " | XXXII \& XXXV | 26 | $10 \cdot 75$ | 12 | 94*70 |  |
| " | XXXII \& XXXV | 25 | 12.45 | 12 | 192.10 |  |
| " | XXXV \& XXXIX | 26 | 11.88 | 12 | $151 \cdot 42$ |  |
| XXXVIII | XLII \& XL | 24 | $6 \cdot 05$ | 12 | $147 \cdot 49$ |  |
| " | XL \& XXXIX | 26 | 8.96 | 12 | 32.92 | Troughton and Simans' 18-inch Theodolite No. 2. |
| " | XXXIX \& XXXV | 28 | 13.57 | 12 | 91*47 |  |
| " | XXXV \& XXXVI | 25 | 10. 59 | 12 | $106 \cdot 23$ |  |
| XXXIX | XXXVII \& XXXV | 30 | $27 \cdot 43$ | 12 | $44 \cdot 89$ | - |
| " | XXXV \& XXXVIII | 28 | 30.01 | 12 | $50 \cdot 84$ |  |
| " | XXXVIII \& XL | 30 | 32.54 | 12 | $105 \cdot 60$ |  |
| " | XL \& XLI | 29 | 25.70 | 12 | $86 \cdot 59$ |  |
| XL | XLII \& XLIII | 27 | $15 \cdot 76$ | 12 | 90•46 |  |
| " | XLIII \& XLI | 28 | 15.79 | 12 | $92 \cdot 64$ |  |
| " | XLI \& XXXIX | 27 | 10.83 | 12 | $102 \cdot 85$ |  |
| " | XXXIX \& XXXVIII | 27 | 14.49 | 12 | 50.95 |  |
| " | XXXVIII \& XLII | 25 | 9•99 | 12 | $130 \cdot 55$ |  |
| XLI | XXXIX \& XL | 26 | 9*92 | 12 | 53.58 |  |
| " | XL \& XLIII | 26 | 11.06 | 12 | 152.59 |  |
| XLII | XLV \& XLIV | 24 | $6 \cdot 75$ | 12 | 124.20 |  |
| " | XLIV \& XLIII | 25 | 11.52 | 12 | $44 \cdot 86$ |  |
| " | XLIII \& XL | 25 | 11.48 | 12 | 54.28 |  |
| " | XL \& XXXVIII | 26 | 12.13 | 12 | $77 \cdot 23$ |  |
| XLIII | XLI \& XL | 26 | $7 \cdot 44$ | 12 | $175 \cdot 29$ |  |
| " | XL \& XLII | 28 | 13.19 | 12 | $168 \cdot 87$ |  |
| " | XLII \& XLIV | 32 | 17.86 | 12 | 219.20 | $j$ |

PRINCIPAL TRIANGOLATION. SUMS OF SQUARES OF APPARENT ERRORS. 53_ :

| Station of Observation | Obeerved Angle | Number of Observations | Sum of Squares of Errors of single Observations | Number qf Zeros | Sum of Squares of Errors of single Zeros | Rumiriss |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| XLIII | XLIV \& CIV | 24 | 3'17 | 12 | $78 \cdot 75$ |  |
| XLIV | CVII \& CIV | 26 | 11.51 | 12 | 63.12 |  |
| " | CIV \& XLIII | 27 | 11.41 | 12 | $95 \cdot 16$ |  |
| " | XIIII \& XLII | 25 | 8.11 | 12 | $137 \cdot 98$ |  |
| " | XLII \& XLV | 25 | $7 \cdot 47$ | 12 | $64 \cdot 83$ |  |
| " | XLV \& CVII | 26 | 11.47 | 12 | 217.98 | Troughton and Simms' 18 -inch |
| XLV | CVII \& XLIV | 27 | 16.41 | 12 | 55.37 | Theodolite No. 2. |
| " | XLIV \& XLII | 26 | $10 \cdot 63$ | 12 | 121.35 |  |
| CIV | XLIII \& XLIV | 31 | 17.57 | 12 | $153 \cdot 85$ |  |
| " | XLIV \& CVII | 26 | 9.51 | 12 | 122.45 |  |
| CVII | CIV \& XLIV | 25 | 5•86 | 12 | 50.50 |  |
| " | XLIV \& XLV | 27 | 5•79 | 12 | 153.82 |  |

Nors.-Stations CIV and CVII appertain to the Karachi Longitudinal Series of the North-West Quadrilateral.

From the preceding data of the sums of the squares of the apparent errors, in the measurement of each angle, we may ascertain the e.m.s. (error of mean square) of observation of a single measure of an angle, and the e.m 8 . of graduation and observation of the mean of the measures on a single zero, for each group of angles measured with the same instrument, by the same observer, and under similar circumstances.

The instrument employed was Troughton and Simms' 18 -inch Theodolite No. 2, having 3 microscopes to read the azimuthal circle ; observations were taken on 6 pairs of zeros (face left and face right) giving circle readings at $10^{\circ}$ apart.

The e.m.s. of observation of a single measure of an angle $=\sqrt{\frac{\text { Sum of squares of apparent errors of observations. }}{\text { No. of observations-No. of augles } \times \text { No. of changes of zero. }} \text {. }}$
$\left.\begin{array}{l}\text { The e.m.s. of graduation and observation of the mean of the } \\ \text { measures on a single zero }\end{array}\right\}=\sqrt{\frac{\text { Sum of squares of apparent errors of zero. }}{\text { No. of angles } \times(\text { No. of changes of zero }-1) .}}$

| Group | Instrument and Observer |  |  | Number of |  |  |  | c.m.s. of observation of a single measure | e.m.s. of graduation and observation of a single zero |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | $\frac{\Xi}{\frac{0}{0}}$ |  |  |  |  |
| I | $\left\{\begin{array}{l} \text { Troughton and Simms' 18-inch } \\ \text { ''heodolite No. 2; Lieutenant } \end{array}\right\}$ | Hills, | $\begin{array}{rr} \circ \\ 10 & 0 \end{array}$ | 2.32 | 123 | 3430 | 1476 | $\left\{\frac{1550 \cdot 30}{3430-1476}\right\}^{\frac{1}{2}}= \pm{ }^{\prime \prime}{ }^{\prime \prime} 891$ | $\left\{\frac{13247 \cdot 47}{1476-123}\right\}^{\frac{1}{2}}= \pm 3 \cdot 129$ |
| II | Ditto. | Plains, |  | 2.20 | 71 | 1878 | 852 | $\left\{\frac{.08 .49}{1878-852}\right\}^{\frac{1}{2}}= \pm 0.941$ | $\left\{\frac{6988 \cdot 11}{852-71}\right\}^{\frac{1}{2}}= \pm 2.991$ |

July 1880.

## J. B. N. HENNESSEY,

In charge of Computing Office.

## CUTCH COAST SERIES.

## PRINCIPAL TRIANGULATION. REDUCTİON OF FIGURES,

Figure No. 28.


* In the tables of the equations between the factors the co-efficiente of the terms below the diagonal are omitted for convenience, the co-eflicient of the pth term in the $q$ th line being always the same as the co-efficient of the $q$ th term in the $p$ th line.

Figure No. 29.

† It will appear on reference to the Reduction Chart of the S. W. Quadrilateral that Figures 20, 21, 22, 28 and 29 really constitute one figure, and might have been reduced as such, had this been thought desirable. Their reduction having, however, been performed separately, in the order in which they are numbered, it becume necessary when Figure 29 was taken in hand to subject it to other conditions than those afforded only by its geometrical construction, so that no inconsistency should be exhibited in its connection with the other figures. These extra conditions are given by the fact that while Figure 29 rests on a side of Figure 28 it has a point indentical with one of Figure 20, oiz., Güngta (VII of the Kattywar Meridional Series). In order that the position of Gángta as alroady fixed by Figure 20 should be maintained

Figure No. 30.

in Figure 29, the length and direction of the side Nara (II of the Cutch Coast Series) to Gángta, as given by calculations from the data afforded by the figures already reduced, should be reproduced by Figure 29. The length Nara-Gángta was accordingly computed and its ratio to the side Bhachao (I of the Cutch Coast Series) to Nara assigned as one of the conditions for Figure 29 ; the spherical angle between these two sides was also determined from the data previously fixed and was adopted as a second condition of the same figure.

Figure No. 31.


Figure No. 30.

in Figure 29, the length and direction of the side Nara (II of the Cutch Cosst Series) to Gángta, as given by calculations from the data afforded by the figures already reduced, should be reproduced by Figure 29. The length Nara-Gángta was accordingly computed and its ratio to the side Bhacháo (I of the Cutch Coast Series) to Nara assigned as one of the conditions for Figure 29 ; the spherical angle between these two sides was also determined from the data previously fixed and was adopted as a second condition of the same figure.

Figure No. 31.


Figure No. 32.


Figure No. 33.


Figure No. 34.


Figure No. 34-(Continued).


Figure No. 35.


Figure No. 36.


Figure No. 37.


Figure No. 38.


Figure No. 38-(Continued).


Figure No. 39.


Figure No. 40.

J. B. N. HENNESSEY,

## CUTCH COAST SERIES.

## PRINCIPAL TRIANGULATION. TRIANGLES.

| No. of Triangle |  | Number and Name of Station |  | Corrections to Observed Angle |  |  |  | Corrected Plane Angle | Distance |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Circuit | Noncircuit |  |  | Figure | Circuit | Noncircuit | Total |  | Log. feet | Feet | Miles |
| 136 | 255 | $\begin{aligned} & \text { XI (Chitror) } \\ & \text { XIV (Wándia) } \\ & \text { II (Nara) } \end{aligned}$ | 7 <br> $\cdot 22$ <br> $\cdot 22$ <br> $\cdot 22$ | $\begin{gathered} " \\ -1 \cdot 11 \\ -.89 \\ -.03 \end{gathered}$ | $\begin{array}{\|rrr} \hline- & \cdot 08 \\ \hline- & 50 \\ + & 58 \\ \hline \end{array}$ | - | $\begin{array}{r}n \\ -1 \cdot 19 \\ -1.39 \\ +\quad 55 \\ \hline\end{array}$ | $\circ$ $\prime$ $\prime \prime$ <br> 88 2 24.57 <br> 40 17 $56 \cdot 34$ <br> 51 39 $39 \cdot 09$ | $\begin{aligned} & 4 \cdot 8695487,3 \\ & 4 \cdot 6805569,2 \\ & 4.7643143,2 \end{aligned}$ | $74054^{\circ} 04$ 47924*42 58118.49 | $\begin{array}{r} 14.025 \\ 9.077 \\ 11.007 \end{array}$ |
|  |  |  | $\cdot 66$ |  |  |  | -2.03 | 180 |  |  |  |
| 137 |  | XIV (Wándia) <br> II (Nara) <br> I (Bhacháo) | $\begin{array}{r} 47 \\ \cdot 47 \\ \cdot 47 \\ \hline \end{array}$ | $\begin{array}{r} -\quad 38 \\ +1.08 \\ +\quad 11 \end{array}$ | $\left\|\begin{array}{rr} -\quad 67 \\ + & 20 \\ + & 47 \end{array}\right\|$ |  | $\begin{array}{r} -1.05 \\ +1.28 \\ +\quad .58 \\ \hline \end{array}$ | $\begin{array}{rrr} 61 & 12 & 48 \cdot 39 \\ 69 & 42 & 49 \cdot 16 \\ 49 & 4 & 22 \cdot 45 \\ \hline \end{array}$ | $4.9340012,5$ $4.9634788,3$ $4.8695487,3$ | $85901 \cdot 60$ 91934.56 74054.04 | $16 \cdot 269$ 17.412 14.025 |
|  |  |  | I 41 |  |  |  | + 8 I | $180 \quad 0 \quad 0.00$ |  |  |  |
|  |  | XI (Chitror) XIV (Wándia) I (Bhacháo) | $\begin{array}{r}\cdot \\ \cdot \\ \cdot \\ \cdot \\ \cdot 42 \\ \hline 41 \\ \hline\end{array}$ | -1.60 -1.27 -.01 |  | $\begin{array}{r}+\quad 50 \\ -1.17 \\ +\quad 67 \\ \hline\end{array}$ | $\begin{array}{r}-1.10 \\ -2.44 \\ +\quad .66 \\ \hline\end{array}$ | 49 40 27.66 <br> 111 30 $45^{\circ} 00$ <br> 28 48 47 | $\begin{aligned} & 4.9634788,2 \\ & 5 \cdot 0724814,3 \\ & 4.7643143,2 \end{aligned}$ | $\begin{array}{r} 91934.56 \\ 118162.98 \\ 58 \mathrm{II} 8.49 \end{array}$ | $\begin{aligned} & 17.412 \\ & 22 \cdot 379 \\ & 11.007 \end{aligned}$ |
|  |  | II (Nara) <br> I (Bhacháo) <br> III (Kakarwa) | 1.24 |  |  |  | -2.88 | 180 |  |  |  |
| 138 |  |  | $\begin{array}{r}\cdot 31 \\ \cdot 31 \\ \cdot 32 \\ \hline\end{array}$ | -1.93 $-\quad 23$ $-\quad 11$ | -14 <br> -08 <br> $+\quad 22$ |  | $\begin{array}{r} -2 \cdot 07 \\ -\quad 3 \mathrm{II} \\ +\quad 1 \mathrm{II} \\ \hline \end{array}$ | 58 10 54.94 <br> 39 6 28.79 <br> 82 42 36.27 <br> 8   | $\begin{aligned} & 4 \cdot 8668051,2 \\ & 4.7374067,5 \\ & 4 \cdot 9340012,5 \end{aligned}$ | $73587 \cdot 68$ $54626 \cdot 92$ 85901.60 | $\begin{aligned} & 13.937 \\ & 10.346 \\ & 16.269 \end{aligned}$ |
|  |  | $\begin{array}{\|l} \text { III (Kakarwa) } \\ \text { I (Bhacháo) } \\ \text { IV (Râhida) } \end{array}$ | $\cdot 94$ |  |  |  | -2.27 | $180 \quad 0 \quad 0.00$ |  |  |  |
| 139 |  |  | $\begin{array}{r} 45 \\ \cdot 45 \\ \cdot 45 \\ \hline \end{array}$ | $\begin{array}{r} -\quad 62 \\ -1.06 \\ +\quad 92 \end{array}$ | $\left.\begin{array}{rr} - & 18 \\ - & 24 \\ + & 42 \end{array} \right\rvert\,$ |  | $\begin{array}{r} -80 \\ -1.30 \\ +\mathrm{r} 34 \\ \hline \end{array}$ | $\begin{array}{lll} 68 & 55 & 46 \cdot 6 \mathbf{1} \\ 60 & 33 & 26 \cdot 64 \\ 50 & 30 & 46 \cdot 75 \\ \hline \end{array}$ | 4.9492645,4 <br> 4.9192606,2 <br> 4.8668051,2 | 88974.29 $83034 \cdot 89$ $73587 \cdot 68$ | $16 \cdot 851$ $15 \cdot 726$ 13.937 |
|  |  |  | $1 \cdot 35$ |  |  |  | -.76 | $180 \quad 0 \quad 0.00$ |  |  |  |

Notrs.-1. The values of the sides are given in the same lines with the opposite angles.
2. Stations XI (Chitror) and XIV (Wándia) appertain to the Kattywar Meridional Series.






Note.-Stations CIV (Károthol) and CVII (Sáhiji) appertain to the Karáchi Longitudinal Series of the North-Weat Quadrilateral.

June, 1890.
w. h. cole,

In charge of Computing Office.

## CUTCH COAST SERIES.

PRINCIPAL TRIANGULATION. LATITUDES, LONGITUDES AND AZIMUTHS.

| Station A |  |  |  | Side AB |  |  | Station B |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Cironit } \\ & \text { No. } \end{aligned}$ | Number and Name of Station | Latitude North | Longitude East of Greenwich | Azimath at A | Log. Feot | Aximuth at B | Number and Name of Station |
| $\begin{gathered} 62 \\ " \\ " \end{gathered}$ |  | - 1 | - 1 | - 1 " |  | - 1 |  |
|  | VII (Gangta) | 2344 5.53 | 703222.49 |  |  |  |  |
|  | XI (Chitror) | 2323 30.84 | '70 43 30'95 | 23536.40 | 4.7643143,2 | 2035126.50 | XIV (Wándia) |
|  | " | " | " | 7333 34*47 | 5.0724814,3 | 2532532.66 | I (Bhacháo) |
|  | PIV | " |  | III $5531 \times 19$ | 4.6805569,2 | 2915221.44 | II (Nara) |
|  | XIV (Wándia) | 231444.22 | $703918 \cdot 59$ | 1022041.08 | 4.9634788,3 | $2821420 \cdot 41$ | I (Bhàcháo) |
|  |  | " | " | 16333 29.94 | 4-8695487,3 | 343320.75 | II (Nara). |
|  | I (Bhacháo) | $231758 \cdot 16$ | 70231511 | 233 9 57.49 | 4*9340012,5 | $531450 \cdot 38$ | " $\quad$ " |
|  | " " | " | " | $\begin{array}{llll}194 & 3 & 28.39\end{array}$ | 4-8668051,2 | 144446 | III (Kakarwa) |
|  | $">$ | " | " | 133301930 | 4.9492645,4 | $3132526 \cdot 15$ | IV (Ráhida) |
|  | - | " | " | $833546 \cdot 89$ | $4.7891241,2$ | 2633127.53 | VI (Sakpur) |
| $\begin{gathered} 63 \\ " \\ 64 \\ " \end{gathered}$ |  | " | " | $355432{ }^{\prime} 41$ | 5'0018529,7 | $2155024{ }^{\circ} 02$ | VII (Karárho) |
|  | II (Nara) | $232627 \times 95$ | $703533 * 49$ | $1703339^{\circ} 41$ | 5.0342438,8 | 3503222.99 | VII (Gángta) |
|  | " $\quad$ " | " | " | III 2545.63 | 4*7374067,5 | 291228.05 | III (Kakarwà) |
|  | III (Kakarwa) | $232945 * 44$ | $7026 \quad 27 \cdot 16$ | 2004912.66 | 4.9679266,7 | $205135^{\circ} 02$ | VII (Gángta) |
|  | " " | " | " | 83 - 31.70 | 4.9192606,2 | 2625438.95 | IV (Ráhida) |
| " 65 | " " | " | " | $1344540 \% 79$ | 4.7890813,9 | 3144233.04 | $V$ (Ran) |
|  | IV (Ráhida) | 2328 4*60 | 701141-86 | 2155013.49 | 4-8194935,0 | $355^{2} 599^{\prime 4}$ | \# ; |
|  | " " | " | " | $357 \quad 433.51$ | 4.8337431,9 | 177448.31 | VI (Sakpur) |
|  | " " | " | " | $554310 \cdot 47$ | 4-8406155,9 | 235396.31 | IX (Joran) |
|  | $V$ (Ran) | 233654.54 | $701837 \times 35$ | $2402340 \cdot 22$ | 4.9453365,4 | 602911.57 | VII (Gángta) |
|  | VI (Sakpur) | 231649.77 | $701219{ }^{17}$ | 358 II 50.30 | 4.8722261, 8 | 178120.19 | VII (Karárho) |
|  | " " | , | " | $\begin{array}{llll}51 & 4 & 59\end{array}$ | $4 \cdot 8738908,8$ | 231 | VIII (Charakra) |
|  | " " | " | " | 115354098 | 4-8282082,3 | 2953122.97 | IX (Joran) |
|  | VII (Kararho) | 23 4 31.81 | 701244.28 | 1142519.27 | 4-8227503,6 | 294214.59 | VIII (Charakra) |
|  | VIII (Charakra) | $\begin{array}{llll}23 & 9 & 3.84\end{array}$ | 70 1 55.52 | $178148 \cdot 10$ | 4-8814766,5 | 358 1 37\%1 | IX (Joran) |

Nors.-Stations VII (Gángta), XI (Chitror) and XIV (Wandia) appertain to the Kattywar Meridional Seriea.


| Station A |  |  |  | side A B |  |  | 8tation B |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Circuit No. | Number and Name of Station | Latitude North | Longitude East of Greenwich | Azimuth at A | Log. Feet | Azimuth at B | Number and Name of Station |
| $\begin{gathered} 72 \\ " \end{gathered}$ | XXV (Lakhpat) | , | , " |  | 4.9944547,7 | 281513.45 | XXVI (Sugandia) |
|  |  | 234919.89 | $684933 \cdot 27$ |  |  |  |  |
|  | XXVI (Sugandia) | $2352 \quad 28 \cdot 99$ | $68 \text { 32 } 9 \times 72$ | 1382633.99 | 4•7593799,5 | 318234763 | XXVII (Said Ali) |
|  |  |  |  | $2474840 \cdot 76$ | 4.8019212,2 | 67525714 |  |
|  | " " |  | $\left\lvert\, \begin{gathered} 683^{2} \quad 9{ }^{\circ} 72 \\ " \\ " \end{gathered}\right.$ | 197356.66 | 4.7884949,7 | 173627.98 | XXVIII (Guni) |
|  | " " |  |  | 1505152.99 | 4-8828617,9 | $3304910 \cdot 05$ | $\mathbf{X X X}$ (Patha-ki-beri) |
| 73 | XXVII (Said Ali) | 235625.77 | $684242 \cdot 34$ | $1305251 \cdot 10$ | 4.7243069,3 | 3104955.33 | XXVIII (Guni) XXIX (Hakra) |
|  | XX"VIII (Güni) | $\begin{array}{ccc}24 & 2 & 9 \\ & \prime \prime\end{array}$ | $683530 \cdot \infty$ | $\left\lvert\, \begin{array}{lll} 187 & 36 & 3 \cdot 42 \\ 239 & 44 & 19 \cdot 37 \end{array}\right.$ | 4•8025855,7 | $73640 \cdot 32$ |  |
| 74 |  |  |  |  | 4•7488786,0 | 5947 52.71 | X"XX (Patha-ki-beri) |
| " | " |  | " | $\left\|\begin{array}{rrr} 98 & 18 & 49 \cdot 82 \\ 169 & 58 & 26.20 \end{array}\right\|$ | 4•7507421,2 | 2781444.75 |  |
| " | " | " |  |  | 4•7723575,0 | $3495740 \cdot 71$ | XXX (Patha-ki-beri) <br> XXXI (Mod) |
|  | XXIX (Hakra) <br> $\mathbf{X X X}$ (Patha-ki-beri) | $\begin{array}{ll} 24 & 649 \cdot 11 \\ 24 & 3 \\ \hline \end{array}$ | $684412 \cdot 97$ | 117888 | 4.8194477,0 |  | $99 \quad 99$ |
|  |  |  | $682528 \cdot 57$ | 22267758 | 4.8304117,0 | $42 \quad 927.91$ |  |
|  | " | " | " | $15848 \quad 3 \cdot 10$ | 4*7774324,2 | $33^{8} 4627 \cdot 42$ | XXXII (Jim) |
|  | XXXI (Mod) |  | $68 \stackrel{\text { " }}{3} 38 \cdot 66$ | 1101952.77 | 4•7459662,4 | $29016 \quad 2.63$ | XXXIII (Nurlisháh) |
| 75 |  | $241146 \cdot 92$ |  | 945147.53 | 4.8278121,7 | 2744650.66 | XXXII (Jim) |
| " | XXXII (Jim) | $241242 \cdot 94$ | $68 \text { 21 " } 34 \cdot 57$ | 153 911.78 | $4 \cdot 7281466,5$$4 \cdot 6777026,7$ | 333 724.48 |  |
|  |  |  |  | 395625.74 |  | 219 <br> 264 <br> 260 <br> 1 <br> 1064 <br> 24.40 | XXXIII (Nurlisháh) XXXIV (Dhui) |
|  | " $\quad$ " |  | $\begin{gathered} 682134^{\circ} 57 \\ " \end{gathered}$ | $\begin{array}{\|l} 225 \quad 3014: 27 \\ 1104010.24 \end{array}$ | $4 \cdot 6777026,7$ $4 \cdot 7783386,9$ |  |  |
|  |  |  | " |  | $4.7783386,9$ $4 \cdot 7714330,8$ | $29036 \quad 4.96$ | $\begin{aligned} & \text { XXXIV (Dhui) } \\ & \text { XXXV (Koti) } \end{aligned}$ |
|  | " |  | " | 1674322.71 | 4•7171471,3 | 3474233.40 | XXXVII (Mugalbhin) |
|  | XXXIII (Nurlisháh) | $24 \mathrm{641} \cdot 18$$"$ | $6816 \quad 4.63$ | 1563917.86 | $\begin{aligned} & 4 \cdot 7955569,2 \\ & 4 \cdot 8897273,1 \end{aligned}$ | $\left\|\begin{array}{lll} 336 & 37 & 28 \cdot 26 \\ 291 & 59 & 57 \cdot 85 \end{array}\right\|$ | XXXV (Koti) <br> XXXVI (Nindámani) |
|  | " ${ }^{\text {X }}$ |  |  | $112 \quad 515.53$ |  |  |  |
| 76 | XXXV (Koti) |  | 682917.54 | 9924 9\%94 | 4.7374191,2 | 279209.71 | XXXVII (Mugalbhin) XXXVI (Nindámani) |
|  |  | $2416 \quad 9 \cdot 22$ | $681137 \cdot 15$ | $\begin{array}{rrr} 59 & 616 \cdot 73 \\ 235 & 40 & 43 \cdot 31 \end{array}$ | $\begin{aligned} & 4 \cdot 7396585,0 \\ & 4 \cdot 7280479,1 \end{aligned}$ | $\left\|\begin{array}{rrr} 239 & 2 & 47 \\ 55 & 43 & 59 \\ \hline 89 \end{array}\right\|$ |  |
|  | " | " |  |  |  |  | XXXVI (Nindámani) XXXVII (Mugalbhin) |
| 77 | $">$XXXVI (Nindámani)XXXVII (Mugalbhin)XXXVIII (Abanshäh) | " | " | 121294125 | 4-8405982,9 | 30125.18.12 | XXXVIII (Abansháh) |
|  |  | " | ", | $188 \quad 58 \quad 56$ | 4:7961629,5 | 85849 16 | XXXIX (Gada) |
|  |  | 241129.64 | $\begin{array}{llll}68 & 3 & 8 \cdot 19\end{array}$ | 1692528.91 | 4-8161606,3 | $3492435 \cdot 46$ | XXXVIII (Abansháh) |
|  |  | 2421 <br> 2422 <br> 2.66 | 68 19 34.67 | 132392971 | $\begin{aligned} & 4 \cdot 6696541,8 \\ & 4 \cdot 8658347,4 \end{aligned}$ | $\left\|\begin{array}{rrrr} 312 & 36 & 29.06 \\ 69 & 37 & 13.24 \end{array}\right\|$ | XXXIX (Gada) |
|  |  |  | $68 \quad 0 \quad 58 \cdot 19$ | $24932 \quad 565$ |  |  |  |
| 78 | " " | $\begin{gathered} " \\ 242621 \cdot 25 \end{gathered}$ | " | $\left\|\begin{array}{ccc} 197 & 39 & 3.09 \\ 156 & 16 & 29.56 \end{array}\right\|$ | $4.8122332,5$$4.8384207,3$ | $174031 \cdot 32$ | XL (Randa) <br> XLII (Bíbi Mariam) |
|  |  |  | 68 13 22.66 |  |  | 3361425.20 |  |
|  |  |  |  | 1262728.93 | 4.7852872,3 | 3062348.68 | XLII (Bíbi Mariam) <br> XL (Randa) |
| " | XL"(Randa)" | $243^{\prime \prime} 20 \cdot 08$ | $\begin{array}{cc}68 \quad \text { " } & 31 \cdot 32\end{array}$ | $\begin{aligned} & 1765046 \cdot 91 \\ & 2434915 \cdot 00 \end{aligned}$ | $\begin{aligned} & 4 \cdot 7693743,5 \\ & 4 \cdot 7078526,5 \end{aligned}$ | $3565032 \cdot 36$ | XLI (Khar) |
| 79 |  |  |  |  |  | 63524135 |  |
| " | $\begin{aligned} & " \quad " \\ & \text { " " } \\ & \text { XLI (Khar) } \\ & \text { XLII (Bíbi Mariam) } \end{aligned}$ | $\begin{gathered} " \\ 2436 \quad 2 \cdot 91 \\ 243232 \cdot 55 \\ " \\ " \end{gathered}$ | $\begin{gathered} " \\ 68 \quad 12 \\ 67 \\ 67.55 \\ \hline 57 \cdot 79 \end{gathered}$ | $\begin{array}{rrr} 91 & 33 & 3 \cdot 11 \\ 188 & 38 & 59.42 \\ 133 & 41 & 4.95 \\ 224 & 47 & 13 \cdot 02 \\ 164 & 37 & 5 \cdot 33 \end{array}$ | $4.6760501,2$ <br> 4.7668176,2 <br> 4.7086373,2 <br> 4.9014469,4 <br> 4.6584760,9 | $\left\|\begin{array}{rrr} 271 & 29 & 29 \cdot 82 \\ 8 & 39 & 39.14 \\ 313 & 38 & 17 \cdot 74 \\ 44 & 51 & 26 \cdot 68 \\ 344 & 36 & 10 \cdot 80 \end{array}\right\|$ | XLII (Bíbi Mariam) <br> XLIII (Vikia) <br> $"$ " $"$ XLIV (Dománi) |
| " |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |


| Station A |  |  |  | Side A B |  |  | Station B |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { Circuit } \\ \text { No. } \end{gathered}$ | Number and Name of Station | Latitude North | Longitude East of Greenwich | Azimuth at A | Log. Feet | Azimuth at B | Number and Name of Station |
| 80 | XLII (Bíbi Mariam) <br> XLIII (Vikia) <br> XLIV (Dománi) <br> " " <br> XLV (Sukpur) <br> CIV (Károthol) <br> CVII (Sáhiji) |  |  | $\circ$ 1 1 <br> 93 52 $1 \cdot 71$ <br> 79 34 8.48 <br> 142 13 $36 \cdot 79$ <br> 52 10 $6 \cdot 23$ <br> 188 13 0.18 <br> 128 45 16.12 <br> 162 33 $55 \cdot 41$ <br> 80 16 15.05 | 4:8014627,6 <br> 4:8412907,7 <br> 4.9601619,5 <br> 4•8106580,6 <br> 4.9323511,7 <br> 5.0361997,2 <br> 5.0524894,7 <br> 4.9930495,9 | $2734717 \cdot 45$ <br> 2592859.54 <br> 322922.20 <br> $232 \quad 615.86$ <br> 81355.86 <br> $3083850 \cdot 72$ <br> 3423122.00 <br> $260 \quad 852.07$ | XLV (Sukpur) XLIV (Dománi) CIV (Károthol) XLV (Sukpur) CIV (Károthol) CVII (Sáhiji) |

Notr.-Stations CIV (Károthol) and CVII (Sáhiji) appertain to the Karáchi Longitudinal Series of the North-West Quadrilateral.

June, 1890.
W. H. COLE,

In charge of Computing Office.

## CUTCH COAST SERIES．

## PRINCIPAL TRIANGULATION．HEIGHTS ABOVE MEAN SEA LEVEL．

The following table gives，first，the usual data of the observed vertical angles and the heights of the signal and instrument， \＆c．，in pairs of horizontal lines，the first line of which gives the data for the lst or the fixed station，and the second line the data for the 2nd or the deduced station．This is followed by the arc contained between the two stations，and then by the terrestrial refraction and the height of the 2nd station above or below the lst，as computed from the vertical angles in the usual manner． This difference of height applied to the given height above mean sea level of the fixed station，gives that of the deduced station． Usually there are two or three independent values of the height of the deduced station；the details are so arranged as to show these consecutively and their mean in the columns of＂Trigonometrical Results．＂The mean results thus obtained are however liable to receive corrections for the errors generated in the trigonometrical operations，which are shown up by the spirit levelling operations，wherever a junction between the two has been effected．The spirit levelled determinations are always accepted as final，and the trigonometrical heights of stations lying between those fixed by the levelling operations are adjusted by simple proportion to accord with the latter．In the table the spirit levelled values are printed thus，303．69，\＆c．，to dis－ tinguish them from the adjusted trigonometrical values．The column in which the mean trigonometrical heights are given is barred across where necessary，as after deduction｀of Stn．I from Stn．XIV，see below，to indicate that one set of adjustments ends and another begins．The trigonometrical heights always refer to the upper mark or to the upper surface of the circular pillar or structure on which the theodolite stood．Descriptions follow this table，exactly indicating the surfaces on which the levelling staff stood during the determinations of the spirit levelled heights．

The height given in the last column is the approximate height of the structure above the ground at the base of the station．

The heights of the initial stations above Mean Sea Level are taken from the Kattywar Meridional Series and are as follows ：－
VII（Gángta） 210.7 feet；XI（Chitror） $490 \cdot 0$ feet；XIV（Wándia） 116.37 feet．

| Astronomical Date |  | Number and Name of Station | Observed Vertical Angle |  | Height in feet |  |  | Terrestrial Refraction |  |  | Height in feet of 2nd Station above Mean Sea Level |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1856－57 | Mean of <br> Times of obser－ vation |  |  |  | 挽 | 免 |  | 若 |  |  | Trigonon | metrical ults |  |  |
|  |  |  |  |  | \％ |  |  | $\begin{gathered} \mathbb{\infty} \\ \stackrel{1}{1} \end{gathered}$ | $\begin{aligned} & \text { E } \\ & 0 \\ & \text { A } \\ & \text { A } \\ & 0 \end{aligned}$ |  | By each deduc－ tion | Mean | Result |  |
|  | $h m$ |  | －，＂ |  |  |  | ＂ |  |  |  |  |  |  | foet |
| Nov．19，20 | 248 | XI (Chitror) | $\text { D } \circ 1410 \times 9$ |  |  |  | 1168 | 69 |  |  | 301．2 |  |  |  |
| Jan．13，14 | 235 | I（Bhacháo） | D o $310 \cdot 6$ | 12 | 2.7 | 5．6 | 1168 | 69 |  | －188 8 | 3012 |  |  |  |
| Nov．17，Dec． 21 | 249 | XIV（Wándia） | D o 0 18．7 | 8 | $2 \cdot 6$ | $5 \cdot 7$ |  |  |  |  |  | $301 \times 4$ | 303＊69 | 5 |
| Jan．13，14 | 313 | I（Bhacháo） | D $014 \quad 9 \times 5$ | 8 |  | $5 \cdot 6$ | 908 | 27 | －030 | ＋185 ${ }^{\prime}$ | 301＇5 |  |  |  |


| Astronomical Date |  | Number and Name of Station | Observed Vertical Angle |  | Height in feet |  |  | Terrestrial Refraction |  | $\begin{aligned} & \text { Height of } \\ & \text { 2nd Station }-1 \text { 1st Station } \\ & \text { in feet } \end{aligned}$ | Height in feet of 2 nd Station above Mean Sea Level |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1856－57 | Mean of Times of obser－ ration |  |  |  | 蕗 | 蓸 |  | 宏 |  |  | Trigono | metrical <br> ults |  |  |
|  |  |  |  |  |  | 蓸 |  | $\stackrel{\text { ¢ }}{ \pm}$ | － |  | By each deduc－ tion | Mean | Result |  |
|  | $k m$ |  | － 11 |  |  | ＇ | ＂ |  |  |  |  |  |  | feet |
| Dec．$\quad 30$ | 222 | VII（Gángta） | E o 759.4 | 4 |  | 5．6 |  |  |  |  |  |  |  |  |
| ＂23，24，25 | 319 | II（Nara） | D 023 56．8 | 14 | $2 \cdot 6$ | $5 \cdot 6$ | 1069 | 62 | －058 | $+502 \cdot 6$ | $713 \cdot 3$ |  |  |  |
| Nov．19，20 | 238 | XI（Chitror） | E 01214.1 | 10 | $2 \cdot 6$ | $6 \cdot 2$ |  |  |  |  |  |  |  |  |
| Dec．24，25 | 236 | II（Nara） | D 01943.5 | 8 | $3 \cdot 2$ | $5 \cdot 6$ | 474 | 25 | 053 | ＋223．3 | 713．3 |  |  |  |
| Nor．17，Doc． 21 | 242 | XIV（Wándia） | E 0222.9 | 8 | $2 \cdot 6$ | 5＊7 |  |  |  |  |  | $713^{\circ} 0$ | 713 | 5 |
| Dec．23，24，25 | 36 | II（Nara） | D $03316 \cdot 5$ | 12 | $2 \cdot 6$ | $5 \cdot 6$ | 732 | 38 | －051 | $+595 * 9$ | $712 \cdot 3$ |  |  |  |
| Jan．13，14 | 225 | I（Bhacháo） | E 0104.8 | 8 | $2 \cdot 6$ | 5．6＇ |  |  |  |  |  |  |  |  |
| Dec．23，24，25 | 317 | II（Nara） | D $02242 \cdot 1$ | 12 | $2 \cdot 6$ | 5．6 | 849 | 53 | －063 | ＋409．6 | 713．3 |  |  |  |
| ＂ 30 | 257 | VII（Gángta） | E 0236.9 | 6 | $3 \cdot 1$ | 5．6 |  |  |  |  |  |  |  |  |
| Jan．16，17，18，27 | 255 | III（Kakarwa） | D○16 10．9 | 20 | $2 \cdot 6$ | $6 \cdot 2$ | 918 | 59 | －064 | ＋253．4 | $464^{\circ} \mathrm{I}$ |  |  |  |
| ＂ $\begin{array}{r}\text { 13，14 }\end{array}$ | 234 | I（Bhacháo） | 120 2025 | 12 | $3 \cdot 2$ | 5．6 |  |  | － 06 | $+16 \mathrm{I} \cdot 3$ |  |  |  |  |
| \＃16，17，18，27 | 3 － | III（Kakarwa） | DO13 2．0 | 18 | $2 \cdot 6$ | $6 \cdot 2$ | 727 | 44 | －60 | ＋1613 | $465^{\circ}$ | 4647 | 465 | 5 |
| Dec． $23,24,25$ | 258 | II（Nara） | D ○ 19 45，9 | 14 | $2 \cdot 7$ | 5＊6 |  |  |  |  |  |  |  |  |
| Jan．17，18，27 | 37 | III（Kakarwa） | EOII 24.5 | 20 | $2 \cdot 6$ | $6 \cdot 2$ | 540 | 32 | －058 | $-248 \cdot 0$ | $465^{\circ} \mathrm{O}$ |  |  |  |
| Dec． 30 | 236 | VII（Gángta） | D 014193 | 8 | $2 \cdot 6$ | 5．6 |  |  |  |  |  |  |  |  |
| Jan．1，2 | 243 | $V$（Ran） | E ○ ○ $56 \cdot 6$ | 16 | $2 \cdot 6$ | $5 \cdot 6$ | 871 | 41 | 048 | $-195 * 7$ | $15^{\circ} \mathrm{O}$ |  |  |  |
| ，16，17，18 | 33 | III（Kakarwa） | D $02955^{\circ} 7$ | 12 | $2 \cdot 6$ | $6 \cdot 2$ |  |  |  |  |  | 13.8 | 14 | $4 \cdot 8$ |
| ＂1，2 | 249 | V（Ran） | E $02038 \cdot 0$ | 10 | $3^{\circ} 0$ | $5 \cdot 6$ | 608 | 35 | $\cdot 058$ | $-452 \cdot 1$ | 12.6 |  |  |  |
| ＂13，14 | 252 | I（Bhacháo） | D 01724.2 | 8 | $2 \cdot 6$ | 5．6 |  |  |  |  |  |  |  |  |
| ＂5，6，7 | 316 | IV（Ráhida） | E○ $\mathbf{3 2 4 . 2}^{\mathbf{2 4}}$ | 14 | $3 \cdot 2$ | $5 \cdot 6$ | 879 | 26 | －029 | $-269^{\circ} 0$ | $34^{\circ} 7$ |  |  |  |
| \＃16，17，18，27 | 39 | III（Kakarwa） | D 024179 | 22 | $2 \cdot 6$ | $6 \cdot 2$ |  |  |  |  |  |  |  |  |
| ＂5，6，7，28 | 34 | IV（Ráhida） | E ○ 1138.5 | 20 | $3 \cdot 1$ | $5 \cdot 6$ | 821 | 38 | －046 | $-433 \cdot 5$ | 31＊2 | $32^{\circ} 0$ | 32 |  |
| ＂19，21，22 | 251 | VI（Sakpur） | D c 21493 | 12 | $2 \cdot 6$ | 5＊7 |  |  |  |  |  |  |  |  |
| ＂5，6，7，28 | 35 | IV（Ráhida） | EOII 9．3 | 20 | $2 \cdot 6$ | $5 \cdot 6$ | 674 | 26 | 039 | $-327 \cdot 0$ | $30^{\circ} 2$ |  |  |  |
| ＂$\quad 17$ | 311 | III（Kakarwa） | D ○ II 24．9 | 4 | $2 \cdot 6$ | $6 \cdot 2$ |  |  |  |  |  |  |  |  |
| ＂21，22 | 38 | VI（Sakpur） | D ○ $448 \cdot 8$ | 8 | 3＇1 | $5 \cdot 7$ | 1099 | 69 | 063 | －107．3 | $357 \times 4$ |  |  |  |
| ＂13，14 | 246 | I（Bhacháo） | D o 141．9 | 8 | $2 \cdot 6$ | 5．6 |  |  |  |  |  | $357 * 3$ | 35719 | 5 |
| ＂19，21，22 | 240 | VI（Sakpur） | Do $741 \cdot 3$ | 12 | $2 \cdot 6$ | $5 \cdot 7$ | 608 | 33 | 054 | ＋ 53.6 | $357 \cdot 3$ |  |  |  |
| ＂13，14 | 254 | I（Bhacháo） | D o 1636.3 | 8 | $2 \cdot 6$ | 5．6 |  |  |  |  |  |  |  |  |
| ＂ 24 | 45 | VII（Karárho） | E $0 \times 120.7$ | 6 | $2 \cdot 6$ | 5．7 | 992 | 45 | 045 | －262．2 | $41 \cdot 5$ |  |  |  |
| ＂，19：21，22 | 242 | VI（Sakpur） | D ○ $2032 \cdot 6$ | 14 | $2 \cdot 6$ | $5 \cdot 7$ |  |  |  |  |  |  |  |  |
| ＂ 24 | 36 | V＇II（Karárho） | E o 838.3 | 10 | $2 \cdot 6$ | $5 \cdot 7$ | 736 | 20 | 026 | $-316 \cdot 3$ | 40＇9 | $40 \cdot 9$ | 41 | 13 |
| Feb．$\quad 2,4$ | 316 | VIII（Charakra） | D 024 51．0 | 10 | $2 \cdot 6$ | $5 \cdot 6$ |  |  |  |  |  |  |  |  |
| Jan． 24 | 256 | VII（Karárho） | E $01416 \cdot 1$ | 6 | $2 \cdot 6$ | $5 \cdot 7$ | 657 | 20 | －031 | $-378 \cdot 3$ | 40＇2 |  |  |  |
| ＂21，22 | 259 | VI（Sakpur） | D o $245^{\circ} \mathrm{O}$ | 10 | 2.6 | 5．7 |  |  |  |  | $418 \cdot 6$ | 418.6 | 418.52 |  |
| Feb．$\quad 2,4$ | 243 | VIII（Charakra） | D o 823．3 | 10 | $2 \cdot 6$ | 5．6 | 739 | 44 | ． 05 | $+614$ | $418 \cdot 6$ |  | 41852 | 5 |


| Astronomical Date |  | Number and Name of Station | Observed Vertical Angle |  | Height in feet |  | $\begin{aligned} & \text { 号 } \\ & \text { 苟 } \\ & \text { H } \\ & 0 \\ & 0 \end{aligned}$ | Terrestrial Refraction |  |  | Height in feet of 2nd Station above Mean Sea Level |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1857 | $\left.\begin{gathered} \text { Mean of } \\ \text { Timos } \\ \text { of obser- } \\ \text { vation } \end{gathered} \right\rvert\,$ |  |  |  | －${ }^{\text {a }}$ |  |  | 哭 |  |  | Trigonom | metrical ults |  |  |
|  |  |  |  |  | \％ | 訔 |  | $\underset{\Delta}{\mathbf{a}}$ |  |  | By each deduc－ deduc－ tion | Mean | Result |  |
|  | $\boldsymbol{h} m$ |  | －1＂ |  |  |  | ＂ |  |  |  |  |  |  | feet |
| Jan．5，6，7，28 | 245 | IV（Ráhida） | E 024 20．6 | 18 |  |  | 685 | 38 | $\cdot 055$ | ＋ $595{ }^{\circ} 9$ | $627 \cdot 9$ |  |  |  |
| ＂ 30,31 | 244 | IX（Joran） | D $03447 \times 5$ | 10 | $2 \cdot 6$ | $5 \cdot 6$ | 685 | 3 | －05 | ＋595＇9 | 6279 |  |  |  |
| ＂ 21,22 | 231 | VI（Sakpur） | E o 833.4 | 10 | 2.6 | $5 \cdot 7$ | 665 | 36 | $\cdot 053$ | ＋267．7 | 624.9 | $626 \cdot 0$ | 626 | 5 |
| ＂ 31 | 221 | IX（Joran） | D $\bigcirc 1846.4$ | 4 | 2.6 | $5 \cdot 6$ |  |  | － 3 | ＋267 |  |  |  | 5 |
| Feb．2，4 | 259 | VIII（Charakra） | E o $33^{8.1}$ | 10 | $2 \cdot 6$ | $5 \cdot 6$ |  | 42 | －056 | ＋206•8 | $625 \cdot 3$ |  |  |  |
| Jan．30，31 | 238 | IX（Joran） | Do15 $2 \cdot 7$ | 10 | $2 \cdot 6$ | $5 \cdot 6$ | 752 | 42 | 05 | ＋206• | 6253 |  |  |  |
| Feb．2，4 | 32 | VIII（Charakra） | E 0349.5 | 10 | 2.6 | 5.6 | 634 | 36 |  |  | $7 \cdot 0$ |  |  |  |
| ＂6，7 | 249 | X （Katror） | D 043 51．5 | 12 | 2.6 | $5 \cdot 6$ | 634 | 36 | 057 | ＋728． 5 | 11470 |  |  |  |
| Jan．30，31 | 256 | IX（Joran） | E O 13 27.1 | 8 | 2.6 | 5.6 | 882 | 55 | －062 | $+519.7$ | $1145{ }^{\circ} 1$ | $1146 \cdot 1$ | 1145 | 5 |
| Feb．6，7 | 31 | X （Katror） | D $02634^{\circ} \mathrm{O}$ | 8 | 2.6 | $5 \cdot 6$ | 882 | 55 | －62 | ＋5197 | 1145 | 1146 | 1145 | 5 |
| ＂ 10 | 34 | XI（Bolári） | E o $33^{6 \cdot 1}$ | 6 | 2.6 | 5.6 | 663 | 42 | －063 | ＋167．6 | $1146 \cdot 2$ |  |  |  |
| ＂6，7 | 3 I | $\mathbf{X}$（Katror） | D ○ 1334.4 | 10 | 2.6 | $5 \cdot 6$ | 663 | 42 | ．063 | $+167.6$ | $1{ }^{4} 46$ |  |  |  |
| ＂${ }^{\text {－}}$ 2，4 | 254 | VIII（Charakra） | E $01220 \cdot 8$ | 8 | 2.6 | 5.6 |  | 57 | 59 | $+560 \cdot 0$ | 978．5 |  |  |  |
| ＂9，10 | 315 | XI（Bolári） | D $02650 \cdot 6$ | 10 | $2 \cdot 6$ | $5 \cdot 6$ | 971 | 57 | －59 | $+560 \cdot$ | 9785 |  |  |  |
| Jan．30，31 | 252 | IX（Joran） | E $\bigcirc 1642 \cdot 6$ | 8 | 2.6 | 5.6 | 570 | 34 | － 059 | ＋353．3 | 978•7 | $978 \cdot 6$ | 978 | 5 |
| Feb．9，10 | 316 | XI（Bolári） | D 02526.3 | 10 | 2.6 | $5 \cdot 6$ | 570 | 34 | －59 | ＋353 3 | 978 | 978 |  | 5 |
| ＂6，7 | 3 1 | X （Katror） | D 01334.4 | 10 | 2.6 | $5 \cdot 6$ | 663 | 42 |  | $-167 \cdot 6$ | 978．5 |  |  |  |
| ＂ 1855 | 34 | XI（Bolári） | E○ 3 36．1 | 6 | 2.6 | 5.6 | 663 | 42 | －063 | $-1676$ | 9785 |  |  |  |
| Dec．3，4 | 255 | X （Katror） | D 01332.5 | 8 | 2.8 | 5.6 |  |  |  |  |  |  |  |  |
| Nov．28，29，30 | 246 | XII（Sámethra） | D ○ $044^{\circ} 4$ | 14 | $2 \cdot 6$ | $5 \cdot 6$ | 963 | 59 | －061 | $-181 \cdot 5$ | 964.6 |  |  |  |
| Dec． 8 | 252 | XI（Bolári） | D o 9 20．4 |  | $2 \cdot 7$ | $5 \cdot 6$ |  | 80 | －065 |  | 964.7 | 965．1 | 964 | 5 |
| Nov．29，30 | 244 | XII（Sámethra） | D o 834．1 | 8 | $2 \cdot 6$ | $5 \cdot 6$ | 1225 | 80 | 065 | －139 | 9647 | 965 I | 964 | 5 |
| Dec．12，13 | 34 | XIII（Wára） | D $01325^{\circ} \mathrm{I}$ | 8 | $2 \cdot 5$ | 5.6 | 661 |  | －061 |  | $965 * 9$ |  |  |  |
| Nov．29，30 | 226 | XII（Sámethra） | Eo 325.6 | 10 | 2.5 | 5.6 | 661 | 40 | －061 | $-163.9$ | 9659 |  |  |  |
| Dec．6，7，8 | 249 | XI（Bolári） | D 0 ○ 4.6 | 14 | 2.6 | 5.6 | 838 |  | －066 |  | $1129^{\circ} 5$ |  |  |  |
| ＂12，13 | 244 | XIII（Wára） | D 01218.4 | 8 | 2.6 | $5 \cdot 6$ | 838 | 55 | －066 | $+1509$ | 1295 |  |  |  |
| ＂3，4 | 258 | X （Katror） | D $0747 \times 7$ | 10 | 2.6 | 5.6 |  | 69 | －069 | $-16 \cdot 1$ | $1130 \cdot 0$ | 1129.4 | 1128 | 5 |
| ＂12，13 | 256 | XIII（Wára） | D $064 \mathrm{l} \cdot 8$ | 10 | $2 \cdot 6$ | 5.6 | 994 | 69 |  |  | H30 | 1129 |  | 5 |
| Nov．29，30 | 226 | XII（Sámethra） | E○ 325.6 | 10 | 2.5 | 5.6 | 661 | 40 | －061 | $+163.9$ | $1128 \cdot 6$ |  |  |  |
| Dec．12，13 | 34 | XIII（Wára） | D $013{ }^{2} 5^{\prime}$ I | 8 | 2.5 | $5 \cdot 6$ |  | 40 |  |  |  |  |  |  |
| Nov．28，29，30 | 251 | XII（Sámethra） | D 0943.5 | 14 | 4.4 | 5．6 | 806 |  |  |  | $875 \cdot 6$ |  |  |  |
| Dec．15，17，18 | 230 | XIV（Roha） | D o $215{ }^{\circ} \mathrm{O}$ | 16 | $2 \cdot 6$ | 5.6 | 806 | 49 | －061 | $-89.5$ | 875 ＇ |  |  |  |
| ＂12，13 | 250 | XIII（Wára） | D ○ 15 51－8 | 10 | $2 \cdot 7$ | 5.6 | 1076 | 69 |  | $-252 \cdot 1$ | $877 \times 3$ | $876 \cdot 5$ | 875 | 4 |
| ＂15，17，18 | 253 | XIV（Roha） | E 0 O 3.3 | 16 | $2 \cdot 6$ | 5.6 |  |  |  |  |  |  |  |  |
| ＂26，28 | 36 | XV（Dinoda） | D $02117^{\circ} \mathrm{O}$ | 8 | $4 \cdot 6$ | $5 \cdot 7$ | 935 | 58 | － 062 | $-396 \cdot 9$ | $876 \cdot 7$ |  |  |  |
| ＂15，17，18 | 250 | XIV（Roha） | Eo 728.0 | 14 | $2 \cdot 6$ | 5.6 | 935 | 58 |  | $-3969$ | 876 |  |  |  |


| Astronomical Date |  | Number and Name of Station | Observed Vertical Angle |  | Height in feet |  |  | TerrestrialRefraction |  |  | Height in feet of 2nd Station alove Mean Sea Level |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1855 | Mean of <br> Times <br> of obser－ <br> vation |  |  |  | \％ | 若 |  | 若 |  |  | $\underset{\text { Resu }}{ }$ | metrical ults |  |  |
|  |  |  |  |  |  | 葸 |  | $\Xi$ |  |  | $\begin{gathered} \text { By each } \\ \text { deduc- } \\ \text { tion } \end{gathered}$ | Mean | Result |  |
|  | $h m$ |  | － 11 |  |  |  | ＂ |  |  |  |  |  |  | feat |
| Nov．28，29，30 | 234 | XII（Sámethra） | E O O 5．2 | 14 |  | 5．6 |  |  |  |  |  |  |  |  |
| Dec．26，27，28 | 258 | XV（Dinoda） | D 01733.6 | 14 | 2.6 | $5 \cdot 7$ | 1187 | 74 | $\cdot 063$ | ＋308．2 | $1273{ }^{\circ} 3$ |  |  |  |
| ＂12，13 | 252 | XIII（Wára） | D ○ ○ 3．4 | 8 | $6 \cdot 1$ | $5 \cdot 6$ | 825 |  |  |  |  |  |  |  |
| ，26，27，28 | 240 | XV（Dinoda） | D 0126.0 | 14 | 2.6 | $5 \cdot 7$ | 825 | 51 |  | ＋1，44＊5 | 1273＊9 | 1273.5 | 1272 | 5 |
| ＂15，17，18 | 250 | XIV（Roha） | E 0728.0 | 14 | 2.6 | $5 \cdot 6$ |  |  |  |  |  |  |  |  |
| ＂26，28 | 36 | XV（Dinoda） | D $02117^{\circ}$ | 8 | 4.6 | $5 \cdot 7$ | 935 | 58 |  | ＋396＊${ }^{\circ}$ | 1273.4 |  |  |  |
| \＃15，17，18 | 241 | XIV（Roha） | D $0135^{\prime} 7$ | 12 | $2 \cdot 6$ | 5•6 |  |  |  |  |  |  |  |  |
| $" \underset{1857}{24,25}$ | 250 | XVI（Háthria） | Do 3 31．4 | 10 | $4 \cdot 3$ | $5 \cdot 7$ | 1181 | 72 | $\cdot 061$ | －178．7 | $697 \cdot 8$ |  |  |  |
| Feb．13，14 | 37 | XV（Dinoda） | D $02710 \cdot 8$ | 10 | 2.6 | $5 \cdot 7$ |  |  |  |  |  | 698． 2 | $696 \times 31$ | 5 |
| $\begin{aligned} & =25,26,28 \\ & 1855 \end{aligned}$ | 311 | XVI（Háthria） | E $01238 \cdot 7$ | 12 | 2.6 | $5 \cdot 6$ | 981 | 61 |  | －575＊ | $698 \cdot 5$ |  |  |  |
| Dec．15，17，18 | 38 | XIV（Roha） | D $02840 \cdot 8$ | 12 | $2 \cdot 8$ | $5 \cdot 6$ |  |  |  |  |  |  |  |  |
| $" \stackrel{21,22}{ } 1857$ | $33^{1}$ | XVII（Naliya） | E $\bigcirc 533 \cdot 8$ | 10 | $2 \cdot 6$ | $5 \cdot 6$ | 1506 | 63 | 042 | －758．9 | 116．1 |  |  |  |
| Feb．26，28 | 319 | XVI（Háthria） | D $02633^{\circ} 7$ | 8 | 2.6 | $5 \cdot 6$ |  |  |  |  |  |  |  |  |
| Mar．2，3 | 30 | XVII（Naliya） | E $0933^{\circ} \mathrm{O}$ | 10 | 2.6 | $5 \cdot 6$ | 1108 | 49 | －044 | －588．5 | $107 \cdot 8$ | $107 \cdot 8$ | 107 | 5 |
| Feb．13，14 | 254 | XV（Dinoda） | D o $3753^{\circ} \mathrm{O}$ | 10 | 2.6 | 5．7 |  |  |  |  |  |  |  |  |
| ＂16，17 | 246 | XVIII（Manjal） | E $02414{ }^{1}$ | 10 | 2.6 | $5 \cdot 6$ | 915 | 55 |  | $-837^{\circ} \circ$ | $435^{\circ} \mathrm{O}$ |  |  |  |
| ，25，26，28 | 34 | XVI（Háthria） | D 0182.6 | 14 | 2.6 | $5 \cdot 6$ |  |  |  |  |  | $435{ }^{\circ}$ | 435 | 5 |
| ＂16，17 | 39 | XVIII（Manjal） | E $\circ 716.8$ | 8 | $2 \cdot 6$ | $5 \cdot 6$ | 701 | 37 | 052 | 26r．4 | 434.9 |  |  |  |
| ，25，26，28 | 35 | XVI（Háthria） | D 02147.7 | 16 | 2.7 | 5．6 |  |  |  |  |  |  |  |  |
| Mar．5，6，7 | 32 | XIX（Saind） | E $0750 \cdot 8$ | 12 | 2.6 | $5 \cdot 6$ | 928 | 52 | 056 | －405．1 | 291＊2 |  |  |  |
| ＂ 2,3 | 251 | XVII（Naliya） | E） $357 \% 2$ | 16 | 2.6 | $5 \cdot 6$ |  |  |  |  |  | $293 * 2$ | 292 | 4 |
| ＂4，5，6，7 | 247 | XIX（Saind） | D $01446 \cdot 8$ | 24 | 2.6 | $5 \cdot 6$ | 680 | 24 | 035 | $+187 \cdot 4$ | 295＊2 |  |  |  |
| Feb．25，26，28 | 33 | XVI（Háthria） | D $0162 \mathrm{I}^{\circ}$ | 16 | 2.6 | 5．6 |  |  |  |  |  |  |  |  |
| Mar．9，10 | 314 | XX（Suri Muri） | EO O29 ${ }^{\text {1 }}$ | 10 | $2 \cdot 6$ | $5 \cdot 6$ | 1041 | 50 | 048 | － $257 \% 9$ | $438 \cdot 4$ |  |  |  |
| ＂5，6，7 | 251 | XIX（Saind） | E 0513.0 | 18 | 2.6 | 5．6 |  |  |  |  |  |  |  |  |
| ＂9，10 | 241 | XX（Suri Muri） | D $0146^{\circ} \mathrm{O}$ | 8 | 2.6 | $5 \cdot 6$ | 518 | 4 | －008 | ＋1473 | $440 \cdot 5$ | $438 \cdot 3$ | 437 | 12 |
| Feb．19，20 | 313 | XXI（Sura Gandára） | D 02642.3 | 8 | 2.6 | 5．6 |  |  |  |  |  |  |  |  |
| Mar．9，10 | 251 | XX（Suri Muri） | E 01519.9 | 12 | 2.6 | $5 \cdot 6$ | 747 | 41 |  | － $462 \cdot 3$ | 436•1 |  |  |  |
| Feb．25，26，28 | 245 | XVI（Háthria） | E 0120.2 | 14 | 2.6 |  |  |  |  |  |  |  |  |  |
| ＂19，20，21 | 253 | XXI（Sura Gandára） | D $01430 \cdot 3$ | 16 | $2 \cdot 6$ | $5 \cdot 6$ | 861 | 43 | 049 | ＋200•8 | $897{ }^{1} 1$ |  |  |  |
| ＂16，17 | 255 | XVIII（Manjal） | E 01723.5 | 10 | 2.6 | 5.6 |  |  |  |  |  |  |  |  |
| ，19，20，21 | 246 | XXI（Sura Gandára） | D 02755.6 | 12 | 2.6 | $5 \cdot 6$ | 695 | 40 | $\cdot 058$ | ＋ $463 \cdot 8$ | $898 \cdot 8$ |  |  |  |
| Mar．5，6，7 | ${ }^{2} 54$ | XIX（Saind） | E $01042 \cdot 3$ | 12 | 2.6 | $5 \cdot 6$ |  |  |  |  |  | $899{ }^{\circ}$ | 898 | 5 |
| Feb．20，21 | 322 | XXI（Sura Gandára） | D 0276 6 | 10 | $2 \cdot 7$ | $5 \cdot 6$ | 1089 | 58 | －053 | ＋ $606 \cdot$ | $899^{\circ}$ |  |  |  |
| Mar．9，10 | 251 | XX（Suri Muri） | E 01519.9 | 12 | 2.6 | 5.6 |  |  |  |  |  |  |  |  |
| Feb．19，20 | 313 | XXI（Sura Gandára） | D $\circ 2642 \cdot 3$ | 8 | 2.6 | $5 \cdot 6$ | 747 | 41 | －054 | ＋ $462 \cdot 3$ | 901•8 |  |  |  |

[^52]| Astronomical Date |  | Number and Name of Station | Observed Vertical Angle |  | Height in feet |  |  | Terrestrial Refraction |  |  | Height in feet of 2nd Station above Mean Sea Level |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1857 | Mean of Times of observation |  |  |  | - ${ }^{\text {a }}$ | 若 |  |  |  |  | $\underset{\text { Resr }}{\text { Trigonor }}$ | metrical alts |  |  |
|  |  |  |  |  | \% | $\stackrel{\stackrel{\rightharpoonup}{\omega}}{\underline{\omega}}$ |  | 号 | $\begin{aligned} & \text { on } \\ & \text { A } \\ & \hline \end{aligned}$ |  | By each deduction | Mean | Result |  |
|  | $h m$ |  | - ' " |  |  |  | " |  |  |  |  |  |  | feet |
| Mar. 9,10 | 250 | XX (Suri Muri) | D $013 \quad 6.6$ |  | $2 \cdot 6$ |  | 544 |  |  | -137.7 | $300 \cdot 6$ |  |  |  |
| " 19,20 | 243 | XXII (Bábia) | E○ 4 4.6 | 8 | $2 \cdot 6$ | $5 \cdot 6$ |  |  |  | - 37 |  |  |  |  |
| Feb.19,20,21 | 36 | XXI (Sura Gandára) | D $04049{ }^{\circ}$ | 12 | $2 \cdot 6$ | 5.6 |  |  |  |  |  |  |  |  |
| Mar. 19,20 | 228 | XXII (Bábia) | E 032119 | 10 | $2 \cdot 6$ | $5 \cdot 6$ | 557 |  |  | $-598.5$ | $300 \cdot 7$ |  |  |  |
| Feb.19,20,21 | 34 | XXI (Sura Gandára) | D $04057 \cdot 8$ | 12 | 2.6 | $5 \cdot 6$ | 736 |  |  | -765.6 | 133.6 |  |  |  |
| Mar. 22,24 | 235 | XXV (Lakhpat) | E $02942 \cdot 7$ | 10 | 2.6 | $5 \cdot 6$ | 736 |  |  | $-765 \cdot 6$ | 133.6 |  |  |  |
| " 19,20 | 239 | XXII (Bábia) | D $01647^{\circ} \mathrm{O}$ | 8 | 2.6 | 5.6 |  |  |  | 5.3 |  |  |  |  |
| " 22,24 | 241 | XXV (Lakhpat) | E 0.918 .5 | 8 | 2.6 | $5 \cdot 6$ | 431 |  |  | $-1653$ |  |  |  |  |
| " 9,10 | 258 | XX (Suri Muri) | D) 018 26.1 | 8 | 2.6 | 5.6 |  |  |  | -203.4 | $233 \cdot 5$ |  |  |  |
| " 11,15 | 239 | XXIII (Jamanwála) | E $0942 \cdot 7$ | 8 | 2.6 | $5 \cdot 7$ | 491 |  |  | -203 4 |  |  |  |  |
| " 19,20 | 35 | XXII (Bábia) | D o 8 59.5 | 8 | 2.6 | $5 \cdot 6$ | 718 |  |  | 62.9 | $235 \cdot 9$ |  |  |  |
| " 11,15 | 32 | XXIII (Jamanwála) | Do $32 \cdot 3$ | 18 | 2.6 | $5 \cdot 7$ |  |  |  |  | 2359 |  |  |  |
| " 19,20 | 247 | XXII (Bábia) | D 01427.7 | 8 | $2 \cdot 6$ | $5 \cdot 6$ | 714 |  |  | -187.7 | III'I |  |  |  |
| , 16,17,18 | 233 | XXIV (Pinjor Pir) | E O 323.5 | 12 | 2.6 | $5 \cdot 6$ | 714 |  |  | -187 7 | III 1 |  |  |  |
| " 11,15 | 243 | XXIII (Jamanwála) | D $01225^{\prime} 9$ | 10 | 2.6 | 5.7 | 521 |  |  | -122.1 | 112.6 |  |  |  |
| , 16,17,18 | 240 | XXIV (Pinjor Pir) | E○ $330^{\circ} 3$ | 14 | 2.6 | $5 \cdot 6$ | 521 |  |  | $-1221$ | 112.6 |  |  |  |
| (1) | 254 | XXV (Lakhpat) | D ○ $8 \quad 7 \times 3$ | 8 | 2.6 | $5 \cdot 6$ |  |  |  |  |  | 108.5 | 114 | 12 |
| (2) | 245 | XXIV (Pinjor Pir) | D ○ 5 52.7 | 24 | $2 \cdot 6$ | $5 \cdot 6$ | 853 |  |  | 2 | 103.9 |  |  |  |
| 1858 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Mar. 22 | 245 | XXVI (Sugandia) | D o o 49.5 | 6 | $2 \cdot 6$ | 5.6 | 615 |  |  | + 74.9 | 106** |  |  |  |
| Apr. 3,4,5,6 | 239 | XXIV (Pinjor Pir) | Do 97.2 | 24 | $2 \cdot 6$ | $5 \cdot 7$ | 615 |  |  | + 749 |  |  |  |  |
| " 3 | 526 | XXIV (Pinjor Pir) | D o 828.6 | 10 | $2 \cdot 6$ | 5.7 | 903 | 102 |  | $-67 \cdot 3$ | $41 \cdot 2$ |  |  |  |
| " . 8 | 527 | XXVII (Said Ali) | Do $3 \mathbf{2 3 . 2}$ | 10 | $2 \cdot 4$ | $4 \cdot 9$ |  |  |  |  |  |  | $30 \cdot 38$ | 24 |
| Mar. 29 | 244 | XXV (Lakhpat) | D o 929.3 | 6 | 2.6 | $5 \cdot 6$ | 568 |  |  |  | 42.4 |  |  |  |
| " 25 | 250 | XXVII (Said Ali) | E 0114.5 | 6 | $2 \cdot 6$ | $5 \cdot 6$ | 568 |  |  | $-89.7$ | 424 |  |  |  |
| " 24 | 536 | XXV (Lakhpat) | D o 958.5 | 8 | $2 \cdot 7$ | $4 \cdot 8$ |  |  |  |  | 55** |  |  |  |
| " 24 | 533 | XXVI (Sugandia) | D $0436 \cdot 9$ | 8 | $3 \cdot 3$ | $5 \cdot 6$ | 973 | 53 |  | 771 |  |  |  |  |
| " 25 | 1847 | XXVII (Said Ali) | D o $450^{\circ} \mathrm{O}$ | 10 | $2 \cdot 6$ | $5 \cdot 6$ | 625 | 30 | . 048 | $+0.8$ | 31.2 | 31.2 | $31^{\prime 27}$ | 24 |
| " 25 | 1847 | XXVI (Sugandia) | D 0453.0 | 10 | 2.4 | $4 \cdot 8$ |  | 3 |  |  |  |  |  |  |
| " 22 | 1847 | XXVI (Sugandia) | D o $440 \cdot 8$ | 8 | 2.4 | $5 \cdot 6$ | 609 | 47 |  | - 3.9 | $27 \cdot 4$ |  |  |  |
| 22 | 1847 | XXVIII (Guni) | D) 4120 | 8 | 2.4 | 4.9 | 609 |  |  |  |  | $29^{\circ} 4$ | 30'20 | $\ddagger$ |
| " 13 | 537 | XXVII (Said Ali) | D o 453.8 | 6 | 2.4 | $4 \cdot 8$ | 524 | -26 | . 050 | $+0.9$ | 313 |  |  |  |
| 13 | 536 | XXVIII (Guni) | D $0-5133$ | 6 | $2 \cdot 6$ | 5.6 | 524 |  |  | + 0.9 |  |  |  |  |
| " 10 | 543 | XXVIII (Guni) | D o $322 \cdot 0$ | 12 | 2.6 | 4.9 | 587 | 83 | 141 | + 4.7 | 34*9 | 34.9 | $35 \cdot 34$ | 25 |
| " 10 | 543 | XXXI (Mod) | D ○ 357.5 | 12 | $2 \cdot 6$ | $5 \cdot 6$ |  |  |  |  |  |  |  |  |
| Apr. 5 | 1825 | XXVII (Said Ali) | D o 446.0 | 6 | 3.8 | $4 \cdot 8$ | 629 | 48 |  | $-5.2$ | $25^{\circ} 2$ |  |  |  |
| 5 | 1825 | XXIX (Hakra) | D $0+16 \cdot 8$ | 6 | $2 \cdot 5$ | 4.9 | 629 |  |  |  | 252 |  |  |  |


| Astronomical Date |  | Number and Namo of Station | Observed Vertical Angle | suoțpaxesqo jo sequnn | Height in feet |  | $\begin{aligned} & 0 \\ & 4 \\ & 4 \\ & \text { 品 } \\ & \text { 号 } \\ & 0 \end{aligned}$ | Terrestrial Refraction |  |  | Height in feet of 2nd Station above Mean Sea Level |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1858 | Mean of <br> Times of obser－ vation |  |  |  | 䭴 | $\begin{aligned} & \text { ざ } \\ & \text { 品 } \end{aligned}$ |  | 震 |  |  | $\underset{\text { Resi }}{\text { Trigono }}$ | netrical lts |  |  |
|  |  |  |  |  | $\boldsymbol{\omega}$ | 䓢 |  |  | － |  | $\begin{array}{\|c} \text { By each } \\ \text { deduc- } \\ \text { tion } \end{array}$ | Mean | Result |  |
|  | $h \quad m$ |  | － 11 |  |  |  | ＂ |  |  |  |  |  |  | feet |
| Mar． 13 | 1843 | XXVIII（Guni） | D o 418.7 | 8 | $2 \cdot 6$ | 5＊6 |  |  |  |  |  |  |  | Joat |
| ＂ 13 | 1843 | XXIX（Hakra） | D o $355^{\circ} \mathrm{L}$ | 8 | $2 \cdot 8$ | $4 \cdot 9$ | 553 |  | －071 | － 2.7 | $27^{\circ} 5$ | $26 \cdot 4$ | 26 | 24 |
| ＂ 11 | 1840 | XXXI（Mod） | D 0212.7 | 6 | $2 \cdot 6$ | 4＊9 |  |  |  |  | 2．${ }^{*}$ |  |  |  |
| ＂ 11 | 1840 | XXIX（Hakra） | D o 259.5 | 6 | $2 \cdot 6$ | $5 \cdot 6$ | 651 |  | － 273 | ＋711 | $42 \cdot 4$ |  |  |  |
| $\# \quad 19$ | 528 | XXVIII（Guni） | D $0410 \cdot 7$ | 10 | $2 \cdot 4$ | 4•8 |  |  |  |  |  |  |  |  |
| $\# \quad 19$ | 530 | XXX（Patha－ki－beri） | D 0515.2 | 10 | $2 \cdot 6$ | $5 \cdot 6$ | 555 |  | －008 | $+8 \cdot 5$ | 38＊7 |  |  |  |
| ， 10 | 533 | XXXI（Mod） | Do $416 \cdot 8$ | 8 | $2 \cdot 6$ | 5．6 |  |  |  |  |  | $39^{\circ} 2$ | 39 | 25 |
| ＂． 10 | 534 | $\mathbf{X X X}$（Patha－ki－beri） | D $044 \mathrm{I} \cdot 3$ | 8 | $2 \cdot 3$ | $4 \cdot 8$ | 669 |  | － 110 | $+43$ | $39^{\circ} 6$ |  |  |  |
| ＂ 19 | 526 | $\mathbf{X X X}$（Patha－ki－beri） | D o $459^{\circ} 3$ | 10 | $2 \cdot 6$ | 5•6 |  |  |  |  |  |  |  |  |
| ＂ 19 | 527 | XXXII（Jim） | D o 450.7 | 10 | $2 \cdot 7$ | 4．9 | 593 |  | － 018 | － 0.8 | $38 \cdot 4$ |  |  |  |
| Apr． 15 | 547 | XXXI（Mod） | Do $45^{2.7}$ | －6 | $2 \cdot 8$ | $4 \cdot 8$ |  |  |  |  |  | $37^{*} 4$ | 37 | $\dagger$ |
| ＂ 15 | 547 | XXXII（Jim） | D 0.512 .1 | 6 | $2 \cdot 7$ | $5 \cdot 7$ | 663 | 42 | －063 | ＋111 | $36 \cdot 4$ |  |  |  |
| Mar． 6 | 1916 | XXXI（Mod） | D o $357^{\circ} \mathrm{O}$ | 12 | $2 \cdot 6$ | 5•6 |  |  |  |  |  |  |  |  |
| $\text { " } 6$ | 1933 | XXXIV（Dhui） | D 04780 | 12 | $2 \cdot 7$ | $4 \cdot 9$ | 529 | 33 | －062 | ＋177 | $37^{\circ} 0$ |  |  |  |
| Apr． 16 | 544 | XXXII（Jim） | D $0430 \cdot 6$ | 6 | $2 \cdot 6$ |  |  |  |  |  |  | $37^{\circ} 0$ | 37 | $\dagger$ |
| ＂ 16 | 545 | XXXIV（Dhui） | D o $424 \cdot 3$ | 6 | $2 \cdot 7$ | $4 \cdot 8$ | 593 |  | －064 | － 0.4 | 37＊0 |  |  | － |
| Feb．24，25，26 | 244 | XXXII（Jim） | Do $510 \cdot 2$ | 16 | $2 \cdot 7$ | 5•6 |  |  |  |  |  |  |  |  |
| ＂19，20 | 237 | XXXVII（Mugalbhin） | D o 634.9 | 12 | $2 \cdot 6$ | 5＊7 | 516 | $-82$ | －160 | $+107$ | 48＊ |  |  |  |
| ＂22，23 | 328 | XXXIV（Dhui） | D o $526 \cdot 7$ | 12 | 2•7 | $5 \cdot 6$ |  |  |  |  |  | $45^{\circ} 4$ | $44 * 62$ | 20 |
| ＂ 19 | 312 | XXXVII（Mugalbhin） | D o 619.4 | 6 | 2.6 | $5 \cdot 7$ | 538 | $-67$ | －125 | ＋ $5 \cdot 6$ | 42．6 |  |  |  |
| May 7 | 828 | $\mathbf{X X X}$（Patha－ki－beri） | D 043 3．9 | 8 | I 1 | 4•8 |  |  |  |  |  |  |  |  |
| ＂ 7 | 828 | XXXIII（Nurlisháh） | Do 359.7 | 8 | $1 \cdot 3$ | $4 \cdot 9$ | 549 |  | －085 | －0．5 | 38•7 |  |  |  |
| Feb．24，25，26 | 33 | XXXII（Jim） | Do $449^{\circ} \mathrm{I}$ | 18 | 2.6 | $5 \cdot 6$ |  |  |  |  |  |  |  |  |
| ＂17，18 | 3 I | XXXIII（Nurlisháh） | D o 512.4 | 14 | $2 \cdot 6$ | $5 \cdot 6$ | 471 | － 52 | － 111 | ＋ 277 | 39＊9 | 39＊7 | 40 | $\dagger$ |
| Apr． 19 | 536 | XXXV（Koti） | Do 6 9＊0 | 10 | $2 \cdot 8$ | 5＊7 |  |  |  |  |  |  |  |  |
| ＂ 19 | 536 | XXXIII（Nurlisháh） | Do $538 \cdot 5$ | 10 | $2 \cdot 7$ | 4.9 | 618 | －36 | －059 | －4＊3 | $40 \cdot 4$ |  |  |  |
| $" \quad 12$ | 1842 | XXXII（Jim） | Do $4 \quad 0.6$ | 8 | 2．7 | 5＊7 |  |  |  |  |  |  |  |  |
| $, \quad 12$ | 1842 | XXXV（Koti） | D $0438 \cdot 5$ | 8 | $2 \cdot 7$ | $4 \%$ | 583 | 41 | －07c | $+5.8$ | $43^{\circ} 0$ |  |  |  |
| Feb．19，20 | $3 \quad 9$ | XXXVII（Mugalbhin） | $\text { D } \circ 538 \cdot 5$ | 16 | $2 \cdot 6$ | $5 \cdot 7$ |  |  |  |  |  |  |  |  |
| Mar．1，2 | 243 | XXXV（Koti）． | Do 551．9 | 10 | $2 \cdot 7$ | $5 \cdot 7$ | 528 | －70 | －132 | ＋ 1.8 | $46 \cdot 4$ | 44＊3 | 45 | 27 |
| Apr． 19 | 536 | XXXIII（Nurlisháh） | D $0538 \cdot 5$ | 10 | $2 \cdot 7$ | 4＊9 | 618 |  |  |  |  |  |  |  |
| $\text { " } 19$ | 536 | XXXV（Koti） | D 069.0 | 10 | $2 \cdot 8$ | 5．7 | 618 | $-36$ | －059 | $+43$ | $43 \cdot 6$ |  |  |  |
| May 6 | 828 | XXXIII（Nurlisháh） | Do $45^{2 \cdot 3}$ | 8 | I 3 | 4•8 |  |  |  |  |  |  |  |  |
| ＂ 6 | 828 | XXXVI（Nindámani） | D 0412.0 | 8 | $1 \cdot 3$ | 4.9 | 765 |  |  | －7．6 | $32^{1} 1$ |  |  |  |
| A pr． 20 | 540 | XXXV（Koti） | D 0552.2 | 8 | $2 \cdot 8$ | 5•7 |  |  |  |  |  | 32•3 | 33 | $\dagger$ |
| ＂ 20 | 540 | XXXVI（Nindámani） | D 0420.1 | 8 | $2 \cdot 7$ | 4.9 | 542 | －26 | $\cdot 047$ | －II＇9 | 32.4 |  |  |  |

＊Rejected．$\dagger$ Not forthcoming．

| Astronomical Date |  | Number and Name of Station | Obserred Vertical Angle |  | Height in feet |  |  | Terrestrial Refraction |  |  | Height in foet of 2nd Station above Mean Sea Level |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1858 | Mean of <br> Times of obser－ vation |  |  |  | ＊ | $\begin{aligned} & \text { 若 } \\ & \text { ang } \end{aligned}$ |  | 范 |  |  | Trigono Re | netrical alta |  |  |
|  |  |  |  |  | 感 | $\underset{\Delta}{\leftrightarrows}$ |  |  |  |  | By each deduc－ tion | Mean | Result |  |
|  |  |  | － 1 |  |  |  | ＂ |  |  |  |  |  |  | feet |
| Mar． 2 | $324$ | XXXV（Koti） | D o $443 \cdot 5$ | 8 | $2 \cdot 6$ | $5 \cdot 7$ | 684 |  | －08I | ＋411 | $85^{\circ} 4$ |  |  |  |
| Feb．12，13，14 | 245 | XXXVIII（Abansháh） | $\text { D ○ } 848 \cdot 3$ | 16 | $2 \cdot 7$ | 5＇7 | 684 | $-55$ | －081 | ＋ 411 | 854 |  |  |  |
| ＂15，16 | 235 | XXXVI（Nindámani） | Do 3 52．2 | 12 | $2 \cdot 6$ | $5 \cdot 6$ |  |  |  | ＋5I．8 | 84．1 |  |  |  |
| ＂13，14 | 236 | XXXVIII（Abansháh） | D O 918.4 | 12 | $2 \cdot 6$ | $5 \cdot 7$ | 649 |  | 095 | ＋ 518 | 84 |  |  |  |
| Apr． 21 | 547 | XXXV（Koti） | D $0446 \cdot 8$ | 12 | 2.6 | 5．7 | 620 |  | ． 038 | ＋ 29 | 47＊2 |  |  |  |
| ＂ 21 | 549 | XXXIX（Gada） | D 053 3．0 | 12 | $2 \cdot 7$ | 4＊8 | 620 |  | O3 | ＋ 29 | 472 |  |  |  |
| ＂ 23 | 548 | XXXVIII（Abansháh） | D o 740.9 | 10 | $2 \cdot 9$ | $4 \cdot 8$ | 724 | 36 | －050 | $-46 \cdot 0$ | 38－7 | $43^{\circ} 4$ | 45＇24 | 25 |
| ＂ 23 | 544 | XXXIX（Gada） | D 0 3 25．3 | 10 | $2 \cdot 6$ | $5 \cdot 6$ | 724 |  |  |  |  |  |  |  |
| Feb．19，20 | 255 | XXXVII（Mugalbhin） | D o $45^{2.5}$ | 12 | $2 \cdot 6$ | 5•7 | 462 | －47 | －102 | － 0.2 | $44^{*} 4$ |  |  |  |
| ＂9，10，11 | 235 | XXXIX（Gada） | D $045^{\circ} \mathrm{I}$ | 18 | 2.6 | 5•6 | 462 | －47 | 102 | － 2 | 44 |  |  |  |
| ＂12，13，14 | 244 | XXXVIII（Abansháh） | D o $732 \cdot 8$ | 16 | $2 \cdot 6$ | 5＊7 | 643 | －22 | －034 | －31．5 | $54^{\circ} \mathrm{I}$ |  |  |  |
| ＂5，6，8 | 257 | XL（Ravda） | Do 412．2 | 20 | $2 \cdot 6$ | $5 \cdot 6$ | 643 | －22 |  | 32 |  | $5 \cdot 8$ | 5 | 5 |
| Apr． 22 | 545 | XXXIX（Gada） | D o 350.8 | 12 | $2 \cdot 6$ | 5•6 | 60 |  |  |  |  | 55 |  | 5 |
| ＂ 22 | 545 | XL（Randa） | D o $510 \cdot 5$ | 12 | $2 \cdot 8$ | 4.9 | 6 | 39 |  |  | 575 |  |  |  |
| ＂ 23 | 545 | XXXIX（Gada） | D 0 4．${ }^{20} 1$ | 12 | $2 \cdot 7$ | $5 \cdot 6$ | 583 |  |  | ＋ 2.8 | 48＊ |  |  |  |
| ＂． 23 | 545 | XLI（Khar） | D o 436.6 | 12 | $2 \cdot 8$ | $4 \cdot 9$ | 58 | 32 | － |  |  |  |  |  |
| Feb．6，8 | 38 | XL（Randa） | D $0457 \cdot 3$ | 16 | 9＊7 | 5．6 |  |  |  |  |  | 50＇3 | 51 | $25^{\circ} 1$ |
| ＂ 4 | 317 | XLI（Khar） | D 0430.4 | 8 | $9 \cdot 7$ | $5 \cdot 6$ | 503 | －49 | ．096 |  | $52 \cdot 5$ |  |  |  |
| ＂12，13，14 | 250 | XXXVIII（Abansháh） | $\text { Do } 55 \mathrm{I} \cdot 8$ | 14 | $2 \cdot 6$ | 5•7 | 682 |  |  | －6．6 | $79^{\circ} 0$ |  |  |  |
| Jan．20，21 | 236 | XLII（Bíbi Mariam） | D 0512.4 | 8 | $2 \cdot 6$ | 5．6 | 682 | 18 | ． 027 | － 6.6 | 790 |  |  |  |
| Feb．5，6，8 | 251 | XL（Randa） | D O 22.4 | 22 | $2 \cdot 6$ | 5．6 | 467 |  | － 000 | $+27.7$ | $83 \cdot 5$ | $83 \cdot 3$ | 84 | 5 |
| Jan．20，21 | 223 | XLII（Bíbi Mariam） | D o 6 3．1 | 10 | $2 \cdot 6$ | $5 \cdot 6$ | 467 |  | －009 | ＋ 27 | 835 | 83 |  | 5 |
| Apr． 29 | 836 | XLIII（Vikia） | D $0317^{\circ} \mathrm{O}$ | 6 | 1．3 | 5．6 | 787 |  | －128 | ＋41．6 | 87．3 |  |  |  |
| ＂ 29 | 842 | XLII（Bíbi Mariam） | D $0650^{\circ} 5$ | 6 | 1.1 | $4 \cdot 8$ | 787 |  |  | ＋ 416 | 873 |  |  |  |
| $\text { " } 25$ | 63 | XI」（Randa） | $\text { D } \circ 459^{\circ} 7$ | 10 | $2 \cdot 7$ | $5 \cdot 6$ |  |  | －069 | －11．4 | $44^{\circ} 4$ |  |  |  |
| \％ 25 | 63 | XLIII（Vikia） | D o 336.6 | 10 | $2 \cdot 8$ | $4 \cdot 9$ | 579 | 40 | －069 | $-114$ | 444 |  |  |  |
| Feb．3，4 |  |  | D $0536 \cdot 5$ |  | $2 \cdot 6$ | $5 \cdot 6$ |  |  |  |  |  | $45 \cdot 7$ | 4710 | 20 |
| $\left\|\begin{array}{cc} \text { Feb. } & 3,4 \\ .0 & 1,2 \end{array}\right\|$ | 2 21 | XLIII（Vikia）． |  | 12 |  | 5.6 5.6 | 505 | －59 | 117 | $-3.2$ | $47^{\circ} 1$ |  |  |  |
| ＂1，2 | 310 | XLIII（Vikia）• | D $0434 * 7$ | 18 | 11．5 | $5 \cdot 6$ |  |  |  |  |  |  |  |  |
| Jan．20，21 | 222 | XLII（Bíbi Mariam） | E $043 \mathrm{I}^{\circ} \mathrm{O}$ | 8 | $2 \cdot 6$ | $5 \cdot 6$ | 451 |  |  | $+109^{\circ} 4$ | 193.6 |  |  |  |
| ＂$\quad 1,2$ | 238 | XLIV（Dománi） | D O 11 57．9 | 10 | $3^{\circ} 0$ | $5 \cdot 6$ | 451 |  |  | ＋109 4 | 193 |  |  |  |
| ＂24，26，Feb． 2 | 316 | XLIII（Vikia） | E 0 1 $36 \cdot 7$ | 16 | $2 \cdot 6$ | 5＊6 | ． 684 |  | $.020$ | $+146^{\circ} 0$ | 191．7 | $192{ }^{\circ} 7$ | 19117 $+5 \%$ | 5 |
| ＂1，2 | － 229 | XLIV（Dománi） | D $01251 \cdot 2$ | 10 | $2 \cdot 6$ | $5 \cdot 6$ | ． 684 | 14 |  | ＋1460 | 1917 |  |  |  |
| 1857－58 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Jan．20，21 | 249 | XLII（Bíbi Mariam） | D o $842 \cdot 7$ | 18 | ＊3．6 | $5 \cdot 6$ | 624 | －34 | －054 | － $52 \cdot 3$ | 31＇9 |  |  |  |
| Dec．30，31 | $3 \quad 3$ | XLV（Sukpur） | Do 3 5\％ | 18 | 2.6 | $5 \cdot 7$ |  |  |  |  |  | 31•2 | 31 | 10＇1 |
| Jan．1，2 | 247 | XLIV（Dománi） | D 014 1．4 | 8 | $2 \cdot 7$ | $5 \cdot 6$ | 638 | 16 | －025 | $-165 \cdot 7$ | $30 \cdot 5$ | 3. |  |  |
| Dec．22，29，30，31 | 240 | XLV（Sukpur） | E $0335^{\circ} 4$ | 26 | $2 \cdot 6$ | 5．7 | 638 | 16 | 025 | －1657 | 305 |  |  |  |

[^53]| Astronomical Date |  | Number and Name of Station | Observed Vertical Angle |  | Height in feet |  |  | Terrestrial Refraction |  |  | Height in feet of 2nd Station above Mean Sea Level |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1857.58 | Mean of Times of obserration |  |  |  |  |  |  | $\begin{aligned} & \text { 苞 } \\ & \text { O} \end{aligned}$ |  |  | $\begin{gathered} \text { Trigonometrical } \\ \text { Results } \end{gathered}$ |  | Final Result |  |
|  |  |  |  |  |  |  |  |  |  |  | By each deduc. tion | Mean |  |  |
|  | h m | XLIV (Dománi) |  | 816 | $\begin{aligned} & 2.6 \\ & 2.6 \end{aligned}$ | $5 \cdot 6$5.6 | $1073$ | 64 | $\cdot 059$ | +250'4 | $446 \cdot 6$ |  |  | jeet |
| Jan. 1,2 | 213 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Dec.17,18,19 | 241 | CVII (Sáhiji) | D 015 54*O |  |  |  |  |  |  |  |  |  |  |  |
| , 22,29,30,31 | 235 | XLV (Sukpur) | EO $359^{\circ} \mathrm{O}$ | 24 | $2 \cdot 6$ | $5 \cdot 7$ |  |  |  |  |  | $444 \cdot 9$ | 5 | 3 |
| " 18,19. | 231 | CVII (Sáhiji) | Do21 7.2 | 12 | $2 \cdot 6$ | $5 \cdot 6$ | 1117 | 50 | - 045 | +412.0 | $443^{2}$ |  |  |  |
| Jan. 24, 26,Feb. 2 | 257 | XLIII (Vikia) | E 0.023 .8 | 26 | $2 \cdot 6$ | 5.6 |  |  | -026 |  |  |  |  |  |
| Dec. 10,11 | 222 | CIV (Károthol) | Do14 $53^{\circ} \mathrm{O}$ | 10 | $2 \cdot 2$ | 5.6 | 902 | 24 | O26 | +202.6 | 2497 |  |  |  |
| Jan. 1,2 | 219 | XLIV (Dománi) | D o 353.9 | 8 | $2 \cdot 6$ | 5.6 | 848 | 47 | $\cdot 056$ | +62.2 | $258 \cdot 4$ | $258 \cdot 4$ | $\begin{array}{r} \dagger \\ 260 \end{array}$ | 3 |
| Dec. 10,11 1853 | 213 | CIV (Károthol) | D 0854.4 | 10 | $2 \cdot 4$ | $5 \cdot 6$ | 848 | 47 | 05 | + 62. | 2584 | 258 |  | 3 |
| Feb. 24 | 340 | CVII (Sáhiji) | D 01345 \% | 4 | 1.2 | 5.3 |  | 60 | -062 | -186.6 | $258 \cdot 3$ |  |  |  |
| 18 | 339 | CIV (Karothol) | D 0043.7 | 4 | I-2 | 5*3 | 972 | 60 | 062 | -186.6 | 2583 |  |  |  |

## Description of Spirit-levelled Points.

When determining the Spirit-levelled heights, given on pages $81_{L_{L}}$ to $87{ }_{L}$, the levelling staff stood on the surfaces hereafter described.

XIV (Wándia)
I (Bhacháo)
VI (Sakpur)
VIII (Charakra)
On the upper mark-stone.

XVI (Háthria)

XXV (Lakhpat)

XXVI (Sugandia)

XXVII (Said Ali)

On a stone at the foot of the knoll on which the station stands, height $=563 \cdot 12$ feet. To this value $133 \cdot 19$ feet (the height of the upper surface of the circular pillar above this stone) being added, the height of the upper surface of the circular pillar was found to be $696 \cdot 31$ feet.

On a peg at the foot of the station, height $=94 \cdot 19$ feet. To this value $37 \cdot 94$ feet (the height of the upper mark-stone above this peg) being added, the height of the upper mark-stone was found to be $132 \cdot 13$ feet.

On a peg at the foot of the station, height $=5 \cdot 94$ feet. To this value $25 \cdot 33$ feet (the height of the upper mark-brick above this peg) being added, the height of the upper mark was found to be $31 \cdot 27$ feet.

On a peg at the foot of the station, height $=7.91$ feet. To this value 22.47 feet (the height of the upper mark-stone above this peg) being added, the height of the upper mark-stone was found to be $30 \cdot 38$ feet.

Description of Spirit-levelled Points-(Continued).

XXVIII (Guni)

XXXI (Mod) On a peg at the foot of the station, height $=7 \cdot 47$ feet. To this value $27 \cdot 87$ feet
On a peg at the foot of the station, height $=7 \cdot 47$ feet. To this value $27 \cdot 87$ feet
(the height of the upper surface of the circular pillar above this peg) being added, the height of the upper surface of the circular pillar was found to be $35 \cdot 34$ feet.

XXXVII (Mugalbhin) On a peg at the foot of the station, height $=20 \cdot 52$ feet. To this value $24 \cdot 10$ feet (the height of the upper surface of the circular pillar above this peg) being added, the height of the upper surface of the circular pillar was found to be $44 \cdot 62$ feet.

XXXIX (Gada)

XLIII (Vikia)
On a peg at the foot of the station, height $=5 \cdot 96$ feet. To this value $24 \cdot 24$ feet (the height of the upper mark-stone above this peg) being added, the height of the upper mark-stone was found to be $30 \cdot 20$ feet.

On a peg at the foot of the station, height $=21 \cdot 61$ feet. To this value $23 \cdot 63$ feet (the height of the upper mark-brick above this peg) being added, the height of the upper mark was found to be $45 \cdot 24$ feet.

On a peg at the foot of the station, height $=28 \cdot 61$ feet. To this value $18 \cdot 49$ feet (the height of the upper surface of the circular pillar above this peg) being added, the height of the upper surface of the circular pillar was found to be $47 \cdot 10$ feet.

XLIV (Dománi) . On the mark-stone at the ground level, height $=191 \cdot 17$ feet.


July, 1890.
W. H. COLE,

In charge of Computing Office.

## CUTCH COAST SERIES.

## PRINCIPAL TRIANGULATION. AZIMUTHAL OBSERVATIONS.

## At XVI (Háthria)

Lat. N. $23^{\circ} 27^{\prime} 14^{\prime \prime} \cdot 85$; Long. E. $69^{\circ} 5^{\prime} 13^{\prime \prime} \cdot 01=46^{n} 20^{\prime \prime} 9$; Height above Mean Sea Level, 696 feet.
October 1856 ; observed by Lieutenant D. J. Nasmyth, r.e., with Troughton and Simms' 18 -inch Theodolite No. 2.

Star observed
Mean Right Ascension 1856.0
Mean North Polar Distance 1856.0
Local Mean Times of Elongation, October 5
a Ursæ. Minoris (East and West).
$1^{\mathrm{h}} \quad 6^{\mathrm{m}} 49^{\mathrm{s}}$
$1^{\circ} 27^{\prime} 29^{\prime \prime} \cdot 4^{2}$
$\left\{\right.$ Eastern $6^{\text {bin }} 12^{\mathrm{m}}$
$\{$ Western 185



## CUTCH COAST SERIES.

## PRINCIPAL TRIANGULATION. AZIMUTHAL OBSERVATIONS.

## At XVI (Háthria)

Lat. N. $23^{\circ} 27^{\prime} 14^{\prime \prime} \cdot 85$; Long. E. $69^{\circ} 5^{\prime} 13^{\prime \prime} \cdot 01={ }_{4}^{h} 3^{m} 20^{\prime} \cdot 9$; Height above Mean Sea Level, 696 feet. October 1856 ; observed by Lieutenant D. J. Nasmyth, r.e., with Troughton and Simms' 18 -inch Theodolite No. 2.

Star observed a Ursæ. Minoris (East and West).
Mean Right Ascension 1856.0
Mean North Polar Distance 1856.0

$$
\begin{array}{lll}
1^{\mathrm{h}} & 6^{\mathrm{m}} & 49^{\mathrm{B}} \\
1^{\circ} & 27^{\prime} & 29^{\prime \prime \prime} \cdot 42
\end{array}
$$

Local Mean Times of Elongation, October 5



|  |  |  | fact left |  |  |  | pace bight |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Observed Horizontal Angle： Diff．of Readings Ref．Mark－Star |  | Reduction in Arc to Time of Elongation | Reduced Observation Ref．Mark－Star at Elongation | Observed Horizontal Angle： Diff．of Readings Ref．Mark－Star |  | Reduction in Arc to Time of Elongation | Reduced Observation Ref．Mark－Star at Elongation |
| Oct． 7 | E． | $\begin{array}{cc} 0 & 1 \\ 200 & 22 \\ & 8 \\ 20 & 22 \end{array}$ | $\begin{array}{rrr}0 & 1 & \prime \prime \\ -10 & 12 & 9 \cdot 70 \\ 12 & 9 \cdot 70 \\ 11 & 53 \cdot 53 \\ 11 & 50.53\end{array}$ | $\begin{array}{rr} \boldsymbol{m} & 8 \\ 2 & 10 \\ 3 & 39 \\ 16 & 56 \\ 18 & 19 \end{array}$ | $\begin{array}{rrr} -0 & 0.25 \\ 0 & 0.72 \\ 0 & 15.58 \\ 0 & 18.23 \end{array}$ | $\begin{array}{r} -1012 \begin{array}{r} 9.95 \\ 10.42 \\ 9.11 \\ 8.76 \end{array} \\ 8.7 \end{array}$ | $\begin{array}{rrr}\circ & \prime & \prime \prime \\ -10 & 12 & 14.96 \\ & 12 & 14.73 \\ 12 & 8.74 \\ 12 & 7.20\end{array}$ | $\begin{array}{rr} \boldsymbol{m} & 8 \\ 5 & 31 \\ 3 & 14 \\ 9 & 35 \\ 10 & 58 \end{array}$ | $\begin{array}{rr} -0 & 1.66 \\ 0 & 0.57 \\ 0 & 4.98 \\ 0 & 6.54 \end{array}$ | 0 $\prime \prime$  <br> 10 12 16.62 <br>  15.30  <br>   13.72 <br>  13.74  |
| ＂ 7 | W． | 2022 |  |  |  |  | － $7 \begin{array}{llr}2 & 4.13 \\ & 1 & 58 \\ & & \\ & \end{array}$ | $\begin{array}{ll}6 \\ 2 & 26 \\ 2\end{array}$ | +0 0 2.24 | －7 $\begin{array}{r} \\ \hline\end{array}$ |
| ＂ 8 | E． | $\begin{gathered} 210 \cdot 28 \\ 80 \quad 29 \end{gathered}$ | $\begin{array}{rrr}-10 & 12 & 16 \cdot 26 \\ & 12 & 16.50 \\ & 12 & 5.53 \\ & 12 & 4.60\end{array}$ | $\begin{array}{rr} 2 & 32 \\ 0 & 53 \\ 14 & 24 \\ 15 & 47 \end{array}$ | $\begin{array}{rr} -0 & 0.35 \\ 0 & 0.04 \\ 0 & \mathrm{II} \cdot 25 \\ 0 & 13.52 \end{array}$ | $\begin{array}{ll} -1012 & 16 \cdot 61 \\ & 16 \cdot 54 \\ & 16.78 \\ & 18 \cdot 12 \end{array}$ | 101210.03 1214.94 1215.96 1215.83 | $\begin{array}{rrr}11 & 9 \\ 9 & 21 \\ 5 & 37 \\ 7 & 5\end{array}$ | $\begin{array}{rr} -0 & 6.74 \\ 0 & 4.75 \\ 0 & 1.71 \\ 0 & 2.73 \end{array}$ | $\begin{array}{r} \text { - } 101216.77 \\ 19.69 \\ 17.67 \\ 18.56 \end{array}$ |
| ， 8 | W． | $\begin{gathered} 210 \quad 28 \\ \& \quad 28 \\ 3028 \end{gathered}$ |  | $\begin{array}{llr}15 & 1 \\ 13 & 37 \\ 11 & 57 \\ 16 & 47 \\ 18 \\ 18 & 19 \\ 23 & 42 \\ 25 & 31\end{array}$ |  | $\begin{array}{rl} -7 & 66 \cdot 56 \\ & 64.46 \\ & 65 \cdot 71 \\ & 65.41 \\ & 65 \cdot 25 \\ & 67 \cdot 65 \\ & 66 \cdot 29 \end{array}$ | $\begin{array}{rrr}7 & 2 & 28 \cdot 87 \\ & 2 & 25 \cdot 00 \\ & 2 & 3 \cdot 44 \\ & 2 & 3 \cdot 16\end{array}$ | $\begin{array}{ll}21 & 44 \\ 20 & 19\end{array}$ 544 4 II | $\left\lvert\, \begin{array}{rr} 0 & 25 \cdot 64 \\ 0 & 22.43 \\ 0 & 1 \cdot 78 \\ 0 & 0.95 \end{array}\right.$ | $\begin{array}{r} 7 \quad 63.23 \\ 62.57 \\ 61.66 \\ \\ \\ \\ \\ \\ \hline 2.21 \end{array}$ |
| ＂ 9 | E． | $\begin{array}{r} 22039 \\ \& \\ 4039 \end{array}$ | $\begin{array}{rrr}10 & 12 & 16 \cdot 90 \\ & 12 & 17.57 \\ & 12 & 12 \cdot 14 \\ & 12 & 10.14\end{array}$ | $\begin{array}{rr} 445 \\ 3 & 15 \\ 11 & 15 \\ 13 & 10 \end{array}$ | $\begin{array}{rr} -\mathrm{o} & \mathrm{I} \cdot \mathbf{2 2} \\ \mathrm{o} & 0 \cdot 57 \\ \mathrm{o} & 6 \cdot 87 \\ \mathrm{o} & 9 \cdot 42 \end{array}$ | $\begin{array}{rr}-1012 & 18.12 \\ & 18.14 \\ & 19.01 \\ & 19.56\end{array}$ | $\begin{array}{rrr}1012 & 10.60 \\ 12 & 13.77 \\ 12 & 18.40 \\ 12 & 17.73\end{array}$ | $\begin{array}{rrr}12 & 2 \\ 10 & 47 \\ 2 & 19 \\ 3 & 54\end{array}$ | $\begin{array}{rl} -0 & 7.85 \\ 0 & 6.30 \\ 0 & 6.29 \\ 0 & 0.82 \end{array}$ | $\begin{array}{r} -101218.45 \\ 20.07 \\ 18.69 \\ 18.55 \end{array}$ |
| ＂ 10 | E． | $\begin{gathered} 230 \quad 50 \\ \& \\ 50 \quad 50 \end{gathered}$ | $\begin{array}{rrr} \\ -10 & 1215.67 \\ -\quad 12 & 16.56 \\ \text { 12 } & 0.23 \\ & 11 & 56.23\end{array}$ | $\begin{array}{rr} 0 & 31 \\ 1 & 7 \\ 18 & 17 \\ 20 & 37 \end{array}$ | $\begin{array}{rr} -0 & 0.01 \\ 0 & 0.07 \\ 0 & 18 \cdot 15 \\ 0 & 23.09 \end{array}$ | $\begin{array}{r} -101215.68 \\ 16.63 \\ \\ 18.38 \\ \\ 19.32 \end{array}$ | $\begin{array}{rrr}-10 & 1212.97 \\ 12 & 14.84 \\ & 1214.73 \\ & 12 & 12.80\end{array}$ | $\begin{array}{r} 820 \\ 636 \\ 8 \quad 24 \\ 10 \quad 19 \end{array}$ | $\begin{array}{rr} -\mathrm{o} & 3 \cdot 77 \\ \mathrm{o} & 2.36 \\ \mathrm{o} & 3.84 \\ \mathrm{o} & 5 \cdot 77 \end{array}$ | $\begin{array}{lll} -10 & 13 & 16.74 \\ & 17.20 \\ & 18.57 \\ & 18.57 \end{array}$ |
| ， 10 | W． | $\begin{gathered} 23049 \\ \& \quad 49 \\ 5049 \end{gathered}$ | $\begin{array}{rrr}7 & 2 & 7.66 \\ & 2 & 8.83 \\ & 2 & 11.33 \\ & 214.74\end{array}$ | $\begin{array}{rr} 5 & 38 \\ 3 & 55 \\ 10 & 11 \\ 11 & 58 \end{array}$ |  | $\begin{array}{rr} -7 & 165.94 \\ & 68 \cdot 00 \\ & 65.70 \\ & 66 \cdot 98 \end{array}$ | $\begin{array}{rrr}7 & 2 & 21.60 \\ & 2 & 17 \cdot 04 \\ & 2 & 10 \cdot 23 \\ & 2 & 9.27\end{array}$ | $\begin{array}{rr} 13 & 56 \\ 12 & 34 \\ 2 & 21 \\ 3 & 46 \end{array}$ | $\begin{array}{rr} 0 & 10.53 \\ 0 & 8.58 \\ 0 & 0.30 \\ 0 & 0.77 \end{array}$ | $\begin{aligned} & -7 \quad 71 \cdot 07 \\ & 68 \cdot 46 \\ & \\ & 69.93 \\ & \\ & 68.50 \end{aligned}$ |
| ， 11 | E． | $\begin{gathered} 220 \quad 39 \\ \& \\ 40 \quad 39 \end{gathered}$ | （10 $12 \begin{array}{rr}13 \cdot 06 \\ 12 & 11 \cdot 17 \\ 11 & 36 \cdot 17 \\ 11 & 29.40\end{array}$ | $\begin{array}{rrr} 8 & 8 \\ 10 & 15 \\ 27 & 48 \\ 29 & 1 \end{array}$ | $\begin{array}{rr} -0 & 3 \cdot 59 \\ 0 & 5 \cdot 71 \\ 0 & 41 \\ 0 & 45 \cdot 67 \\ 0 & 45 \cdot 68 \end{array}$ | $\begin{array}{r} -101216.65 \\ 16.88 \\ 18 \cdot 14 \\ 15.08 \end{array}$ | $\begin{array}{r} -101214.40 \\ 1212.74 \\ 1152.70 \\ 1152.30 \end{array}$ | $\begin{array}{r} 124 \\ 2 \\ 241 \\ 1835 \\ 1957 \end{array}$ | $\left\lvert\, \begin{array}{rr} -0 & 0.11 \\ 0 & 0.39 \\ 0 & 18 \cdot 74 \\ 0 & 21.61 \end{array}\right.$ | $\begin{array}{r} -101214.51 \\ 13.13 \\ 11.44 \\ 13.91 \end{array}$ |
| ， 11 | W． | $\begin{gathered} 220 \quad 3^{8} \\ \& \\ 40 \quad 38 \end{gathered}$ | $\begin{array}{rrr} -7 & 2 & 1.47 \\ 2 & 2.94 \\ & 2 & 10 \cdot 87 \\ & 2 & 15.57 \end{array}$ | $\begin{array}{rrr}3 & 54 \\ 2 & 4 \\ 13 & 42 \\ 15 & 8\end{array}$ | $\begin{array}{rr} 0 & 0.82 \\ 0 & 0.23 \\ 0 & 10.18 \\ 0 & 12.41 \end{array}$ | $\begin{array}{rl} -7 & 60 \cdot 65 \\ & 62 \cdot 7 \mathrm{x} \\ & 60 \cdot 69 \\ & 63 \cdot 16 \end{array}$ | $\begin{array}{rrr} -7 & 2 & 9 \cdot 60 \\ 2 & 10 \cdot 76 \\ 2 & 3.57 \\ 2 & 3.20 \end{array}$ | $\begin{array}{rl} 13 & 11 \\ 11 & 20 \\ 4 & 41 \\ 6 & 6 \end{array}$ | $\left\|\begin{array}{rr} +0 & 9 \cdot 44 \\ 0 & 6 \cdot 97 \\ 0 & 1 \cdot 19 \\ 0 & 2 \cdot 02 \end{array}\right\|$ | $\begin{array}{r} 7 \quad 60 \cdot 16 \\ -73 \cdot 79 \\ 62 \cdot 38 \\ 61 \cdot 18 \end{array}$ |
| ＂ 12 | E． | 180 | $\begin{array}{rrr} -10 & 12 & 4 \cdot 60 \\ 12 & 6 \cdot 20 \end{array}$ | $\begin{array}{ll} 11 & 17 \\ 14 & 39 \end{array}$ | $\begin{array}{r} 6.91 \\ -0 \quad 6.64 \end{array}$ | $\begin{array}{r} 101211 \cdot 51 \\ 17 \cdot 84 \end{array}$ |  |  |  |  |



## Abstract of Astronomical Ázimuth observed at XVI (Háthria) 1856.

1. By Eastern Elongation of $a$ Ursæ Minoris.


Notr. -Where observations occurred on the same pair of zeros on different nights they are reduced in this abstract to one date-the most convenient-by allowing for star's change of place. The date so adopted appears at the head of the column, and the reduced observation is preceded by an asterisk.

Abstract of Astronomical Azimuth observed at XVI (Háthria) 1856-(Continued).
2. By Western Elongation of a Ursæ Minoris.



[^54] CUTCH COAST SERIES.

## At XVI (Háthria)

February 1857; observed by Lieutenant D. J. Nasmyth with Troughton and Simms' 18-inch Theodolite No. 2.

| Angle between | $0^{\circ} 1^{\prime}$ | $180^{\circ} 1^{\prime}$ | $10^{\circ} 11^{\prime}$ | Circle $190^{\circ} 11^{\prime}$ | reading <br> $20^{\circ} 22^{\prime}$ | s , telesc $200^{\circ} 22^{\prime}$ | pe bein $30^{\circ} 28^{\prime}$ | g set on $210^{\circ} 28^{\prime}$ | R.M. $40^{\circ} 38^{\prime}$ | $220^{\circ} 88^{\prime}$ | $50^{\circ} 49^{\prime}$ | $230^{\circ} 49^{\prime}$ | $\boldsymbol{M}=$ Mean of Groups $^{2}$ <br> $v_{0}=$ Relative Weight <br> C = Concluded Angle |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { R.M. } \\ \text { and } \\ \text { XXI (Sura Gandára) } \end{gathered}$ | - | " | " | " | " | " | " | " | " | " |  |  | $\begin{aligned} M & =17^{\prime \prime} \cdot 53 \\ w & =0 \cdot 84 \\ \frac{1}{w} & =1 \cdot 19 \\ C & =16^{\circ} 26^{\prime} 17^{\circ \prime \prime} 53 \end{aligned}$ |
|  | $\begin{aligned} & h 21.67 \\ & h 20.53 \end{aligned}$ | $\begin{aligned} & h 21 \cdot 73 \\ & h 21 \cdot 16 \end{aligned}$ | $\begin{aligned} & h 15.03 \\ & h 1440 \end{aligned}$ | $\begin{aligned} & h 20.33 \\ & h 20.77 \end{aligned}$ |  | $l 22.37$ $l 22.57$ | 13.03 h 14.06 | h 12.90 h 13.47 | h16.30 |  | 20'37 \% 19'73 | h 19.70 h 19.03 |  |
|  | 21'10 | 21.45 | 14.86 | $20 \cdot 55$ | 16.45 | 22.47 | 13.55 | $13 \cdot 18$ | 16.40 | 10*91 | $20^{\circ} 05$ | $19 \times 37$ |  |

Note.-R. M. denotes Referring Mark.

July, 1890.
W. H. COLE,

In charge of Computing Office.


$\mathrm{F}_{\text {Ig. }} \mathrm{N}_{\mathrm{o}} 32$



Scale $/$ Grek $=1.2$ cxpikes $\alpha \frac{1}{460380}$

Digitized by Google


Scale $/$ Trach $=12$ cxpilcs ac $\frac{1}{y 60320}$



List of Published Works of the Great Trigonometrical Survey of India.

> An Account of the Measurement of an Arc of the meridian between the parallels of $18^{\circ} 3^{\prime}$ and $24^{\circ} 7^{\prime}$, being a continuation of the Grand Meridional Arc of India as detailed by the late Lieutenant-Colonel Lambton in the Volumes of the Asiatic Society of Calcutta. By Captain George Everest, of the Bengal Artillery, F.R.S., \&c. London, 1830 . (Out of print). An Account of the Measurement of two Sections of the Meridional Arc of India, bounded by the parallels $18^{\circ} 3^{\prime} 5^{\prime \prime} ; 24^{\circ} 7^{\prime} 11^{\prime \prime} ;$ and $29^{\circ} 30^{\prime} 18^{\prime \prime}$. By Lieutenant-Colonel Everest, F.R.S., \&c., late Surveyor General of India, and his Assistants. London, 1847. $_{\text {(Out of print). }}$

Account of the Operations of the Great Trigonometrical Survey of India.
Price Rupees 10-8 per volume.
Volume I. The Standards of Measure and the Base-Lines, also an Introductory Account of the early Operations of the Survey, during the period of 1800-1830. By Colonel J. T. Walker, R.E., F.R.S., \&c., \&c., Superintendent of the Survey. Dehra Dún, 1870.
Do. II. History and General Description of the Principal Triangulation and of its Reduction. By Colonel J. T. Walker, C.B., R.E.', F.R.S., \&c., \&c., Surveyor General of India and Superintendent of the Survey, and his Assistants. Dehra Dún, 1879.
Do. III. The Principal Triangulation, the Base-Line Figures, the Karáchi Longitudinal, N.W. Himalaya, and the Great Indus Series of the North-West Quadrilateral. By Colonel J. T. Walker, R.E., F.R.S., \&c., \&c., Superintendent of the Survey, and his Assistants. Dehra Dún, 1873.
Do. IV. The Principal Triangulation, the Great Arc (Section $24^{\circ}-30^{\circ}$ ), Rahún, Gurhágarh and Jogi-Tyla Meridional Series, and the Sutlej Series of the NorthWest Quadrilateral. By Colonel J. T. Walker, R.E., F.R.S., \&c., \&c., Superintendent of the Survey, and his Assistants. Dehra Dún, 1876.
Do. IVA. The Principal Triangulation of the North-W est Quadrilateral, including the Reduction and Details of the Jodhpore and Eastern Sind Meridional Series. Prepared in the Office of the Trigonometrical Branch, Survey of India, Colonel C. T. Haig, R.E., Offg. Deputy Surveyor General, in charge, and published under the orders of Colonel G. C. DePrée, S.C., Surveyor General of India. Dehra Dún, 1886.
Do. V. Details of the Pendulum Operations by Captains J. P. Basevi, R. E., and W. J. Heaviside, R.E., and of their Reduction. Prepared under the directions of Major-General J. T. Walker, C.B., R.E., F.R.S., \&c., \&c., Surveyor General of India and Superintendent of the Trigonometrical Survey. Dehra Dún and Calcutta, 1879.

Do. VI. The Principal Triangulation of the South-East Quadrilateral, including the Great Arc-Section $18^{\circ}$ to $24^{\circ}$, the East Coast Series, the Calcutta and the Bider Longitudinal Series, the Jabalpur and the Biláspur Meridional Series, and the Details of their Simultaneous Reduction. Prepared under the directions of Major-General J. T. Walker, C.B., R.E., F.R.S., \&c., \&c., Surveyor General of India and Superintendent of the Trigonometrical Survey. Dehra Dún, 1880. (Out of print).

List of Published Works of the Great Trigonometrical Survey of India.
Account of the Operations of the Great Trigonometrical Survey of India-(Continued).
Volume VII. General Description of the Principal Triangulation of the North-East Quadrilateral, including the Simultaneous Reduction and the Details of five of the component Series, the North-East Longitudinal, the Budhon Meridional, the Rangir Meridional, the Amua Meridional, and the Karara Meridional. Prepared under the directions of Lieutenant-General J. T. Walker, C.B., R.E., F.R.S., \&c., \&c., Surveyor General of India and Superintendent of the Trigonometrical Survey. Dehra Dún, 1882.
Do. VIII. Details of the Principal Triangulation of eleven of the component Series of the North-East Quadrilateral, including the following Series; the Gurwáni Meridional, the Gora Meridional, the Huríáong Meridional, the Chendwár Meridional, the North Párasnáth Meridional, the North Malún. cha Meridional, the Calcutta Meridional, the East Calcutta Longitudinal, the Brahmaputra Meridional, the Eastern Frontier-Section $23^{\circ}$ to $26^{\circ}$, and the Assam Longitudinal. Prepared under the directions of Lieut.-General J. T. Walker, C.B., R.E., F.R.S., \&c., \&c., Surveyor General of India and Superintendent of the Trigonometrical Survey. Dehra Dún, 1882.
Do. IX. Electro-Telegraphic Longitude Operations executed during the years 1875-77 and 1880-81, by Lieut.-Colonel W. M. Campbell, R.E., and Major W. J. Heaviside, R.E. Prepared under the directions of Lieut.-General J.T. Walker, C.B., R.E., F.R.S., \&c., \&c., Surveyor General of India and Superintendent of the Trigonometrical Survey. Dehra Dún, 1883.
Do. X. Electro-Telegraphic Longitude Operations executed during the years 1881-82, 1882-83 and 1883-84, by Major G. Strahan, R.E., and Major W. J. Heaviside, R.E. Prepared under the directions of Colonel C. T. Haig, R.E., Deputy Surveyor General, Trigonometrical Branch, and published under the orders of Lieut.Colonel H. R. Thuillier, R.E., Surveyor General of India. Dehra Dún, 1887.
Do. XI. Astronomical Observations for Latitude made during the period 1805 to 1885, with a General Description of the Operations and Final Results. Prepared under the directions of Lieut.-Colonel G. Strahan, R.E., Deputy Surveyor General, Trigonometrical Branch, and published under the orders of Colonel H. R. Thuillier, R.E., Surveyor General of India. Dehra Dán, 1890.
Do. XII. General Description of the Principal Triangulation of the Southern Trigon, including the Simultaneous Reduction and the Details of two of the component Series, the Great Arc Meridional-Section $8^{\circ}$ to $18^{\circ}$, and the Bombay Longitudinal. Prepared under the directions of Lieat.-Colonel G. Strahan, R.E., Deputy Surveyor General, Trigonometrical Branch, and published under the orders of Colonel H. R. Thuillier, R.E., Surveyor General of India. Dehra Dún, 1890.
Do. XIII. Details of the Principal Triangulation of five of the component Series of the Southern Trigon, including the following Series; the South Konkan Coast, the Mangalore Meridional, the Madras Meridional and Coast, the South-East Coast, and the Madras Longitudinal. Prepared under the directions of Lieut.-Colonel G. Strahan, R.E., Deputy Surveyor General, Trigonometrical Branch, and published under the orders of Colonel H. K. Thuillier, R.E., Surveyor General of India. Dehra Dún, 1890.
Do. XIV. General Description of the Principal Triangulation of the South-West Quadrilateral, including the Simultaneous Reduction and the Details of its component Series. Prepared under the directions of W. H. Cole, Esq., M.A., Offg. Deputy Surveyor General, Trigonometrical Branch, and published under the orders of Colonel H. R. Thuillier, R.E., Surveyor General of India. Dehra Dún, 1890.

List of Published Works of the Great Trigonometrical Survey of India.
Synopses of the Results of the Great Trigonometrical Survey of India, comprising Descriptions, Co-ordinates, \&c., of the Principal and Secondary Stations and other Fixed Points of the Several Series of Triangles. Price Rupees 2 per volume.

Volume I: The Great Indus Series, or Series $D$ of the North-West Quadrilateral. By Colonel J. T. Walker, R.E., F.R.S., \&c., \&c., Superintendent of the Survey, and his Assistants. Dehra Dún, 1874.
Do. II. The Great Arc-Section $24^{\circ}$ to $30^{\circ}$, or Series $A$ of the North-West Quadrilateral. By Colonel J. T. Walker, R.E., F.R.S., \&c., \&c., Superintendent of the Survey, and his Assistants. Dehra Dún, 1874.
Do. III. The Karáchi Longitudinal Series, or Series $B$ of the North-West Quadrilateral. By Colonel J.T. Walker, R.E., F.R.S., \&c., \&c., Superintendent of the Survey, and his Assistants. Dehra Dún, 1874.
Do. IV. The Gurhágarh Meridional Series, or Series $F$ of the North-West Quadrilateral. By Colonel J. T. Walker, R.E., F.R.S., \&c., \&c., Superintendent of the Survey, and his Assistants. Dehra Dún, 1875.
Do. V. The Rahún Meridional Series, or Series $E$ of the North-West Quadrilateral. By Colonel J. T. Walker, R.E., F.R.S., \&c., \&c., Superintendent of the Survey, and his Assistants. Dehra Dún, 1875.
Do. VI. The Jogí-Yila Meridional Series, or Series $G$, and the Sutlej Series, or Series $\boldsymbol{H}$ of the North-West Quadrilateral. By Colonel J. T. Walker, R.E., F.R.S., \&c., \&c., Superintendent of the Survey, and his Assistants. Dehra Dún, 1875.
Do. VII. The North-West Himalaya Series, or:Series $C$ of the North-West Quadrilateral, and the Triangulation of the Kashmir Survey. By Major-General J. T. Walker, C.B., R.E., F.R.S., \&c., \&c., Surveyor General of India and Superintendent of the Survey, and his Assistants. Dehra Dún, 1879.
Do. VIIA. The Jodhpore Meridional Series and the Eastern Sind Meridional Series of the North-West Quadrilateral. Prepared in the Office of the Trigonometrical Branch, Survey of India, Colonel C. T. Haig, R.E., Deputy Surveyor General, in charge, and published under the orders of Colonel H. R. Thuillier, R.E., Surveyor General of India. Dehra Dún, 1887.
Do. VIII. The Great Arc-Section $18^{\circ}$ to $24^{\circ}$, or Series $A$ of the South-East Quadrilateral. By Colonel J. T. Walker, C.B., R.E., F.R.S., \&c., \&c., Superintendent of the Survey, and his Assistants. Dehra Dún, 1878.
Do. IX. The Jabalpur Meridional Series, or Series $\boldsymbol{E}$ of the South-East Quadrilateral. By Colonel J. T. Walker, C.B., R.E., F.R.S., \&c., \&c., Surveyor General of India and Superintendent of the Survey, and his Assistants. Dehra Dún, 1878.
Do. X. The Bider Longitudinal Series, or Series $\boldsymbol{D}$ of the South-East Quadrilateral. By Major-General J. T. Walker, C.B., R.E., F.R.S., \&c., \&c., Surveyor General of India and Superintendent of the Survey, and his Assistants. Dehra Dún, 1880.
Do. XI. The Biláspur Meridional Series, or Series $F$ of the South-East Quadrilateral. By Major-General J. T. Walker, C.B., R.E., F.R.S., \&c., \&c., Surveyor General of India and Superintendent of the Survey, and his Assistants. Dehra Dún, 1880.
Do. XII. The Calcutta Longitudinal Series, or Series $B$ of the South-East Quadrilateral. By Major-General J. T. Walker, C.B., R.E., F.R.S., \&c., \&c., Surveyor General of India and Superintendent of the Survey, and his Assistants. Dehra Dún, 1880.
Do. XIII. The East Coast Series, or Series $C$ of the South-East Quadrilateral. By MajorGeneral J. T. Walker, C.B., R.E., F.R.S., \&c., \&c., Surveyor General of India and Superintendent of the Survey, and his Assistants. Dehra Dún, 1880.
Do. XIIIA. The South Párasnáth Meridional Series and the South Malúncha Meridional Series of the South-East Quadrilateral. Prepared in the Office of the Trigonometrical Branch, Survey of India, Colonel C. T. Haig, R.E., Offg. Deputy Surveyor General, in charge, and published under the orders of Colonel G. C. DePrée, S.C., Surveyor General of India. Dehra Dún, 1885.

List of Published Works of the Great Trigonometrical Survey of India.
Synopses of the Results of the G. T. Survey of India, \&c.-(Continued).
Volume XIV. The Budhon Meridional Series, or Series $\boldsymbol{J}$ of the North-East Quadrilateral. By Lieutenant-General J. T. Walker, C.B., R.E., F.R.S., \&c., \&c., Surveyor General of India and Superintendent of the Survey, and his Assistants. Dehra Dún, 1883.
Do. XV. The Rangí Meridional Series, or Series $K$ of the North-East Quadrilateral. By Lieutenant-General J. T. Walker, C.B., R.E., F.R.S., \&c., \&c., Surveyor General of India and Superintendent of the Survey, and his Assistants. Dehra Dún, 1883,
Do. XVI. The Amua Meridional Series, or Series $L$, and the Karára Meridional Series, or Series $M$ of the North-East Quadrilateral. By Lieutenant-General J. T. Walker, C.B., R.E., F.R.S., \&c., \&c., Surveyor General of India and Superintendent of the Survey, and his Assistants. Dehra Dún, 1883.
Do. XVII. The Gurwáni Meridional Series, or Series $N$, and the Gora Meridional Series, or Series $O$ of the North-East Quadrilateral. By Lieutenant-General J. T. Walker, C.B., R.E., F.R.S., \&c., \&c., Surveyor General of India and Superintendent of the Survey, and his Assistants. Dehra Dún, 1883.
Do. XVIII. The Huriláong Meridional Series, or Series $P$, and the Chendwar Meridional Series, or Series $Q$ of the North-East Quadrilateral. By Lieutenant-General J. T. Walker, C.B., R.E., F.R.S., \&c., \&c., Surveyor General of India and Superintendent of the Survey, and his Assistants. Dehra Dún, 1883.
Do. XIX. The North Párasnáth Meridional Series, or Series $R$, and the North Malúncha Meridional Series, or Series $S$ of the North-East Quadrilateral. Prepared by J. B. N. Hennessey, Esq., M.A., F.R.S., \&c., \&c., Offg. Deputy Surveyor General, in charge of Trigonometrical Surveys, and his Assistants, and published under the orders of Colonel G. C. DePrée, S.C., Offg. Surveyor General of India. Dehra Dún, 1883.
Do. XX. The Calcutta Meridional Series, or Series T, and the Brahmaputra Meridional Series, or Series $V$ of the North-East Quadrilateral. Prepared by J. B. N. Hennessey, Esq., M.A., F.R.S., \&c., \&c., Offg. Deputy Surveyor General, in charge of Trigonometrical Surveys, and his Assistants, and published under the orders of Colonel G. C. DePrée, S.C., Offg. Surveyor General of India. Dehra Dún, 1883.

Do. XXI. The East Calcutta Longitudinal Series, or Series $U$, and the Eastern Frontier Series-Section $23^{\circ}$ to $26^{\circ}$, or Series $W$ of the North-East Quadrilateral. Prepared by J. B. N. Hennessey, Esq., M.A., F.R.S., \&c., \&c., Offg. Deputy Surveyor General, in charge of Trigonometrical Surveys, and his Assistants, and published under the orders of Colonel G. C. DePrée, S.C., Offg. Surveyor General of India. Dehra Dún, 1883.

Spirit-Levelling Operations of the Great Trigonometrical Survey of India. Price Rupee 1 per volume.

Heights in Sind, the Punjab, N.W. Provinces, and Central India, to May 1862. Calcutta, 1863.

Do. in N.W. Provinces and Bengal, to May 1865. Roorkee, 1866.
Do. in the Punjab and N.W. Provinces, Season 1866-67, Sections I to IV. Dehra Dún, 1869.

Do. in the N.W. Provinces and Oudh, Seasons 1867-69, Sections V and VI. Dehra Dún, 1869.
Do. from Lucknow viá Goruckpore \&c., to Dildernugger G. T. Survey Bench-mark near Ghazeepore, Seasons 1868-70, Section VII. Dehra Dún, 1871.
Do. from Goruckpore via Bettiah \&c., to G. T. Survey Bench-mark near Parsurman, Season 1870-71, Section VIII. Dehra Dún, 1872.

List of Published Works of the Great Trigonometrical Survey of India.
Spirit-Levelling Operations of the G. T. Survey of India-(Continued).
Heights from G. T. Survey Bench-mark near Parsurman to G. T. Survey Bench-mark at Pirpanti Railway Station, and from G. T. Survey Bench-mark at Purniah Church to N.E. End of Sonakhoda Base-Line; Season 1871-72, Section IX. Dehra Dún, 1873.
Do. in Cutch, Kattywar, Guzerat, Thána and Bombay districts, No. 1 Bombay Presidency, Seasons 1874-78. Dehra Dún, 1879.
Do. in Cuttack, Balasore, Midnapore, Howrah, 24-Pergunnahs, the Sundarbans and Hooghly districts of Bengal, Seasons 1881-83. Dehra Dún, 1884.
Do. in the Thána, Násik and Khándesh districts of Bombay, and in Dhár, Dewás, Gwalior, Bhopal and Tonk, Native States of the Central India Agency. No. 4 Bombay Presidency and Central India Agency, Seasons 1877-78 and 1881-84. Dehra Dún, 1885.
Do. in the Bombay Presidency and Nizam's Dominions, Nos. 2 and 3 (Revised Edition), Seasons 1877-80. Dehra Dún, 1886.
Do. . in the Madras Presidency, No. 1, Seasons 1869-85. Dehra Dán, 1886.
Do. in the Madras Presidency, No. 2, Season 1885-86. Dehra Dín, 1887.
Do. in the Madras Presidency, No. 3, Season 1886-87. Dehra Dún, 1888.
Do. in the Madras Presidency, No. 4, Season 1887-88. Dehra Dín, 1889.
Do. in the Madras Presidency, No. 5, Season 1888-89. Dehra Dún, 1890.

Auxiliary Tables to facilitate the Calculations of the Survey of India. Third Edition. Revised and extended under the directions of Lieut.-Colonel H. R. Thuillier, R.E., Surveyor General of India, by Colonel C. T. Haig, R.E., Deputy Surveyor General, in charge of the Trigonometrical Branch of the Survey of India. Dehra Dún, 1887. Price Two Rupees.

December, 1890.
$\ldots$

## -

 .
[^0]:    * For the history and description of this instrument see Appendix 2 of Vol. II of the Lcoount of the Operatione of the Great Trigonometrical Swroey of India, page 73 .

[^1]:    * In the printed abstract of angles of this and the other series the most left-hand station observed to has been made to appear as the 'zero station' although it was not actually so employed during the observations. This was done for the sake of convenience in printing and in no way affects the results.

[^2]:    * Strictly speaking the denominator in the expression which gives the value of $o$ would be $N-Z$; but a larger denominator, as $N$ or $\boldsymbol{N}-1$, is preferable in the present instance, because $o$ is combined with $g$ which, strictly speaking, would repree日nt the total error and not that of graduation only, if each measure were absolutely independent of all the others, which it is not. Thus, though the denominator $\boldsymbol{N}-1$ was originally employed by an oversight, it has been retained as more appropriate than $N-Z$ under existing circumstances.

[^3]:    * The factor $\frac{\text { cosec } 1^{\prime \prime}}{2 r^{2}}$ has been tabulated for every degree from $0^{\circ}$ to $40^{\circ}$ in the Auxiliary Tables to facilitate the Calculations of the Survey of Imdia, 3rd Edition, 1887.

[^4]:    *This method may be illustrated as follows:-Let $A, B$ and $C$ be stations at the vertices of a triangle, and let the differences of hoight obtained by rertical angular observations be $\mathcal{A}-B=c$ feet, $B-C=a$ feet, $C-\mathcal{A}=b$ feet, then $a+b+c$ should equal 0 ; but in practice this is seldom or never the case : hence for each triangle in which the differences of height of the atations have been observed we ohall have an equation

    $$
    a+b+c=e
    $$

    When a group of triangles connect two spirit levelled points, there is also an equation formed by equating the differences of height, along any route connecting the stations, to the difference as ohewn by spirit levelling. The solution of these equations by minimum squares is performed in the usual manner and needs no illustration.

[^5]:    - Of the Karachi Longitudinal Series of the North-West Quadrilateral.
    + Of the Bombay Longitudinal Series of the Southern Trigon.

[^6]:    * Of the Karichi Longitudinal Series of the North-West Quadrilateral.
    + Of the Khanpisura Meridional Series.

[^7]:    - Table XXV of the Auxiliary Tables, 3rd Fidition, 1887; has been constructed to facilitate the calculation of this formula.

[^8]:    * To asve time this is done in course of the preliminary calctalation of the triangles, the tabular differences being then noted on the triangle sheets, from which they are afterwards taken when wanted. Provision is also made in the triangle sheets for again employing the same tabular differences, as factors of the final corrections of the angles, in calculating the corresponding correotions to the logarithms of the sides of the triangles.

[^9]:    * In these equations, although the corresponding coefficients on opposite sides of the diagonal appear to differ, their values are in reality identical in each term of the summation. Both forms have always been made use of as a check on the calculations except in the case of the North-East Quadrilateral ; the diagonal coefficionts were obtained also by the formula

[^10]:    *. The side equations in the figural reductions are expressed in different. forms in different portions of the triangulation. In the form first adopted the coefficients of the unknown quantities are the cotangents of the angles, in the other they are the tabular differences of the logarithmic sines of the angles. The latter have been made use of for figures Nos. 7, 21, 23 to 41 and 46 to 53.
    $\dagger$ This number includes two equations in figure 18 derived from its connection with the Karáchi Longitudinal Series to which it is united by two sides.

[^11]:    * In calculating these values 7-place Logarithm Tables were employed, the 8th place here ohewn being obtained by interpolation.

[^12]:    *These stations appertain to the Karáchi Longitudinal Series of the North-West Quadrilateral.

[^13]:    ＊These atations appertain to the Karáchi Longitudinal Series of the North．West Quadrilateral．

[^14]:    * These stations appertain to the Bombay Longitudinal Series of the Southern Trigon.

[^15]:    * Among the non-circuit triangles have been reckoned the following, vis., Nos. 230 to 251 , which form a pendent to the South, West Quadrilateral and after the final reduction only experienced small linear changes, due to changes of side on which they depended No angular changes were required and they do not therefore appear.in this chapter.

[^16]:    * These stations appertain to the Karáchi Longitudinal Series of the North. West Quadrilateral.
    † This station appertains to the Bombay Longitudinal Series of the Southern Trigon.

[^17]:    * The three northern triangles of the Khánpisura Heptagon appertained originally to the Khánpisura Meridional Sories: the whole Heptagon is now included in the Bombay Longitudinal Series, and cousequently belongs to the Southern Trigon.
    $\dagger$ These measures were not utilized in the calculation.

[^18]:    ＊These are auxiliary stations for the determination of height only，and their data are not published in this Volume．
    $\uparrow$ These heights are to be combined with negative aigns because the pillar at VII（Dhanora）had a subsequent permanent addition made to it，vide page 5 － ．$^{\text {．}}$

[^19]:    ＊These are auxiliary stations for the determination of height only，and their data are not published in this Volume．
    $\ddagger$ These heighte are to be combined with negative signs because the pillar at Samalia had a subsequent permanent addition made to it of 5 dito feet． $\pm$ Ditto

[^20]:    ＊This is an auxiliary station for the determination of height only，and its data are not published in this Volume．\＄See description of this atation，page 86 －$a$ ．

[^21]:    Nots.-Where observations occurred on the same pair of zeros on different nights they are reduced in this abstract to one date-the most convenient-by allowing for star's change of place. The date so adopted appears at the head of the column, and the reduced observation is preceded by an asterisk.

[^22]:    Nots.-Where observations occurred on the same pair of zeros on different nights they are reduced in this abstract to one date-the most conrenient-by

[^23]:    * Owing to the complexity of the figure at the southern end of the Singi Meridional Series, it was considered desirable to reject the observations on the ray Karanja-Kámandrug, so that the Series now terminates on the single side Singi-Párner of the Bombay Longitudinal Series.

[^24]:    * For a full deacription of the inetrument and its performances aee Appendix No. 2 of Volume II of the Account of the Oparations of the Great Trigonometrical Survey of India.

[^25]:    * The Instrument to be used was the Theodolite known in this Department as Troughton and Simms' 18-inch No. 2. Fror a description of it, seo Appendix No. 2 of Volume II of the Account of the Operations of the Great Trigonometrical Swrvey of India.

[^26]:    *The Kágarol Hexagon appertained originally to the Guzerat Longitudinal Series, but it was found convenient afterwards to include it in the Singi Meridional Series.

[^27]:    *The side that was common to both Rivers' and Haig's work was Tarbhán-Dopári : at Tarbhán the angle Pilwa-Tarbhán-Dopári seems never to have been obeerved: Haig obeerved the northern angle Páthal-Tarbhán-Dopári, whilst Rivers obeerved the whole angle Pilwa-Tarbhán-Páthal: the southern angle Pilwa-Iurbhán-Dopari was deduced from the other two.

[^28]:    *This series belonge to the Guzerat Longitudinal Series, from a side of which, Sánand-Pálri, it originatee: it follows the course of the Sabarmati river to its mouth.

[^29]:    * The Star is identical with No. 908 of the Greenwich 0-year Catalogue for 1872 from which its elements have been computed.

[^30]:    * The side Tarbhán-Dopari was in 1850 the northern extremity of the Singi Meridional Series: many unsuccessful efforts had been made to carry the latter further north : it was eventually connected with the Karáchi Longitudinal Series in 1862 by a series running parallel to the $\mathbf{A} b u$ Series and 70 miles distant to the east.

[^31]:    * The principal angles at Jeráj and Márd which form part of the Gúru Sikkar-Belka Double Pentagon and appertain to the Karáchi Longitudinal Scries were observed by Mr. C. Lane in February and March 1851 with Troughton and Simms' 36 -inch Theodolite.
    $\dagger$ Troughton and Simms' i\&-inch Theodolite No. 2: for a full description of this instrument and the work performed by it, see Ap$\dagger$ Troughton and Simms' i8-inch Theodolite No. 2: for a full description of this instrument and the
    pendix No. 2 of Volume II of the Account of the Operations of the Great Trigonometrical Survey of India.
    $\ddagger \Delta$ tower twenty-five feet high had to be built at each extremity of a twelve mile ray in order to ensure mutual visibility of the heliotropes.

[^32]:    * This method of ohanging sero was altered in 1860 by Colonel Waugh for reasons which will be found fully explained at pages cii to xvii of the Introduction to the Great Indus Series, vide Volume III of the decount of the Operations of the Great Trigonometrical Swrocy of Imdia. Since that date the zero-settings for theodolites, with three mioroscopes have always been as follows:-

    $$
    \frac{\circ^{\circ} 0^{\prime}}{180^{\circ} 0^{\prime}}, \frac{70^{\circ} 1^{\prime}}{250^{\circ}!^{\prime}}, \frac{140^{\circ} 2^{\prime}}{320^{\circ} 2^{\prime}}, \frac{210^{\circ} 3^{\prime}}{30^{\circ} 3^{\prime}}, \frac{280^{\circ} 4^{\prime}}{100^{\circ} 4^{\prime}} \text { and } \frac{350^{\circ} 5^{\prime}}{170^{\circ} 5^{\prime \prime}} \text {, }
    $$

    the changes in the minutes were introduced with a view to cancelling the effecte of any erross in the construction of the threads of the mioromotern.

[^33]:    * Vide Introduction to the Guzerat Longitudinal Series.
    + The geometrical conditions of the figures of the triangulation were in these days astisfied by Colonel Evereat's method of suos coscive approximations, vide page 103, Volume II of the Loconnt of the Operations, \&e.

[^34]:    * To determine the error of the geographical position of Mirzapur in feet it should be noted that 1 foot $=0$ " $\cdot 01$ approcimately both on meridian and parallel.
    $\dagger$ The side Mirzápur-Sanode.

[^35]:    * The principal station of Pára was only two miles distant from Bijápur.

[^36]:    The tower is built like the others of this Series, and is 22 feet high. Four small pillars were built outside the tower and the intersection of the lines engraved on them defined the position of the station mark at the level of the ground. When the tower was finished, the upper mark did not agree with this intersection and it was therefore moved in Jauuary 1852, 2.9 inches in a direction forming an angle of $+26^{\circ}$ with Warsora Station. The only angle observed in season 1850-51, connected with the old upper mark, was that at Warsora between Rakhial and Lakwára stations, und a small correction has therefore been applied to this angle to reduce it to the present station mark : should this mark ever be removed it can be recovered by the marks on the outer pillars. The present mark at the level of the ground, is 0.9 of an inch east of the mark used.

[^37]:    * Now a Secondary Station.

[^38]:    . $\quad$ Reading of lowest water mark.

[^39]:    - The gauge with the floating Index 8 feet long was set up in Diu Creek, 56.5 feet N.I. of the ruined and smallest tower on the westernmost curtain of Diu fort S. W. of Gogla (Portuguese Settlement) where there was a sufficient depth of water for the purpose of making Tidal Observations. The position was further the most sheltered in the locality and free from the influence of waves. The rise and fall of the tides were satisfactorily registered to 05 of a foot. Opon the tower, on a slab level with the flags, is engraved the numeral 14, that being the height of the tower as obtained by levelling above the mean sea level deduced from the mean of high and low tide observations made uninterruptedly during a semi-lunation from the 8rd to 17th March, 1855.

[^40]:    * Fide Introduction to the Guserat Longitudinal Series.
    $\dagger$ The Principal angles at Jhund, Bhilgaon, and Akoria which appertain to the Karachi Longitudinal Serion were observed by Oaptain 4. Strange in December, 1851, with Troughton and Simms' 36 -inch 'Iheodolite.

[^41]:    * For a description of this instrument and its performances, see Appendix No. 2 of Volume II of the Account of the Operations of the Great Trigonometrical Swrvey of India.

[^42]:    * Rangpur is one of the centres of a compound figure situated at the junction of the Guzerat Longitudinal and the Kattywar Meridional Series, which belongs to the latter.

[^43]:    * It therefore ensues that there are now in existence two Principal Stations of the same name, Kaula-ka-Máta, one appertaining to the Khánpisura Meridional Series and the other to the Guzerat Longitudinal Series: they are between 20 and 30 yards apart.
    $\dagger$ For a description of this instrument and its performances see Appendix No. 2 of Volume II of the Account of the Operations of the Great Trigonometrical Survey of India.

[^44]:    * This series belongs to the Singi Meridional Series.

[^45]:    The station consists of a tower 21 feet in height, having a mark-stone at the top: it was originally built 16 feet in height and was raised to its present height on the 5th April 1852. The directions and distances of the circumjacent villages are :-Hasalpur Sareswar W.N.W., mile $\frac{3}{4}$; Soklai (on the B. B. and C. I. Railway) E.N.E., miles $2 \frac{1}{2}$; and Thori Mubarak S.W. by S., miles 3.

[^46]:    Nors.-Stations XIII, XIV, XVII and XVIII appertain to the Singi Meridional Series.

[^47]:    Note.-Station IX (Karsod) appertains to the Khánpisura Meridional Series.

[^48]:    * This height is to be combined with a negative sign on account of change in the height of the pillar at Station XXVI (Hasalpur).
    § These heights are to be combined with negative signs on account of change in the height of the pillar at Station XXX (Ingrori).
    + 

    $\pm$
    Ditto
    ditto ditlo
    ditto
    at Station XXXI (Degám).
    || Rejeeted.

[^49]:    For a full description of this instrument and its performances sce Appendix No. 2 of Volume II of the Account of the Operatione of the Great Trigonometrical Swrvay of India.

[^50]:    The station consists of a tower enclosing a perforated pillar of masonry 25 feet in height of which the upper 5 feet is isolated : an arched aperture on the S. side gives access to the ground level mark. The approximate directions and distances of the circumjacent villages are :-Karmali Khosa S.W., miles 2; and Alamkhán E., miles 3.

[^51]:    The station consists of a platform enclosing an isolated and perforated pillar of masonry 5 feet in height, and having an arched aperture on the S . side for access to the lower mark. The approximate directions and distances of the following villages are :-Themáni N.E., miles 5 ; and Gházi Chándia W., miles 5.

[^52]:    ＊Rejected．

[^53]:    ＊This height is to be combined with a negative sign on account of change in the height of the tower at XLV（Sukpur）．

[^54]:    Notr. - Where obeervations occurred on the same pair of zeros on different nights they are reduced in this abstract to one date-the most convenient-by allowing for star's change of place. The date so adopted appears at the head of the column and the reduced observation is preceded by an asterisk.

